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Abstract Let f : Ω → f(Ω) ⊂ R
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1 Introduction

Recall that a non-constant continuous mapping f : Ω → R
n is said to be a mapping of finite

distortion if f belongs to the Sobolev space W 1,1
loc (Ω, Rn), J(·, f) ∈ L1

loc(Ω) and J(·, f) is strictly
positive almost everywhere on the set where |Df | �= 0. Here |Df(·)| and J(·, f) are the operator
norm and the Jacobian determinant of Df(·), respectively. Associated with such a mapping
the (outer) distortion K(·, f) is defined as

K(x, f) =
|Df(x)|n
J(x, f)

, if J(x, f) > 0,

and K(x, f) = 1 otherwise. Similarly, a non-constant continuous mapping f ∈ W 1,1
loc (Ω, Rn) is

said to have finite inner distortion if J(·, f) ≥ 0 a.e., J(·, f) ∈ L1
loc(Ω), and D#f(·) vanishes a.e.

in the zero set of J(·, f). Here D#f(·) represents the adjoint matrix of the differential Df(·).
With such mappings we associate an inner distortion function KI : Ω → [1,∞) defined as

KI(x, f) =
|D#f(x)|n
J(x, f)n−1

when J(x, f) > 0, and K(x, f) = 1 otherwise. The trivial inequality

KI(x, f) ≤ K(x, f)n

implies that mappings of finite distortion are necessarily mappings of finite inner distortion.
But the converse is not true in general. For instance, the mapping f : R

n → R
n, n ≥ 3,

f(x1, . . . , xn) = (x1, 0, . . . , 0)
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is a mapping of finite inner distortion, but not a mapping of finite distortion. On the other
hand, the reverse estimate

K(x, f) ≤ KI(x, f)n−1 if J(x, f) > 0

implies that the two classes of mappings coincide if J(·, f) is positive a.e. From now on, we
sometimes write Jf (·) for the Jacobian determinant of Df(·).

An important and remarkable result of Hencl and Koskela [10] asserts that if f ∈W 1,1(Ω, R2)
is a homeomorphism with finite distortion, then f is a bi-Sobolev homeomorphism, i.e., f ∈ W 1,1

and f−1 ∈ W 1,1. Moreover, if the distortion is integrable, then f−1 ∈ W 1,2. The converse is
also true, see [11]. Such a conclusion is not valid in higher dimensions [12, 13].

A recent result of Csörnyei et al. [2] implies that homeomorphisms in W 1,n−1
loc (Ω, R

n) with
finite (outer) distortion are bi-Sobolev mappings. Moreover, the inverse mapping also has finite
(outer) distortion. This has been extended to a wider class of mappings of finite inner distortion
in [6].

The connection between general bi-Sobolev mappings and mappings of finite inner distortion
are given by the following two results. The first result was proved in [13].

Let f : Ω → R
n be a bi-Sobolev mapping. If Jf = 0 a.e. on a measurable set A, then

|D#f(x)| = 0 a.e. on A. If we moreover assume that Jf ≥ 0, it follows that f has finite inner
distortion.

In the opposite direction, we have the second result [6, 14, 18].
Let f ∈ W 1,n−1(Ω, Rn) be a homeomorphism with finite L1-integrable inner distortion. Then

f−1 is a W 1,n(f(Ω), Ω) mapping of finite distortion. Moreover,

|Df−1(y)|n ≤ KI(f−1(y), f)Jf−1(y) a.e. in Ω,∫
f(Ω)

|Df−1(y)|dy =
∫

Ω

|D#f(x)|dx, (1.1)

and ∫
f(Ω)

|Df−1(y)|ndy =
∫

Ω

KI(x, f)dx. (1.2)

In this paper, we prove an analogous result by relaxing the Sobolev regularity W 1,n−1 but
additionally requiring finiteness of some pointwise constants.

Theorem 1.1 Let f ∈ W 1,1(Ω, Rn) be a homeomorphism of L1-integrable inner distor-
tion and let E ⊂ R

n be a set of σ-finite H 1-measure. Suppose that for every x ∈ Ω\E,
min{lipf (x), kf (x)} < ∞. Then f−1 ∈ W 1,n(f(Ω), Rn) and has finite distortion. Moreover,

|Df−1(y)|n ≤ KI(f−1(y), f)Jf−1(y) a.e. in Ω

and (1.1), (1.2) hold.

Remark 1.2 It follows from Theorem 1.1 and Equation (1.1) that D#f(·) ∈ L1(Ω).

Recall that for a homeomorphism f : Ω → R
n, the pointwise constants lipf and kf are

defined by

lipf (x) := lim inf
r→0

L(x, r)
r

, kf (x) := lim inf
r→0

kf (x, r),
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where

Lf (x, r) = sup
x′∈B(x,r)∩Ω

|f(x′) − f(x))|, kf (x, r) =
(

Lf (x, r)n

|f(B(x, r))|
) 1

n−1

.

Note that in general the finiteness of lipf does not imply Sobolev regularity for f and so
Theorem 1.1 is not covered by the previous mentioned result. On the other hand, Sobolev
regularity is implied by the integrability of lipf . More precisely, f ∈ W 1,p

loc if we assume that
lipf ∈ Lp

loc, see [21, Corollary 1.4].
We will prove Theorem 1.1 in two steps. In the first step, we prove that under the analytic

assumption that min{lipf (x), kf (x)} < ∞ for all x ∈ Ω\E, f satisfies condition N on a.e.
sphere (see Section 2 below for definition). In this step, we follow closely the approach used
by Williams [21], whereas the idea goes back to Balogh et al. [1]. In the second step, we prove
that if f ∈ W 1,1 is a homeomorphism with L1-integrable inner distortion such that f satisfies
Condition N on a.e. sphere, then f−1 ∈ W 1,n and has finite distortion. In this step, we follow
the approach used by Csörnyei et al. [2].

This paper is organized as follows. Section 2 contains the basic definitions and some auxiliary
results. In Section 3, we prove that f satisfies Condition N on a.e. spheres. The proof of
Theorem 1.1 is given in Section 4. The last section, Section 5, contains a short discussion on
related results in the non-homeomorphic case.

2 Preliminaries and Auxiliary Results

2.1 Condition N on m-Rectifiable Surfaces

In this paper, we call a Borel measurable set S ⊂ Ω an m-rectifiable surface, m ≥ 1, if S is
m-rectifiable with 0 < H m(S) < ∞ and there exist a constant δ > 0 and a constant C(m) > 0
such that H m(B(x, r) ∩ S) ≥ C(m)rm for every x ∈ S and every r < δ.

Recall that for a set A ⊂ R
n and s > 0, the s-Hausdorff measure of A is defined as follows.

First, for each δ > 0, we define the premeasure

H s
δ (A) = inf

∑
B∈B

(diamB)s,

where the infimum is taken over all covers B of A by countable balls of diameter at most δ.
When δ gets smaller, the number of possible covers decreases, so the limit

lim
δ→0

H s
δ (A) = H s(A) ∈ [0,∞]

exists and is called the s-Hausdorff measure of A.
A map f : Ω → R

n is said to satisfy Lusin’s Condition N on an m-rectifiable surface S if for
any set E ⊂ S with H m(E) = 0, H m(f(E)) = 0. The case m = n− 1 is of particular interest
for us. We say that f satisfies Condition N on almost every sphere, if for any ball B(x, r) ⊂ Ω,
f satisfies Condition N on almost every (n − 1)-dimensional sphere S(x, t), 0 < t < r with
respect to H n−1, i.e., for a.e. 0 < t < r, H n−1(f(A)) = 0 whenever A ⊂ S(x, t) and
H n−1(A) = 0. Similarly, we say that f satisfies Condition N−1 on almost every sphere, if
for any ball B(y, r) ⊂ f(Ω) and a.e. 0 < t < r, it holds that H n−1(f−1(E)) = 0 whenever
E ⊂ S(y, t) and H n−1(E) = 0.



2002 Guo C. Y.

If f is a homeomorphism, then it is easy to see that f satisfies Condition N−1 (or N) on
a.e. sphere if and only if f−1 satisfies Condition N (or N−1) on a.e. sphere.

2.2 Conformal Modulus for m-Rectifiable Surfaces

Let Λ be a family of m-rectifiable surfaces in R
n, we set the q-modulus of Λ to be

Modq Λ = inf
{∫

Rn

ρ(x)qdx : ρ : R
n → [0,∞] is admissible for Λ

}
.

Recall that a Borel function ρ : R
n → [0,∞] is said to be admissible for a surface family Λ if∫

S
ρ(x)dH m(x) ≥ 1 for all S ∈ Λ. If q = n

m , the q-modulus is called the conformal modulus for
Λ. We say that a property F holds for q-almost every m-rectifiable surfaces S if the family of
m-rectifiable surfaces S such that the property F fails has zero q-modulus. By [5, Theorem 1],
the map

Λ 
→ Modq(Λ)

defines an outer measure on the collection of all families of m-rectifiable surfaces in R
n.

2.3 Approximate Differential and Chain Rule

Let f : Ω → R
n be a mapping. We say that f is approximately differentiable at x if there exists

a linear mapping L : Ω → R
n such that

ap- lim
y→x

|f(y) − f(x) − L(y − x)|
|y − x| = 0. (2.1)

It is well known that such an L, if exists, is unique [4]. We will use the notation Df(x) for L

and call Df(x) the approximate differential of f at x, since if f is differentiable at x, then the
approximate differential coincides with the usual differential. We will denote by

Df = {x ∈ Ω : f is approximately differentiable at x}.
Recall that a Sobolev mapping f ∈ W 1,1

loc (Ω, Rn) is approximately differentiable a.e. in Ω.
We need the following chain rule, which was originally proved in [6, Lemma 2.1].

Lemma 2.1 ([18, Lemma 3.6]) Let f : Ω → Ω′ be a homeomorphism such that f and f−1 are
approximately differentiable a.e. Set E = {y ∈ Df−1 : |Jf−1(y)| > 0}. Then there exists a Borel
set A ⊂ E with |E\A| = 0 such that f−1(A) ⊂ {x ∈ Df : |Jf (x)| > 0}, with the property that

Df−1(y) = [Df(f−1(y))]−1 for all y ∈ A.

2.4 Discrete and Open Mapping

Let f : Ω → R
n be open and discrete, the latter meaning that f−1(y) cannot have accumulation

points in Ω for any y ∈ R
n. In particular, N(y, f, A) < ∞ whenever A ⊂⊂ Ω. Recall that

N(y, f, Ω) is defined as the number of preimages of y under f in Ω. We also put N(f, Ω) :=
supy∈Rn N(y, f, Ω).

A domain U ⊂⊂ Ω is called a normal domain of f if f(∂U) = ∂f(U). The openness of
f implies that ∂f(U) ⊂ f(∂U) holds for every domain U . An open, connected neighborhood
U ⊂⊂ Ω of a point x ∈ Ω is called a normal neighborhood of x if f(∂U) = ∂f(U) and
U ∩ f−1(f(x)) = {x}. Denote by U(x, f, r) the x-component of f−1(B(f(x), r)). For the
following lemma, see [19, Chapter I, Lemma 4.9].
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Lemma 2.2 ([19, Lemma 4.9]) For each point x ∈ Ω, there is σx > 0 such that U(x, f, r) is
a normal neighborhood of x whenever 0 < r ≤ σx. Moreover, diam U(x, f, r) → 0 as r → 0.

Next, suppose that x ∈ Ω and 0 < r ≤ σx, where σx is as in the above lemma. The local
index i(x, f) of f at x is defined as

i(x, f) = N(f, U(x, f, r)).

Note in particular that N(f, U(x, f, r)) is independent of r ≤ σx. Thus, i(x, f) = 1 if and only
if x ∈ Ω\Bf , where Bf is the branch set of f .

The local index is in fact a topological concept. Recall that for a continuous mapping
f : Ω → R

n, we can define the local degree μ(y, f, U) for any domain U ⊂⊂ Ω and every
y ∈ R

n\f(∂U). If U is a normal domain, we define μ(f, U) = μ(y, f, U) for some y ∈ f(U).
This is well-defined because μ(y, f, U) = μ(z, f, U) whenever y, z ∈ f(U). We call f sense-
preserving if μ(y, f, U) > 0 whenever U ⊂⊂ Ω and y ∈ f(U)\f(∂U).

With these concepts, the local index i(·, f) can be defined as follows. Let x ∈ Ω and U be a
normal neighborhood of x, we define i(x, f) = μ(f, U). It is easy to show that i(x, f) does not
depend on the normal neighborhood of U . We refer the interested reader to [19, Section I 4]
for more information.

2.5 Area Formula

We discuss the well-known area formula in this subsection. Let f ∈ W 1,1
loc (Ω, Rn). Then for

every Borel set E ⊂⊂ Ω and for any nonnegative Borel function η on R
n, we have∫

E

η(f(x))|J(x, f)|dx ≤
∫

Rn

η(y)N(y, f, E)dy. (2.2)

The above equality holds if f satisfies the so-called Lusin Condition N . Recall that a mapping
f : Ω → R

n is said to satisfy the Lusin Condition N if the implication “|E| = 0 ⇒ |f(E)| = 0”
holds for all measurable sets E ⊂ Ω. On the other hand, let f ∈ W 1,1

loc (Ω, Rn) be a continuous,
discrete and open mapping. Then the area formula holds in Df , i.e.,∫

Df

η(f(x))|J(x, f)|dx =
∫

f(Df )

η(y)N(y, f,Df )dy (2.3)

for every nonnegative Borel function η in R
n; see for instance [18, Theorem 3.3].

We need also the following simple lemma from harmonic analysis, see for instance [15,
Lemma 2.8].

Lemma 2.3 Fix 1 ≤ p < ∞. Let B1, B2, . . . be balls in R
n, aj ≥ 0 and λ > 1. Then∥∥∥∑

ajχλBj

∥∥∥
p
≤ C(λ, p, n)

∥∥∥∑
ajχBj

∥∥∥
p
.

3 Condition N on Almost Every Sphere

In this section, we prove that under the analytic condition as in Theorem 1.1, f satisfies the
Condition N on almost every sphere in Ω.

Theorem 3.1 Let f : Ω → f(Ω) ⊂ R
n be a homeomorphism and let E ⊂ R

n be a set of
σ-finite H 1-measure. Suppose that for every x ∈ Ω\E, min{lipf (x), kf (x)} < ∞. Then on
1-almost every (n−1)-rectifiable surface S in Ω, f satisfies Condition N with respect to H n−1,
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and f(S) has σ-finite (n − 1)-measure. In particular, f satisfies Condition N on almost every
sphere in Ω.

In the case that lipf is finite outside a set of σ-finite H 1-measure, Theorem 3.1 holds for
any continuous mapping f as well.

Theorem 3.2 Let f : Ω → f(Ω) ⊂ R
n be a continuous map and let E ⊂ R

n be a set of
σ-finite H 1-measure. Suppose that for every x ∈ Ω\E, lipf (x) < ∞. Then on 1-almost every
(n− 1)-rectifiable surface S in Ω, f satisfies Condition N with respect to H n−1, and f(S) has
σ-finite (n − 1)-measure. In particular, f satisfies Condition N on almost every sphere in Ω.

We will follow the approach of Williams [21] and we need several auxiliary results to prove
both results. The first one is a version of Fuglede’s lemma for rectifiable surfaces.

Lemma 3.3 (Fuglede’s lemma) Let {gi} be a sequence of Borel functions that converges in
Lq(Ω). Then there is a subsequence {gik

} with the following property : if g is any Borel repre-
sentative of the Lq-limit of {gi}, then

lim
k→∞

∫
S

|gik
− g|dH m = 0

for q-almost every m-rectifiable surface S in Ω.

Proof Let g be an arbitrary Borel representative of the Lp-limit of {gi}. Choose a subsequence
{gik

} of {gi} so that ∫
Ω

|gik
− g|qdx ≤ 2−kq−k.

Note that this subsequence is independent of the particular representative g. Define

ρk = |gik
− g|.

Let Λ be the family of m-rectifiable surfaces S in Ω for which the statement

lim
k→∞

∫
S

ρkdH m = 0

fails to hold, and let Λk be the family of all m-rectifiable surfaces S in Ω for which∫
S

ρkdH m > 2−k.

Then

Λ ⊂
∞⋃

k=j

Λk

for each j ≥ 1. On the other hand, 2kρk is admissible for Λk for each k, so that

Modq(Λk) ≤ 2kq

∫
Ω

ρq
kdx < 2−k.

Consequently, we have

Modq(Λ) ≤
∞∑

k=j

Modq(Λk) ≤ 2−j+1. �

The next result is an adjustment of [1, Lemma 3.5], see also [22, Proposition 3.2].
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Proposition 3.4 Let f : Ω → f(Ω) ⊂ R
n be a continuous map. Let E ⊂ Ω have σ-finite

H n−p-measure for some 1 ≤ p ≤ n. Then

Modq({S ∈ Λ : H m(f(S ∩ E)) > 0}) = 0,

where q = p
m and Λ is the family of m-rectifiable surfaces in Ω.

Proof In light of the sub-additivity of modulus, it suffices to consider the case H n−p < ∞.
Fix ε > 0 and set

Λε = {S ∈ Λ : H m(f(S ∩ E)) > εm}.
We need to show that Λε has zero modulus; the claim will then follow, again by sub-additivity
of modulus. We may assume that E ⊂ 1

2B0 for some ball B0. Since R
n is proper, the closed

ball B0 is compact, and since f is continuous, its restriction to B0 is uniformly continuous.
Hence, for each k ∈ N, there exists a δk > 0 such that, for all x, x′ ∈ B0,

|x − x| < δk ⇒ |f(x) − f(x′)| <
ε

2k+3
. (3.1)

We may assume that {δk} is a sequence of positive numbers decreasing to zero. Fix ε̃ > 0.
Using the definition of Hausdorff measure and applying the 5r-covering theorem, we find a
sequence of balls {Bk

i }i such that E ⊂ ⋃
i 5Bk

i , Bk
i ∩ Bk

j = ∅ when i �= j, diam(Bk
i ) < δk

5 ,
2Bk

i ⊂ B0 and such that ∑
i

(diam(Bk
i ))n−p < H n−p(E) + ε̃. (3.2)

Consider the sequence {ρk}k of Borel functions, defined by

ρk(x) =
1
2k

∑
i

1
diam(Bk

i )m
χ12Bk

i
(x).

By Lemma 2.3 we see that∫
Ω

ρq
kdμ =

1
2kq

∫
Ω

( ∑
i

χ12Bk
i

diam(Bk
i )m

)q

dx

≤ C

2kq

∑
i

∫
Ω

χBk
i

(diam(Bk
i ))mq

dx

≤ C

2kq

∑
i

|Bk
i |

diam(Bk
i )mq

.

By (3.2), we finally conclude that∫
Ω

ρq
kdx ≤ C

2kq

∑
i

diam(Bk
i )n−mq ≤ C

2kq
(H n−p(E) + ε̃). (3.3)

Set

ρ̃k(x) =
∞∑

j=k

ρj(x).

Then
( ∫

Ω

ρ̃q
kdx

) 1
q

=
( ∫

Ω

( ∞∑
j=k

ρj

)q

dx

) 1
q

≤
∞∑

j=k

( ∫
Ω

ρq
jdx

) 1
q
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≤
∞∑

j=k

(
C

2jq
(H n−p(E) + ε̃)

) 1
q

≤ C

2k
(H n−p(E) + ε̃)

1
q . (3.4)

Next, we show that the functions 4ρ̃k are admissible for the modulus. For any S ∈ Λε,
H m(f(S ∩ E)) > εm. This implies that, for sufficiently large integers k, there exist points
y1, . . . , y2(k−2) ∈ f(S ∩ E) such that

|yi − yj | >
ε

2k+2
for i �= j. (3.5)

By inequalities (3.1) and (3.5), at least 2k−2 sets f(5Bk
i ) will be needed to cover f(S ∩ E).

Hence, there are at least 2k−2 balls 5Bk
i that hit S. It follows that for any j ∈ N, we may find

k ≥ j such that S is not entirely contained in any ball 12Bk
i and there exist 2k−2 points ym

such that (3.5) holds. Therefore,∫
S

ρ̃jdH m ≥
∫

S

ρkdH m =
1
2k

∑
i

∫
S

χ12Bk
i

diam(Bk
i )m

dH m

≥ 1
2k

∑
5Bk

i ∩S �=∅

diam(Bk
i )m

diam(Bk
i )m

≥ 1
2k

· 2k−2 ≥ 1
4
,

where we have used the estimated number of balls intersecting S and the fact that S is not
entirely contained in any ball 12Bk

i . The claim follows by letting k → ∞ in (3.3). �

Finally, we need the following result, whose proof is a modification of [21, Proposition 3.1].
Recall that for a fixed Borel set A ⊂ R

n and an m-rectifiable surface S, f is said to satisfy
Condition NA with respect S if for all O ⊂ S with H m(O) = 0, we have H m(f(O ∩ A)) = 0.

Proposition 3.5 Let f : Ω → f(Ω) ⊂ R
n be a continuous map. Let A ⊂ Ω be a Borel set,

and assume that there is a number M < ∞ such that one of the following two conditions is
satisfied :

i) For every x ∈ A, lipf (x) ≤ M ;
ii) f is a homeomorphism and for every x ∈ A, kf (x) ≤ M .

Then on q-almost every m-rectifiable surface S in Ω, f(S ∩ A) has finite m-measure, and f

satisfies Condition NA with respect to S. Above q = n
m .

Proof We first consider the case lipf (x) ≤ M on A. Let ε > 0. Fix an m-rectifiable surface S

and a subset E ⊂ S. By the Vitali covering lemma, we may cover E with a sequence of balls
Bi = B(xi, ri), xi ∈ E and ri < ε

2 , such that
∑

i

(
diamBi

)m
< H m(E)+ ε, such that 1

5Bi are
pairwise disjoint, and such that

diam(f(Bi)) ≤ 2Lf (xi, ri) ≤ 2Mri.

Then

H m
ε (f(E)) ≤

∞∑
i=1

diam(f(Bi))m ≤ C0M
m

∞∑
i=1

H m(Bi)

≤ C0M
m

∞∑
i=1

H m

(
1
5
Bi

)
≤ C0M

m(H m(E) + ε).
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Passing to limit as ε approaches 0 gives the desired inequality

H m(f(E)) ≤ C0M
mH m(E).

Next, we assume that kf (x) ≤ M for all x ∈ A. Since our considerations are entirely local,
we may assume that Ω and f(Ω) are bounded. Fix ε > 0. For each x ∈ A, there is by definition
a radii rx < ε such that kf (x, rx) ≤ 2kf (x) ≤ 2M and B(x, 2rx) ⊂ Ω.

By the Besicovitch covering theorem, there is a constant Cn depending only on n, and a
sequence of points xi ∈ A such that the balls Bi = B(xi, rxi

) satisfy the following properties:
i)

∑∞
i=1 χBi

≤ Cn;
ii)

⋃∞
i=1 Bi ⊃ A.

To ease notation, let ri = rxi
and Li = Lf (xi, ri). We now define ρε : Ω → R by

ρε = 2
∞∑

i=1

(
Li

ri

)m

χ2Bi
.

Then for every m-rectifiable surface S in Ω such that H m(S) > εm, we may conclude that for
each i such that Bi ∩ S �= ∅, S joins Bi with X\2Bi. Since S is rectifiable and ri is sufficiently
small,

∫
S

χ2Bi
dH m ≥ C(m)rm

i . Therefore,∫
S

ρεdH m ≥
∑

S∩Bi �=∅
2C(m)Lm

i ≥ C(m)H m
ε (f(S ∩ A)).

Moreover, for q = n
m , by Lemma 2.3,

∫
Ω

ρq
εdx ≤ C

∫
Ω

( ∞∑
i=1

(
Li

ri

)m

χ2Bi

)q

dx ≤ CCq
n

∫
Ω

∞∑
i=1

(
Li

ri

)qm

χBi
dx

= C
∞∑

i=1

(
Li

ri

)qm

|Bi| = C
∞∑

i=1

Ln
i ≤ C

∞∑
i=1

Mn−1|f(Bi)|

≤ CMn−1|f(Ω)|.
Because the preceding estimate is independent of ε, a standard application of reflexivity, Mazur’s
lemma and Fuglede’s Lemma 3.3, gives a subsequence of convex combinations of the functions
ρε, converging in Lq(Ω) to some function ρ, such that for q-almost every m-rectifiable surface
S,

∫
S

ρdH m < ∞, and ∫
S

ρdH m ≥ C(m)H m(f(S ∩ A)), (3.6)

so that f(S ∩ A) has finite m-measure. It follows immediately from the basic properties of
modulus [5, p. 177 (c)] that on q-almost every m-rectifiable surface S′ ⊂ S, whence for every
O ⊂ S, ∫

O

ρdH m ≥ C(m)H m(f(O ∩ A)),

from which the condition NA immediately follows. �

Proof of Theorems 3.1 and 3.2 It follows from Proposition 3.4 that for 1-almost every (n−1)-

rectifiable surface S in Ω, H n−1(f(S ∩ E)) = 0. The functions Lf (x,r)
r are continuous in

both x and r, and kf (x, r) is upper semi-continuous in x and continuous from the left in
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r. Thus lipf = lim infQ	r→0
Lf (x,r)

r is measurable, and likewise for kf . We may thus apply
Proposition 3.5 repeatedly, with A = lip−1

f ([0, M ]), and with A = k−1
f ([0, M ]), and for each

M ∈ N. Both theorems follow immediately from the countable sub-additivity of modulus and
countable sub-additivity of measures. �

4 Proof of Main Results

In this section, we are going to prove our main results. With the aid of Theorem 3.1, Theorem 1.1
is a direct consequence of Theorem 4.1.

Theorem 4.1 Let f ∈ W 1,1(Ω, Rn) be a homeomorphism with L1-integrable inner distortion.
If f satisfies Condition N on almost every sphere, then f−1 ∈ W 1,n(f(Ω), Rn) and has finite
distortion. Moreover,

|Df−1(y)|n ≤ KI(f−1(y), f)Jf−1(y) a.e. in Ω

and (1.1), (1.2) hold.

We need the following two auxiliary results to prove Theorem 4.1.

Theorem 4.2 Let f ∈ W 1,1(Ω, Rn) be a bi-Sobolev homeomorphism such that f satisfies the
condition N−1 on almost every sphere. Then |Df(·)| vanishes a.e. in the zero set of J(·, f). In
particular, f is a mapping of finite distortion if additionally J(·, f) ≥ 0 a.e. in Ω.

Proof This is essentially contained in [2, Proof of Theorem 4.5], see also [11, Theorem 5.8].
We briefly indicate the ideas here.

Let Hi be the i-th coordinate hyperplane, i.e.,

Hi = {x ∈ R
n : xi = 0}

and denote by πi the orthogonal projection to Hi, so that

πi(x) = x − xiei, x ∈ R
n.

We denote the projection to j-th coordinate by πj(x) = xj . Then the assumption that f satisfies
condition N−1 on a.e. sphere implies that f satisfies condition N−1 on a.e. hyperplane, whence
for each measurable set E ⊂ f(Ω),∫

E

|D#(πi ◦ f−1)| =
∫

πi(Rn)

H 1(E ∩ (πi ◦ f−1)−1(x))dx. (4.1)

Suppose that f is not a mapping of finite distortion. Then we can find a set Ã ⊂ Ω such
that |Ã| > 0 and J(·, f) = 0 on Ã but |Df(·)| > 0 on Ã. The Sobolev regularity for f allows us
to assume that f is absolutely continuous on all lines parallel to coordinate axes that intersect
Ã and that f has classical derivatives at every point of Ã.

The area formula (2.3) implies that we may find a Borel set A ⊂ Ã such that |A| > 0 and
|f(A)| = 0. Note that there is i ∈ {1, 2, . . . , n} such that the subset of A where ∂f(x)

∂xi
�= 0 has

positive measure. We may thus assume that ∂f(x)
∂xi

�= 0 for all y ∈ A. Letting E = f(A) and
using (4.1) we obtain ∫

Hi

H 1(πj({y ∈ E : πi ◦ f−1(y) = z}))dz = 0
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for each j ∈ {1, 2, . . . , n}. By Fubini theorem,∫
Hi

H 1(A ∩ π−1
i (z))dz = |A| > 0.

Therefore, there exists z ∈ Hi with

H 1(πj(E ∩ f(π−1
i (z)))) = H 1(πj({y ∈ E : πi ◦ f−1(y) = z})) = 0,

and
H 1(A ∩ π−1

i (z)) > 0.

Note that

0 <

∫
A∩π−1

i (z)

∣∣∣∣ ∂f

∂xi
(x)

∣∣∣∣dH 1(x)

and thus we can find j such that for h = πj ◦ f we have

0 <

∫
A∩π−1

i (z)

∣∣∣∣ ∂h

∂xi
(x)

∣∣∣∣dH 1(x)

A contradiction follows easily by applying the one-dimensional area formula to the absolutely
continuous mapping

t 
→ h(z + tei). �

Theorem 4.3 Let f ∈ W 1,1(Ω, Rn) be a homeomorphism with L1-integrable inner distortion.
If f satisfies Condition N on almost every sphere, then f has finite (outer) distortion and f is
differentiable almost everywhere.

Proof This is essentially contained in [20, Proof of Theorem 5.1] and one only needs to notice
that the assumption f ∈ W 1,n−1 there was only used to deduce the fact that f satisfies Condition
N on almost every sphere. �

Proof of Theorem 4.1 We first prove that f−1 ∈ W 1,n. Since the proof is now well-known and
has been used in [2, 11], we only sketch it here. Following [2, 11], we use the notation πr(x) = |x|
for radial projection and πS(x) = x

|x| for projection to the unit sphere. Set h = πS ◦ f . Then
the following variant of coarea formula holds:∫

∂B(0,1)

H 1(πr({x ∈ E : h(x) = z}))dH n−1(z) ≤
∫

E

|D#h(x)|dx (4.2)

for all measurable E ⊂ Ω. The proof of (4.2) is based on Condition N on sphere and Fubini
theorem, see, e.g., [2, Proof of Lemma 4.2].

The next step is to deduce from (4.2) the (1, 1)-Poincaré inequality for f−1. More precisely,
one follows the proof of Theorem 4.3 in [2] to deduce the following estimate:∫

B

|f−1(y) − c|dy ≤ Cr0

∫
f−1(B)

|D#f(x)|dx

for each ball B ⊂ f(Ω), where

c = −
∫

B

f−1(y)dy.

Then we claim that there is a function g ∈ Ln such that∫
f−1(B)

|D#f | ≤
∫

B

g. (4.3)
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This understood, with [8, Theorem 9.4.2], gives us the desired Sobolev regularity for the inverse.
To establish (4.3), define a function g : f(Ω) → R by setting

g(f(x)) =

⎧⎪⎨
⎪⎩

|D#f(x)|
Jf (x)

, if x ∈ Df and Jf (x) > 0,

0, otherwise.

Since by Theorem 5.1, f is a mapping of finite distortion, we have

|D#f(x)| = g(f(x))Jf (x) a.e. in Ω.

Now by (2.3), ∫
f(Ω)

g(y)ndy ≤
∫

Ω∩Df

g(f(x))nJf (x)dx ≤
∫

Ω

KI(x, f)dx

and ∫
f−1(B)

|D#f(x)|dx ≤
∫

f−1(B)∩Df

g(f(x))Jf (x)dx ≤
∫

B

g(y)dy.

The proof of the desired regularity is complete.
Since f is bi-Sobolev, Theorem 4.2 allows us to conclude that f−1 has finite distortion. In

the following, we only prove (1.2). Regarding the other statements in Theorem 4.1, simply
proceed the proofs given in [6, Proof of Theorem 2.3].

In order to prove (1.2), let A be the Borel set provided by Lemma 2.1. The area formula
implies that

∫
f(Ω)

|Df−1(y)|ndy =
∫

A

|Df−1(y)|ndy =
∫

A

|D#f(f−1(y))|n
(Jf (f−1(y)))n

dy

≤
∫

A

KI(f−1(y), f)Jf−1(y)dy ≤
∫

Ω

KI(x, f)dx.

It remains to show the opposite inequality in (1.2). For this purpose, let

Z = {x ∈ Ω : Jf (x) = 0}.
Then the area formula (2.3) implies that

0 =
∫
Df

χf(Z)(f(x))Jf(x)dx =
∫

f(Df )

χf(Z)(y)dy.

Hence,
|f(Df ∩ Z)| = |f(Df ) ∩ f(Z)| = 0.

Since f−1 satisfies Condition N (see for instance [17]),

|Df ∩ Z| = 0,

i.e., Jf > 0 a.e. in Ω. Thus, using the area formula and chain rule again, we obtain
∫

Ω

KI(x, f)dx =
∫
Df

KI(x, f)dx =
∫
Df\Z

|D#f(x)|n
(Jf (x))n

Jf (x)dx

=
∫

B

|D#f(x)|n
(Jf (x))n

Jf (x)dx =
∫

B

|Df−1(f(x))|nJf (x)dx
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≤
∫

Ω′
|Df−1(y)|ndy,

where B is the Borel set determined by Lemma 2.1. This completes the proof of (1.2). �

Remark 4.4 Let f be as in Theorem 4.1. We know from the proof of Theorem 4.1 that
Jf > 0 a.e. in Ω. Note that the a.e. positiveness of the Jacobian is a highly non-trivial fact,
see [3, 9, 16] for more in this direction.

As a corollary of the proof of Theorem 4.1, we formulate the following simple result.

Corollary 4.5 Let f ∈ W 1,1(Ω, Rn) be a homeomorphism such that Jf ≥ 0 a.e. in Ω. Then
f satisfies Condition N−1 if and only if J(·, f) > 0 a.e.

Proof The proof of Condition N−1 implies J(·, f) > 0 a.e. is already demonstrated in the
proof of Theorem 4.1 and hence we only need to show the reverse direction. To this end, let
E ⊂ Ω with |f(E)| = 0 and let A ⊂ R

n be a Borel set of measure zero that contains f(E).
Then E is contained in the Borel set E′ = f−1(A). Let h be the characteristic function of A.
By the area formula,∫

E′
Jf (x)dx =

∫
Ω

h(f(x))Jf(x)dx ≤
∫

Rn

h(y)dy = 0.

Since Jf > 0 a.e., it follows that |E| = 0. �

5 Weaken the Topological Assumption

Very recently, Tengvall [20] proved that if f ∈ W 1,n−1
loc (Ω, Rn) is a continuous, discrete and

open mapping of finite L1
loc-integrable inner distortion, then f is differentiable a.e. and has

finite distortion. In particular, he verified that Lusion Condition N on a.e. sphere holds for
continuous, discrete and open Sobolev mappings f ∈ W 1,n−1

loc (Ω, Rn).

As already seen in the previous results, Condition N on a.e. sphere plays a crucial role in
proving the Sobolev regularity of the inverse of a homeomorphism f ∈ W 1,1. On the other
hand, in geometric function theory, associated with a continuous, discrete and open mapping
f , there is a “generalized inverse” map gU defined for each normal domain U of f as follows
(see, e.g., [19]).

gU (y) =
1
m

∑
x∈f−1(y)∩U

i(x, f)x, (5.1)

where m = μ(f, U) is the local degree on the normal domain U and i(x, f) is the topological
index of f at x. Observe that, in the homeomorphic case, the generalized inverse map gU is
just the inverse map of f .

In [7], it was proved that for a continuous, discrete and open mapping f ∈ W 1,n−1
loc (Ω, Rn)

of finite L1
loc-integrable inner distortion, if |f(Bf )| = 0, then the generalized inverse map gU :

V → R
n belongs to W 1,n(V, Rn).

Theorem 5.1 Let f ∈ W 1,1
loc (Ω, Rn) be a continuous, discrete and open mapping of finite L1

loc-
integrable inner distortion. If f satisfies Condition N on a.e. sphere, then f is differentiable
a.e., |Bf | = 0, and has finite distortion. Moreover, if |f(Bf )| = 0, then the generalized inverse
gU : V → R

n belongs to W 1,n(V, Rn) for each normal domain U ⊂⊂ Ω such that f(U) = V .
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Proof The proof of the fact that f is differentiable a.e. and that |Bf | = 0 is basically contained
in [20]. One can check that the regularity assumption f ∈ W 1,n−1

loc (Ω, Rn) in [20] was only used
to deduce that f satisfies Condition N on a.e. sphere. Similarly, the proof of the latter part of
Theorem 5.1 can be found in [7]. �

Combining Theorem 5.1 with Theorem 4.1, we obtain the following corollary.

Corollary 5.2 Let f ∈ W 1,1
loc (Ω, Rn) is a continuous, discrete and open mapping of finite L1

loc-
integrable inner distortion. If f satisfies Condition N on a.e. sphere, then for almost every
x ∈ Ω there is an open neighborhood Ux ⊂⊂ Ω of x such that the restriction map f |Ux

: Ux →
f(Ux) is a homeomorphism. For the inverse map we have (f |Ux

)−1 ∈ W 1,n
loc (f(Ux), Rn) and has

finite distortion. Moreover, f and (f |Ux
)−1 are differentiable almost everywhere.

Acknowledgements The author would like to thank his supervisor Academy Professor
Pekka Koskela and Dr. Marshall Williams for helpful discussions. The author also wants
to thank the anonymous referee for valuable pointed comments.

References
[1] Balogh, Z., Koskela, P., Rogovin, S.: Absolute continuity of quasiconformal mappings on curves. Geom.

Funct. Anal., 17(3), 645–664 (2007)
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2010
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