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Abstract In this paper, by using p-distances on uniform spaces, we establish a general vectorial

Ekeland variational principle (in short EVP), where the objective function is defined on a uniform

space and taking values in a pre-ordered real linear space and the perturbation involves a p-distance

and a monotone function of the objective function. Since p-distances are very extensive, such a form

of the perturbation in deed contains many different forms of perturbations appeared in the previous

versions of EVP. Besides, we only require the objective function has a very weak property, as a substitute

for lower semi-continuity, and only require the domain space (which is a uniform space) has a very weak

type of completeness, i.e., completeness with respect to a certain p-distance. Such very weak type of

completeness even includes local completeness when the uniform space is a locally convex topological

vector space. From the general vectorial EVP, we deduce a general vectorial Caristi’s fixed point

theorem and a general vectorial Takahashi’s nonconvex minimization theorem. Moreover, we show

that the above three theorems are equivalent to each other. We see that the above general vectorial

EVP includes many particular versions of EVP, which extend and complement the related known

results.
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1 Introduction

Since Ekeland (see [13]) obtained a nonconvex minimization theorem for a lower semi-continuous
function on a complete metric space in 1972, it has received a great deal of attention and has
been applied to numerous problems in various fields of nonlinear analysis; see, e.g. [3, 7, 14,
15, 19, 48]. It is well known that Ekeland’s variational principle (in short EVP) is equivalent
to Caristi’s fixed point theorem [6], to Takahashi’s nonconvex minimization theorem [48, 49],
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to the drop theorem [11, 12] and to the petal theorem [38]. A number of generalizations
in various different directions of these results have been investigated by several authors; see,
e.g. [2–5, 7–10, 16–23, 25–28, 32–38, 41–53] and references therein. In particular, Kada et
al. [28] introduced the notion of w-distances on metric spaces and improved EVP, Caristi’s
fixed point theorem and Takahashi’s nonconvex minimization theorem. Moreover, Lin and
Du [32] introduced the notion of τ -functions, which generalizes the notion of w-distances, and
established a more general version of EVP, where the perturbation involves a τ -function and
a nondecreasing function of the objective function value. Inspired by the above results, we
introduced [46] the notions of p-distances and q-distances on uniform spaces and obtained a
generalized EVP in uniform spaces, which not only extends the above mentioned versions of
EVP but also includes almost all known extensions of EVP in uniform spaces and in topological
vector spaces (for example, the results in [16, 21, 26, 35, 42–44]). All the above generalizations
of EVP are concerned with scalar-valued functions. Recently, generalizing EVP to vector-valued
functions (which is called a vectorial EVP) has aroused one’s interest; see, e.g. [2, 4, 7, 9, 17, 19,
20, 22, 23, 25, 27, 36, 45, 50] and the references therein. In this paper, by using p-distances (or
q-distances) on uniform spaces, we shall establish a general vectorial EVP, where the objective
function is defined on a uniform space and taking values in a pre-ordered real linear space and
the perturbation involves a p-distance (or a q-distance) and a nondecreasing function of the
objective function. Since p-distances (or q-distances) are very extensive (see [46]), such a form of
the perturbation indeed contains many different forms of perturbations appeared in the previous
versions of EVP. Besides, we only require the objective function has a very weak property, as
a substitute for lower semi-continuity, and only require the domain space (which is a uniform
space) has a very weak type of completeness (i.e., completeness with respect to a p-distance or a
q-distance). For example, when the uniform space is a locally convex space, the very weak type
of completeness includes local completeness. As we know, local completeness is strictly weaker
than sequential completeness and it seems to be the weakest type of completeness in the extent
of locally convex spaces (for details, see [39, 40]). From the general vectorial EVP, we deduce
a general vectorial Caristi’s fixed point theorem and a general vectorial Takahashi’s nonconvex
minimization theorem. Moreover, we show that the above three theorems are equivalent to
each other. We shall see that our general vectorial EVP includes many particular versions of
EVP, which extend and complement the related known results. And it has many applications
in vector optimization. Since a scalar-valued function can be regarded as a particular type of
vector-valued function, our vectorial EVP is also an extension of the corresponding scalar-valued
version of EVP in [46].

2 Convex Cones in a Real Linear Space and Gerstewitz’s Function

A useful approach for solving a vector problem is to reduce it to a scalar problem. Gerstewitz’s
function is often used as the basis of the scalarization. In the framework of topological vector
spaces, Gerstewitz’s function generated by a closed convex (solid) cone and its properties have
been investigated thoroughly, for example, see [7, 19, 20, 31] and the references therein. In
order to obtain a more general version of vectorial Ekeland’s variational principle, we need to
consider Gerstewitz’s function generated by a general convex cone in a real linear space and
re-examine its properties in the more general setting. The main ideas of the section originate
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from [7, 19, 20, 22, 23, 31] and the results exhibited here also have their independent interest.
In the following, we always assume that Y is a real linear space. Let A ⊂ Y be nonempty.

The vector closure of A is defined as follows (refer to [1]):

vcl(A) = {y ∈ Y : ∃ v ∈ Y, ∃λn ≥ 0, λn → 0 such that y + λnv ∈ A, ∀n ∈ N}.
Moreover, for any given v0 ∈ Y , we define the v0-vector closure of A as follows:

vclv0(A) = {y ∈ Y : ∃λn ≥ 0, λn → 0 such that y + λnv0 ∈ A, ∀n ∈ N}.
Obviously,

A ⊂ vclv0(A) ⊂
⋃

v∈Y

vclv(A) = vcl(A).

All the above inclusions are proper. Moreover, if Y is a topological vector space and cl(A)
denotes the closure of A, then vcl(A) ⊂ cl(A) and the inclusion is also proper. A nonempty set
K ⊂ Y is called a convex cone if K + K ⊂ K and λK ⊂ K for any λ > 0. We shall see that
there exists a convex cone K containing the zero element 0 in Y and k0, k1 ∈ K\−K such that
K �= vclk1(K) and vclk0(K) �= vcl(K).

Example 2.1 Let Y = R
3 and let

K = {(ξ1, ξ2, ξ3) ∈ R
3 : ξ1 ≥ 0, ξ2 > 0, ξ3 > 0} ∪ {(0, ξ2, 0) ∈ R

3 : ξ2 ≥ 0}.
Obviously, K is a convex cone containing 0. Let k0 = (0, 1, 0) and k1 = (0, 1, 1). Then
k0, k1 ∈ K\ − K. Put y = (1, 1, 0). Then y �∈ K. For any sequence (λn) with λn > 0 and
λn → 0, we have

y + λnk1 = (1, 1, 0) + (0, λn, λn) = (1, 1 + λn, λn) ∈ K,

and
y + λnk0 = (1, 1, 0) + (0, λn, 0) = (1, 1 + λn, 0) �∈ K.

Thus, we conclude that

y ∈ vclk1(K) ⊂ vcl(K) and y �∈ vclk0(K).

Hence
K ⊂ ( �=)vclk1(K) and vclk0(K) ⊂ ( �=)vcl(K).

A subset A of Y is called vectorially closed if A = vcl(A); and called v0-vectorially closed
(briefly, v0-closed) if A = vclv0(A). In general, a set A ⊂ Y need not be v0-closed; and a
v0-closed set need not be vectorially closed. We shall see that there exists a convex cone K

containing 0 and k0, k1 ∈ K\ − K such that K is k0-closed but it is not k1-closed and hence it
is not vectorially closed.

Example 2.2 Let Y = R
3 and let

K = {(ξ1, ξ2, ξ3) ∈ R
3 : ξ1 ≥ 0, ξ2 ≥ 0, ξ3 > 0} ∪ {(0, ξ2, 0) : ξ2 ≥ 0}.

Then K is a convex cone containing 0. Let k0 = (0, 1, 0) and k1 = (0, 0, 1). Then k0, k1 ∈
K\ − K. Let y = (ξ1, ξ2, ξ3) ∈ vclk0(K). Then there exists a sequence (λn) with λn ≥ 0 and
λn → 0 such that

y + λnk0 ∈ K, i.e., (ξ1, ξ2, ξ3) + (0, λn, 0) = (ξ1, ξ2 + λn, ξ3) ∈ K.
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From this,
ξ1 ≥ 0, ξ2 + λn ≥ 0, ξ3 > 0 or ξ1 = 0, ξ2 + λn ≥ 0, ξ3 = 0.

This implies that
ξ1 ≥ 0, ξ2 ≥ 0, ξ3 > 0 or ξ1 = 0, ξ2 ≥ 0, ξ3 = 0.

Clearly, y = (ξ1, ξ2, ξ3) ∈ K. Thus, K = vclk0(K) and K is k0-closed. However, we shall see
that K is not k1-closed. In fact, put y = (1, 1, 0). Then y �∈ K. For any given sequence (λn)
with λn > 0 and λn → 0,

y + λnk1 = (1, 1, 0) + (0, 0, λn) = (1, 1, λn) ∈ K.

Thus, y ∈ vclk1(K) ⊂ vcl(K). From this, we know that K is not k1-closed. Certainly, it is not
vectorially closed.

As shown in Example 2.1, in general vclk0(K) ⊂ vcl(K) and vclk0(K) �= vcl(K). However,
if k0 ∈ cor(K), where cor(K) denotes the algebraic interior of K (see [24, p. 7]), then we have
the following.

Proposition 2.3 Let K be a convex cone and k0 ∈ cor(K). Then vclk0(K) = vcl(K).

Proof Obviously, vclk0(K) ⊂ vcl(K). We only need to prove that vcl(K) ⊂ vclk0(K). Let
y ∈ vcl(K). Then there exist v ∈ Y and a sequence (λn) with λn ≥ 0 and λn → 0 such that

y + λnv ∈ K. (2.1)

Since k0 ∈ cor(K), there exists α > 0 such that k0 − αv ∈ K. Put k′ = k0 − αv. Then k′ ∈ K.
From this,

v =
k0 − k′

α
. (2.2)

Combining (2.1) and (2.2), we have

y + λn
k0 − k′

α
∈ K.

Thus,

y +
λn

α
k0 ∈ λn

α
k′ + K ⊂ K, where

λn

α
→ 0.

Hence, y ∈ vclk0(K) and vcl(K) ⊂ vclk0(K). �

Proposition 2.4 Let K ⊂ Y be a convex cone and k0 ∈ K\ − K. Then
(i) vclk0(K) is a convex cone containing K ∪ {0}, but not containing −k0;
(ii) for any sequence (εn) with εn > 0 and εn → 0,

vclk0(K) =
⋂

ε>0

(K − εk0) =
∞⋂

n=1

(K − εnk0);

(iii) vclk0(vclk0(K)) = vclk0(K).

Proof (i) Obviously, K ⊂ vclk0(K). For any sequence (λn) with λn > 0 and λn → 0, 0+λnk0 =
λnk0 ∈ K. Thus 0 ∈ vclk0(K) and hence K ∪{0} ⊂ vclk0(K). Let y, y′ ∈ vclk0(K). Then there
exist sequences (λn) and (λ′

n) with λn ≥ 0, λ′
n ≥ 0, λn → 0 and λ′

n → 0 such that y+λnk0 ∈ K

and y′+λ′
nk0 ∈ K. Thus, y+y′+(λn+λ′

n)k0 ∈ K+K ⊂ K, where λn+λ′
n ≥ 0 and λn+λ′

n → 0.
Hence y + y′ ∈ vclk0(K). Also, for any λ > 0, λy + λλnk0 ∈ λK ⊂ K, where λλn ≥ 0 and
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λλn → 0. Thus, λy ∈ vclk0(K). Hence vclk0(K) is a convex cone. Assume that −k0 ∈ vclk0(K).
Then there exists (λn) with λn ≥ 0 and λn → 0 such that (−1 + λn)k0 = −k0 + λnk0 ∈ K.
Obviously, there exists n0 ∈ N such that λn0 < 1. Thus −1 + λn0 < 0, which leads to that
k0 ∈ −K, contradicting the assumption that k0 ∈ K\ − K.

(ii) First we remark that, for any λ′ > λ ≥ 0, K −λk0 ⊂ K −λ′k0. Let y ∈ vclk0(K). Then
there exists (λn) with λn ≥ 0 and λn → 0 such that y + λnk0 ∈ K. For any given ε > 0, there
exists n0 ∈ N such that λn0 < ε. Thus, y + λn0k0 ∈ K implies that y ∈ K − λn0k0 ⊂ K − εk0.

This shows that y ∈ ⋂
ε>0(K − εk0). Also,

⋂
ε>0(K − εk0) ⊂

⋂∞
n=1(K − εnk0) is obvious. Hence

we have

vclk0(K) ⊂
⋂

ε>0

(K − εk0) ⊂
∞⋂

n=1

(K − εnk0).

On the other hand, for any y ∈ ∩∞
n=1(K − εnk0), we have y + εnk0 ∈ K, where εn > 0 and

εn → 0. Hence, y ∈ vclk0(K) and we have
∞⋂

n=1

(K − εnk0) ⊂ vclk0(K).

(iii) By (i), we know that vclk0(K) is a convex cone containing K ∪ {0} and k0 ∈ vclk0(K)\
−vclk0(K). We only need to prove that vclk0(vclk0(K)) ⊂ vclk0(K). In fact, by (ii), we have

vclk0(vclk0(K)) =
⋂

ε′>0

(vclk0(K) − ε′k0)

=
⋂

ε′>0

( ⋂

ε>0

(K − εk0) − ε′k0

)

=
⋂

ε′>0

⋂

ε>0

(K − (ε + ε′)k0)

=
⋂

ε′′>0

(K − ε′′k0)

= vclk0(K). �

Proposition 2.5 Let K ⊂ Y be a convex cone and k0 ∈ K\ − K. Put vintk0(K) = K +
(0,∞)k0. Then we have the following :

(i) vintk0(K) is a convex cone contained in K;
(ii) vintk0(vintk0(K)) = vintk0(K);
(iii) vclk0(vintk0(K)) = vclk0(K);
(iv) if k0 ∈ cor(K), then vintk0(K) = cor(K).

Proof It is easy to see that (i) and (ii) hold.
(iii) Obviously, vclk0(vintk0(K)) ⊂ vclk0(K). So we only need to show that vclk0(vintk0(K))

⊃ vclk0(K). In fact,

vclk0(vintk0(K)) =
⋂

ε>0

[(K + (0,∞)k0) − εk0]

⊃
⋂

ε>0

(
K +

ε

2
k0 − εk0

)

=
⋂

ε>0

(
K − ε

2
k0

)
= vclk0(K).
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(iv) Let k1 ∈ cor(K). Then there exists α > 0 such that k1 − αk0 ∈ K. Thus, k1 ∈
αk0 + K ⊂ (0,∞)k0 + K = vintk0(K). Hence cor(K) ⊂ vintk0(K).

Conversely, let k1 ∈ vintk0(K) = (0,∞)k0 + K. Then there exist k′ ∈ K and α > 0 such
that k1 = αk0 + k′. Since k0 ∈ cor(K), for any v ∈ Y , there exists ε > 0 such that

k0 +
ε

α
v ∈ K.

Thus,

k1 + εv = αk0 + k′ + εv = k′ + α

(
k0 +

ε

α
v

)
∈ K + αK ⊂ K.

This means that k1 ∈ cor(K) and vintk0(K) ⊂ cor(K). �
Let K ⊂ Y be a convex cone containing 0 and k0 ∈ K\ − K. Here, we need not assume

that cor(K) �= ∅. Let y ∈ Y and t ∈ R be such that y ∈ tk0 − K. Then for any t′ > t, we have

y ∈ t′k0 − (t′ − t)k0 − K ⊂ t′k0 − K.

Thus, we may define a function ξk0 : Y → R ∪ {±∞} as follows

ξk0(y) = inf{t ∈ R : y ∈ tk0 − K}.
Such a function ξk0 is called Gerstewitz’s function generated by K and k0. When Y is a
topological vector space and K is a closed convex (solid) cone, the function ξk0 and its properties
have been studied in [7, 19, 20, 31] and the references therein. Now, in the setting of real linear
spaces, we investigate properties of the function ξk0 .

Lemma 2.6 There exists u ∈ Y such that ξk0(u) = −∞ if and only if k0 ∈ −vcl(K).

Proof Assume that there exists u ∈ Y such that ξk0(u) = −∞. Then for any n ∈ N,
u ∈ −nk0 − K. Thus, −k0 − u/n ∈ K for all n. Hence k0 ∈ −vcl(K).

Conversely, assume that k0 ∈ −vcl(K), i.e., −k0 ∈ vcl(K). Then there exist v ∈ Y and a
sequence (λn) with λn ≥ 0 and λn → 0 such that −k0 + λnv ∈ K. Since −k0 �∈ K, we have
λn > 0 for every n. Thus,

−v ∈ − 1
λn

k0 − K, where − 1
λn

→ −∞.

Put u = −v. Then ξk0(u) = −∞. �

Remark 2.7 From Lemma 2.6, we know that if k0 ∈ K\ − vcl(K), then ξk0(y) > −∞ for
every y ∈ Y . If we only assume that k0 ∈ K\ − K, then it may occur that ξk0(y) = −∞ for
some y ∈ Y .

The following lemma says that ξk0 is sub-additive and positively homogeneous. Its proof is
routine and omitted.

Lemma 2.8 (i) For any y1, y2 ∈ Y , ξk0(y1 + y2) ≤ ξk0(y1) + ξk0(y2) except that the right side
becomes ∞−∞.

(ii) For any y ∈ Y and α ≥ 0, ξk0(αy) = αξk0(y).

Lemma 2.9 (Compare it with [7, Proposition 1.43]) Let y ∈ Y and r ∈ R. Then we have
(i) ξk0(y) < r ⇔ y ∈ rk0 − vintk0(K).
(ii) ξk0(y) ≤ r ⇔ y ∈ rk0 − vclk0(K).
(iii) ξk0(y) = r ⇔ y ∈ rk0 − (vclk0(K)\vintk0(K)).
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(iv) ξk0(y) ≥ r ⇔ y �∈ rk0 − vintk0(K).
(v) ξk0(y) > r ⇔ y �∈ rk0 − vclk0(K).

Here, vintk0(K) = (0,∞)k0 + K and vclk0(K) =
⋂

ε>0(K − εk0).

Proof (i) Let −∞ < ξk0(y) < r. Then there exists ε > 0 such that ξk0(y) + ε < r. From this,

y ∈ (ξk0(y) + ε)k0 − K

= rk0 − (r − ξk0(y) − ε)k0 − K

⊂ rk0 − (0,∞)k0 − K

= rk0 − vintk0(K).

Let ξk0(y) = −∞. Then for any λ > 0,

y ∈ −λk0 − K = rk0 − (λ + r)k0 − K.

Take λ > 0 such that λ + r > 0. Then

y ∈ rk0 − (λ + r)k0 − K

⊂ rk0 − (0,∞)k0 − K

= rk0 − vintk0(K).

Conversely, let y ∈ rk0 − vintk0(K) = rk0 − ((0,∞)k0 + K). Then there exists δ ∈ (0,∞) such
that y ∈ rk0 − δk0 − K = (r − δ)k0 − K. From this, we conclude that ξk0(y) ≤ r − δ < r.

(ii) Let ξk0(y) ≤ r. Take a sequence (εn) such that ε1 > ε2 > · · · > 0 and εn → 0. Then
y ∈ (r+ εn)k0−K. From this, rk0−y+ εnk0 ∈ K for all n. This means that rk0−y ∈ vclk0(K)
and y − rk0 ∈ −vclk0(K). That is, y ∈ rk0 − vclk0(K).

Conversely, let y ∈ rk0 − vclk0(K). Then there exists a sequence (εn) with εn ≥ 0 and
εn → 0 such that rk0 − y + εnk0 ∈ K, i.e., y ∈ (r + εn)k0 − K. From this, ξk0(y) ≤ r + εn for
every n. Letting n → ∞, we have ξk0(y) ≤ r.

(iii) It follows from (i) and (ii).
Obviously, (i) is equivalent to (iv); (ii) is equivalent to (v). �

Lemma 2.10 For any y ∈ Y and any λ ∈ R, ξk0(y + λk0) = ξk0(y) + λ.

Proof We show the result according to the following three different cases.

Case 1 Let ξk0(y) = ∞. Then y �∈ (−∞,∞)k0−K. Thus, y+λk0 �∈ (−∞,∞)k0+λk0−K =
(−∞,∞)k0 −K. This means that ξk0(y +λk0) = ∞ and hence ξk0(y +λk0) = ξk0(y)+λ holds.

Case 2 Let ξk0(y) = −∞. Then

y ∈ rk0 − K for every r ∈ R. (2.3)

Assume that ξk0(y + λk0) > −∞. Then there exists t ∈ R such that y + λk0 �∈ tk0 − K, i.e.,
y �∈ (t−λ)k0 −K, which contradicts (2.3). Thus, ξk0(y +λk0) = −∞ and hence ξk0(y +λk0) =
ξk0(y) + λ holds too.

Case 3 Let ξk0(y) satisfy −∞ < ξk0(y) < ∞. For any ε > 0, y ∈ (ξk0(y) + ε)k0 − K. Thus,
y + λk0 ∈ (ξk0(y) + λ + ε)k0 − K. Hence

ξk0(y + λk0) ≤ ξk0(y) + λ + ε and ξk0(y + λk0) ≤ ξk0(y) + λ. (2.4)
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On the other hand, by the assumption that −∞ < ξk0(y) < ∞, we can conclude that −∞ <

ξk0(y + λk0) < ∞. Thus, for any ε > 0, y + λk0 ∈ (ξk0(y + λk0) + ε)k0 − K. From this,
y ∈ (ξk0(y + λk0) − λ + ε)k0 − K. Hence

ξk0(y) ≤ ξk0(y + λk0) − λ + ε and ξk0(y) + λ ≤ ξk0(y + λk0).

That is,

ξk0(y) + λ ≤ ξk0(y + λk0). (2.5)

Combining (2.4) and (2.5), we have ξk0(y + λk0) = ξk0(y) + λ. �
According to the cases that ξk0 takes −∞, ∞ and finite real-values, we can easily verify the

monotony of the function ξk0 .

Lemma 2.11 If y1 − y2 ∈ −K, then ξk0(y1) ≤ ξk0(y2).

3 P-distances and Q-distances in Uniform Spaces

In this section, we always assume that (X,U) is a separated uniform space and the uniformity
U defines the topology on X (see [29, 30]). The following p-distances and q-distances are
generalizations of w-distances (see [28]) and τ -functions (see [32]).

Definition 3.1 ([46, Definition 2.3]) Let X be a separated uniform space. An extended real-
valued function p : X ×X → [0, +∞] is called a p-distance on X if the following conditions are
satisfied :

(p1) for any x, y, z ∈ X, p(x, z) ≤ p(x, y) + p(y, z);
(p2) every sequence {yn} ⊂ X with p(yn, ym) → 0 (m > n → ∞) is a Cauchy sequence and

in the case p(yn, y) → 0 is equivalent to yn → y in X;

(p3) for x, y, z ∈ X, p(z, x) = 0 and p(z, y) = 0 imply x = y.
If the condition (p2) is replaced by the following weaker condition :

(q2) every sequence {yn} ⊂ X with p(yn, ym) → 0 (m > n → ∞) is a Cauchy sequence and
in the case p(yn, y) → 0 implies that yn → y in X,
then p is called a q-distance on X.

Here, p(yn, ym) → 0 (m > n → ∞) means that for any ε > 0, there exists n0 ∈ N such that
p(yn, ym) < ε for all m > n ≥ n0.

In the following, for brevity, we always denote “with respect to” by “w.r.t.”.

Definition 3.2 ([46, Definition 3.1]) A uniform space (X,U) is said to be sequentially complete
w.r.t. a p-distance (resp. a q-distance) p, if for any sequence {xn} in X with p(xn, xm) → 0
(m > n → ∞), there exists x̄ ∈ X such that xn → x̄ in X (resp. p(xn, x̄) → 0). A nonempty
subset S of X is said to be sequentially closed w.r.t. a p-distance (resp. a q-distance) p if for
any sequence {xn} ⊂ S and x̄ ∈ X satisfying p(xn, xm) → 0 (m > n → ∞) and xn → x̄ (resp.
p(xn, x̄) → 0) in X, we have x̄ ∈ S.

Let Y be a real linear space and K ⊂ Y be a convex cone containing 0 (in general, we
always assume that K �= {0} and K �= Y ). The convex cone K can specify a pre-order “ ≤K ”
as follows:

for any y1, y2 ∈ Y, define y1 ≤K y2 if and only if y2 − y1 ∈ K.
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We extend Y by an additional element ∞ such that y ≤K ∞, y + ∞ = ∞ and t∞ = ∞ for
any y ∈ Y and any t > 0. Denote Y ∪ {∞} by Y •. A function f : X → Y • is said to be proper
if domf := {x ∈ X : f(x) ∈ Y } �= ∅.
Definition 3.3 A proper function f : X → Y • is said to be sequentially lower K-monotone
(if no confusion, “K” can be omitted) if for a sequence {xn} ⊂ X satisfying xn → x̄ in X and
f(xn+1) ≤K f(xn) for each n ∈ N, we have f(x̄) ≤K f(xn) for every n ∈ N (see [20, 22, 36];
in [20] it is said that f satisfies the condition (H4)). A proper function f : X → Y • is said
to be sequentially lower K-monotone w.r.t. a p-distance (resp. a q-distance) p if for a sequence
{xn} ⊂ X satisfying p(xn, xm) → 0 (m > n → ∞), xn → x̄ in X (resp. p(xn, x̄) → 0) and
f(xn+1) ≤K f(xn), we have f(x̄) ≤K f(xn) for every n ∈ N.

Definition 3.4 ([46, Definition 3.3]) Let (X,U) be a uniform space, p be a p-distance (resp.
a q-distance) on X and f : X → Y • be a proper function. (X,U) is said to be sequentially
complete w.r.t. (p, f ↓) if for a sequence {xn} in X satisfying p(xn, xm) → 0 (m > n → ∞)
and f(xn+1) ≤K f(xn) for each n ∈ N, there exists x̄ ∈ X such that xn → x̄ in X (resp.
p(xn, x̄) → 0). A nonempty subset S of X is said to be sequentially closed w.r.t. (p, f ↓) if for a
sequence {xn} ⊂ S satisfying p(xn, xm) → 0 (m > n → ∞), xn → x̄ in X (resp. p(xn, x̄) → 0)
and f(xn+1) ≤K f(xn), we have x̄ ∈ S.

Obviously, we have the following implications:

sequential completeness ⇒ sequential completeness w.r.t. p

⇒ sequential completeness w.r.t. (p, f ↓),
where p is a p-distance or a q-distance on X and f is any proper function. However, none of
the converses is true (see [46]). For sequential closedness, sequential closedness w.r.t. p and
sequential closedness w.r.t. (p, f ↓), we also have similar implications. We shall establish a
general vectorial EVP under the weakest type of completeness assumption.

4 A General Vectorial Ekeland’s Variational Principle and its Equivalents

In this section, we give a general vectorial Ekeland’s variational principle, Caristi’s fixed point
theorem and Takahashi’s nonconvex minimization theorem. Moreover, we show that the three
theorems are equivalent to each other. For the definiteness, we only consider the case that the
perturbation contains a p-distance and exhibit a number of results; the correspondent versions
on a q-distance can be deduced similarly.

Theorem 4.1 (Vectorial Ekeland’s variational principle) Let (X,U) be a separated uniform
space and p be a p-distance on X. Let Y be a real linear space pre-ordered by a convex cone K

containing 0 and k0 ∈ K\ − K. Let ϕ : (Y,≤K) → (0, +∞) be a nondecreasing function (i.e.,
y1 ≤K y2 ⇒ ϕ(y1) ≤ ϕ(y2)) and let ϕ(∞) := sup{ϕ(y) : y ∈ Y }. Let f : X → Y • be a proper
function such that for any x ∈ X, the set

S(x) :=
{

x′ ∈ X : f(x′) +
p(x, x′)
ϕ ◦ f(x)

k0 ≤K f(x)
}

is sequentially closed w.r.t. (p, f ↓) and (X,U) is sequentially complete w.r.t. (p, f ↓). Let
x0 ∈ X, y0 ∈ Y and ε > 0 such that

f(x0) ∈ y0 + (−∞, +∞)k0 − K, (4.1)
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and
f(X) ∩ (y0 − εk0 − K) = ∅. (4.2)

Then either
f(x) +

p(x0, x)
ϕ ◦ f(x0)

k0 �≤K f(x0), ∀x ∈ X\{x0},

or there exists x̄ ∈ X such that
(i) f(x̄) + p(x0,x̄)

ϕ◦f(x0)
k0 ≤K f(x0);

(ii) f(x) + p(x̄,x)
ϕ◦f(x̄)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Proof For any u ∈ domf and v ∈ S(u), clearly,

f(v) ≤K f(u). (4.3)

Moreover, we claim that
S(v) ⊂ S(u). (4.4)

In fact, for any x ∈ S(v), we have

f(x) +
p(u, x)
ϕ ◦ f(u)

k0 ≤K f(x) +
p(u, v) + p(v, x)

ϕ ◦ f(u)
k0

≤K f(x) +
p(u, v)

ϕ ◦ f(u)
k0 +

p(v, x)
ϕ ◦ f(v)

k0

≤K f(v) +
p(u, v)

ϕ ◦ f(u)
k0

≤K f(u).

That is, x ∈ S(u) and (4.4) holds.
Now we begin to prove the conclusion. Assume that the statement that

f(x) +
p(x0, x)

ϕ ◦ f(x0)
k0 �≤K f(x0), ∀x ∈ X\{x0}

does not hold. That is, there exists x′ ∈ X\{x0} such that

f(x′) +
p(x0, x

′)
ϕ ◦ f(x0)

k0 ≤K f(x0).

Then S(x0) ⊃ S(x0)\{x0} �= ∅. For any x ∈ X, define g(x) := ξk0(f(x) − y0). By (4.2),
f(x) − y0 �∈ −εk0 − K, ∀x ∈ X. By Lemma 2.9 (iv), g(x) = ξk0(f(x) − y0) ≥ −ε, so g : X →
(−∞, +∞] is bounded from below. For any x ∈ S(x0),

f(x) − y0 +
p(x0, x)

ϕ ◦ f(x0)
k0 ≤K f(x0) − y0.

By Lemmas 2.10 and 2.11, we have

g(x) +
p(x0, x)

ϕ ◦ f(x0)
= ξk0

(
f(x) − y0 +

p(x0, x)
ϕ ◦ f(x0)

k0

)
≤ ξk0(f(x0) − y0) = g(x0).

Here, by (4.1), we know that g(x0) < +∞. Thus, g is bounded from below and takes finite
real-value on S(x0). Choose x1 ∈ S(x0) such that

g(x1) < inf
S(x0)

g +
1
2
,
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where infS(x0) g denotes inf{g(x) : x ∈ S(x0)}. If x1 satisfies

f(x) +
p(x1, x)

ϕ ◦ f(x1)
k0 �≤K f(x1), ∀x ∈ X\{x1},

then we may take x̄ := x1 and the conclusion holds. If not, then S(x1) ⊃ S(x1)\{x1} �= ∅. As
above, choose x2 ∈ S(x1) such that

g(x2) < inf
S(x1)

g +
1
22

.

We may repeat the above process. If for some step n, we have

f(x) +
p(xn, x)

ϕ ◦ f(xn)
k0 �≤K f(xn), ∀x ∈ X\{xn}. (4.5)

By (4.4), we have xn ∈ S(xn−1) ⊂ · · · ⊂ S(x0). Combining this with (4.5), we know that
x̄ := xn satisfies (i) and (ii), so the conclusion holds. If not, we obtain a sequence {xn} in X

such that xn+1 ∈ S(xn) and

g(xn+1) < inf
S(xn)

g +
1

2n+1
, for n = 0, 1, 2, . . . . (4.6)

Since xn+1 ∈ S(xn), by (4.3) and (4.4), we have

f(xn+1) ≤K f(xn), (4.7)

and
S(xn+1) ⊂ S(xn). (4.8)

By (4.7) and Lemma 2.11, we have

g(xn+1) = ξk0(f(xn+1) − y0) ≤ ξk0(f(xn) − y0) = g(xn).

Thus, {g(xn)}n∈N is a nonincreasing sequence, bounded from below. Hence there exists α ∈ R

such that
lim

n→∞ g(xn) = α. (4.9)

Clearly,
g(xm) ≥ α, ∀m ∈ N. (4.10)

When m > n, xm ∈ S(xm−1) ⊂ S(xn), i.e.,

f(xm) +
p(xn, xm)
ϕ ◦ f(xn)

k0 ≤K f(xn). (4.11)

Hence
f(xm) − y0 +

p(xn, xm)
ϕ ◦ f(xn)

k0 ≤K f(xn) − y0,

and so
g(xm) +

p(xn, xm)
ϕ ◦ f(xn)

≤ g(xn).

From this and using (4.10) and (4.9), we have

p(xn, xm) ≤ ϕ ◦ f(xn)(g(xn) − g(xm))

≤ ϕ ◦ f(x0)(g(xn) − α) → 0, m > n → ∞. (4.12)
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Since (X,U) is sequentially complete w.r.t. (p, f ↓), by (4.7) and (4.12), we know that there
exists x̄ ∈ X such that

xn → x̄ in X. (4.13)

By the assumption, S(xn) is sequentially closed w.r.t. (p, f ↓) for any n. Remarking that
{xm}m>n ⊂ S(xn) and combining (4.7), (4.12) and (4.13), we have

x̄ ∈ S(xn). (4.14)

Particularly, x̄ ∈ S(x0), i.e., x̄ satisfies (i). We assert that x̄ also satisfies (ii), i.e.,

f(x) +
p(x̄, x)

ϕ ◦ f(x̄)
k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

If not, there exists x′ ∈ X, x′ �= x̄ such that

f(x′) +
p(x̄, x′)
ϕ ◦ f(x̄)

k0 ≤K f(x̄), i.e., x′ ∈ S(x̄). (4.15)

Combining (4.15) and (4.14), we have

x′ ∈ S(xn) for every n. (4.16)

That is,

f(x′) +
p(xn, x′)
ϕ ◦ f(xn)

k0 ≤K f(xn).

From this, we have

f(x′) − y0 +
p(xn, x′)
ϕ ◦ f(xn)

k0 ≤K f(xn) − y0,

and so

g(x′) +
p(xn, x′)
ϕ ◦ f(xn)

≤ g(xn). (4.17)

By (4.6), (4.16) and (4.17), we have

p(xn, x′) ≤ ϕ ◦ f(xn)(g(xn) − g(x′))

≤ ϕ ◦ f(x0)
(
g(xn) − inf

S(xn−1)
g
)

< ϕ ◦ f(x0) · 1
2n

→ 0, n → ∞.

By (p2) in Definition 3.1,

xn → x′ in X. (4.18)

Comparing (4.18) with (4.13), we have x̄ = x′, which contradicts the assumption that x′ �= x̄. �

Remark 4.2 In Theorem 4.1, if the condition that for any x ∈ X, S(x) is sequentially closed
w.r.t. (p, f ↓) is replaced by a stronger condition that S(x) is sequentially closed (or sequentially
closed w.r.t. p) or/and the condition that (X,U) is sequentially complete w.r.t. (p, f ↓) is
replaced by a stronger condition that (X,U) is sequentially complete (or sequentially complete
w.r.t. p), then the result certainly holds. Obviously, Theorem 4.1 generalizes [2, Theorem 3.2],
[20, Corollary 2], [33, Theorems 2.4–2.5 and Corollaries 2.7–2.9], and [34, Theorem 4.2].
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Remark 4.3 Moreover, if we assume that p(x0, x0) = 0, then

x0 ∈ S(x0) :=
{

x ∈ X : f(x) +
p(x0, x)

ϕ ◦ f(x0)
k0 ≤K f(x0)

}
.

Thus, the result of Theorem 4.1 can be unilaterally rewritten as follows: there exists x̄ ∈ X

such that
(i) f(x̄) + p(x0,x̄)

ϕ◦f(x0)
k0 ≤K f(x0);

(ii) f(x) + p(x̄,x)
ϕ◦f(x̄)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Remark 4.4 (1) If k0 ∈ cor(K), then for any x0 ∈ domf and any y0 ∈ Y , the condition (4.1),
i.e., f(x0) ∈ y0 + (−∞, +∞)k0 − K, is automatically satisfied. Thus, Theorem 4.1 also gener-
alizes and improves [2, Theorem 3.1].

(2) If we put y0 = f(x0) in Theorem 4.1, then conditions (4.1) and (4.2) can be replaced
by one condition that f(X) ∩ (f(x0) − εk0 − K) = ∅.

(3) In fact, the condition (4.1) can be replaced by the following condition: S(x0) ∩ (y0 +
(−∞, +∞)k0 − K) �= ∅.

(4) In general, the condition that there exist y0 ∈ Y and ε > 0 such that f(X)∩ (y0 − εk0 −
K) = ∅ is strictly weaker than one that f is ≤K -bounded from below, i.e., there exists w0 ∈ Y

such that f(x) ≥K w0, ∀x ∈ X.

Theorem 4.5 (Vectorial Caristi’s fixed point theorem) Let (X,U), p, Y, K, k0, ϕ and f be as
in Theorem 4.1. Also, let x0 ∈ X, y0 ∈ Y and ε > 0 be as in Theorem 4.1. Assume that a
set-valued map T : X → 2X\{∅} satisfies the following condition :

(C1) f(y) + p(x,y)
ϕ◦f(x)k0 ≤K f(x), ∀x ∈ domf, ∀y ∈ Tx.

Then either Tx0 = {x0} with p(x0, x0) = 0, or there exists x̄ ∈ X such that

(i) f(x̄) + p(x0,x̄)
ϕ◦f(x0)

k0 ≤K f(x0);
(ii) T x̄ = {x̄} with p(x̄, x̄) = 0.

Assume that T : X → 2X\{∅} satisfies the following condition:
(C2) ∀x ∈ domf, ∃ y ∈ Tx such that f(y) + p(x,y)

ϕ◦f(x)k0 ≤K f(x).
Then either x0 ∈ Tx0 with p(x0, x0) = 0, or there exists x̄ ∈ X such that

(i) f(x̄) + p(x0,x̄)
ϕ◦f(x0)

k0 ≤K f(x0);
(ii) x̄ ∈ T x̄ with p(x̄, x̄) = 0.

Proof We first prove the conclusion concerning set-valued maps satisfying (C1). By Theo-
rem 4.1, either

f(x) +
p(x0, x)

ϕ ◦ f(x0)
k0 �≤K f(x0), ∀x ∈ X\{x0}, (4.19)

or there exists x̄ ∈ X such that

f(x̄) +
p(x0, x̄)

ϕ ◦ f(x0)
k0 ≤K f(x0) (4.20)

and

f(x) +
p(x̄, x)

ϕ ◦ f(x̄)
k0 �≤K f(x̄), ∀x ∈ X\{x̄}. (4.21)

According to the above two cases, we state the proof.
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Case 1 Assume that x0 satisfies (4.19). By (C1),

f(y) +
p(x0, y)

ϕ ◦ f(x0)
k0 ≤K f(x0), ∀y ∈ Tx0. (4.22)

By (4.19) and (4.22), we have y = Tx0 and Tx0 = {x0} with p(x0, x0) = 0.

Case 2 Assume that x0 does not satisfy (4.19). Then there exists x̄ ∈ X satisfying (4.20)
and (4.21). By (C1),

f(y) +
p(x̄, y)

ϕ ◦ f(x̄)
k0 ≤K f(x̄), ∀y ∈ T x̄. (4.23)

By (4.21) and (4.23), we have T x̄ = {x̄} and p(x̄, x̄) = 0. Obviously, x̄ satisfies (i) and (ii). Thus,
we complete the proof under the condition (C1). Similarly, we can prove the corresponding
conclusion under the condition (C2). �

Theorem 4.6 (Vectorial Takahashi’s nonconvex minimization theorem) Let (X,U), p, Y , K,
k0, ϕ and f be as in Theorem 4.1. Also, let x0 ∈ X, y0 ∈ Y and ε > 0 be as in Theorem 4.1.
Assume that f satisfies the following condition :

(C3) for each u ∈ X such that f(X)∩ (f(u)−K) �= {f(u)}, there exists v ∈ X, v �= u such
that

f(v) +
p(u, v)

ϕ ◦ f(u)
k0 ≤K f(u).

Then either f(X) ∩ (f(x0) − K) = {f(x0)} or there exists x̄ ∈ X such that
(i) f(x̄) + p(x0,x̄)

ϕ◦f(x0)
k0 ≤K f(x0);

(ii) f(X) ∩ (f(x̄) − K) = {f(x̄)}.
Proof Assume that f(X) ∩ (f(x0) − K) �= {f(x0)}. By (C3), we know that

S(x0) :=
{

x ∈ X : f(x) +
p(x0, x)

ϕ ◦ f(x0)
k0 ≤K f(x0)

}
⊃ S(x0)\{x0} �= ∅.

Take any fixed x′
0 ∈ S(x0)\{x0}. Then by (4.1), we have

f(x′
0) ∈ f(x0) − K ⊂ y0 + (−∞, +∞)k0 − K. (4.24)

By (4.2), f(X) ∩ (y0 − εk0 − K) = ∅. Certainly,

f(S(x0)) ∩ (y0 − εk0 − K) = ∅. (4.25)

Let {xn} ⊂ S(x0) such that p(xn, xm) → 0 (m > n → ∞) and f(xn+1) ≤K f(xn) for every n.
Since (X,U) is sequentially complete w.r.t. (p, f ↓), there exists x̄ ∈ X such that xn → x̄ in X.
Since S(x0) is sequentially closed w.r.t. (p, f ↓), we have x̄ ∈ S(x0). Thus, we have shown that
the uniform subspace

(S(x0),U|S(x0)) is sequentially complete w.r.t. (p, f ↓). (4.26)

Moreover, for any x ∈ S(x0), S(x) ⊂ S(x0). Also, it is easy to show that

S(x), as a subset of (S(x0),U|S(x0)), is sequentially closed w.r.t. (p, f ↓). (4.27)

Assume that the conclusion is not true. That is, for any x ∈ S(x0),

f(X) ∩ (f(x) − K) �= {f(x)}.
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Then by (C3), there exists v ∈ X, v �= x such that

f(v) +
p(x, v)

ϕ ◦ f(x)
k0 ≤K f(x), i.e., S(x)\{x} �= ∅.

We define a set-valued map T : S(x0) → 2S(x0)\{∅} as follows:

T (x) = S(x)\{x}, ∀x ∈ S(x0). (4.28)

Obviously, T satisfies the condition (C1):

f(y) +
p(x, y)

ϕ ◦ f(x)
k0 ≤K f(x), ∀x ∈ S(x0), ∀y ∈ T (x).

By (4.24)–(4.27), we may substitute X by S(x0) in Theorem 4.5. Thus, there exists x̄ ∈ S(x0)
such that T x̄ = {x̄}, which contradicts (4.28). �

Theorem 4.7 Theorems 4.1, 4.5 and 4.6 are equivalent to each other.

Proof It is sufficient to prove that Theorem 4.6 implies Theorem 4.1. Assume that there exists
x′ ∈ X, x′ �= x0 such that

f(x′) +
p(x0, x

′)
ϕ ◦ f(x0)

k0 ≤K f(x0).

Then S(x0) ⊃ S(x0)\{x0} �= ∅. As shown in the proof of Theorem 4.6, take any fixed x′
0 ∈

S(x0)\{x0}. Then, by (4.1), we have

f(x′
0) ∈ y0 + (−∞, +∞)k0 − K. (4.29)

By (4.2),
f(S(x0)) ∩ (y0 − εk0 − K) = ∅. (4.30)

As done in the proof of Theorem 4.6, we can deduce that (S(x0),U|S(x0)) is sequentially
complete w.r.t. (p, f ↓) and for any x ∈ S(x0), S(x) ⊂ S(x0) is sequentially closed w.r.t.
(p, f ↓). Combining this with (4.29) and (4.30), we may substitute X by S(x0) in Theorem 4.6.
Thus, there exists x∗ ∈ S(x0) such that

f(S(x0)) ∩ (f(x∗) − K) = {f(x∗)}. (4.31)

Now we claim that there exists x̄ ∈ S(x0) such that

f(x) +
p(x̄, x)

ϕ ◦ f(x̄)
k0 �≤K f(x̄), ∀x ∈ X\{x̄},

i.e., x̄ satisfies (i) and (ii) in Theorem 4.1. Assume the contrary. There exists x′ ∈ X, x′ �= x∗

such that
f(x′) +

p(x∗, x′)
ϕ ◦ f(x∗)

k0 ≤K f(x∗). (4.32)

From this, x′ ∈ S(x∗). Combining this with x∗ ∈ S(x0), we have

x′ ∈ S(x0). (4.33)

By (4.31)–(4.33), we have
f(x′) = f(x∗). (4.34)

By (4.32), (4.34) and k0 �∈ −K, we have

p(x∗, x′) = 0. (4.35)
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Since x′ ∈ S(x0), by the assumption on the contrary, there exists x′′ ∈ X, x′′ �= x′ such that

f(x′′) +
p(x′, x′′)
ϕ ◦ f(x′)

k0 ≤K f(x′).

Thus, x′′ ∈ S(x′) ⊂ S(x∗) ⊂ S(x0). Hence

f(x′′) +
p(x∗, x′′)
ϕ ◦ f(x∗)

k0 ≤K f(x∗).

Combining this with x′′ ∈ S(x0) and (4.31), we have f(x′′) = f(x∗) and hence

p(x∗, x′′) = 0. (4.36)

By (4.35), (4.36) and (p3) in Definition 3.1, we have x′ = x′′, contradicting x′′ �= x′. �

Remark 4.8 Concerning Theorems 4.5 and 4.6, we also have the corresponding remarks like
Remarks 4.2–4.4.

5 Some Particular Versions of Vectorial EVP

By Theorems 4.1, 4.5 and 4.6, we can deduce a number of particular versions of EVP, Caristi’s
fixed point theorem and Takahashi’s nonconvex minimization theorem. Here we only give some
particular versions of Theorem 4.1 (i.e., vectorial EVP).

In particular, if Y = R, K = [0, +∞) and k0 = 1 in Theorem 4.1, then we have the following
scalar-valued version of EVP.

Theorem 5.1 Let (X,U) be a separated uniform space, p be a p-distance on X and ϕ :
(−∞, +∞) → (0, +∞) be a nondecreasing function. Let f : X → (−∞,∞] be a bounded from
below, proper function such that for any x ∈ X,

S(x) :=
{

x′ ∈ X : f(x′) +
p(x, x′)
ϕ ◦ f(x)

≤ f(x)
}

is sequentially closed w.r.t. (p, f ↓) and (X,U) is sequentially complete w.r.t. (p, f ↓). Then for
any x0 ∈ domf , either

f(x) +
p(x0, x)

ϕ ◦ f(x0)
> f(x0), ∀x ∈ X\{x0},

or there exists x̄ ∈ X such that
(i) f(x̄) + p(x0,x̄)

ϕ◦f(x0)
≤ f(x0);

(ii) f(x) + p(x̄,x)
ϕ◦f(x̄) > f(x̄), ∀x ∈ X\{x̄}.

If we assume that f is sequentially lower monotone w.r.t. p, then for a sequence {xn} ⊂
S(x) satisfying p(xn, xm) → 0 (m > n → ∞), xn → x̄ in X and f(xn+1) ≤ f(xn), we have
f(x̄) ≤ f(xn), ∀n ∈ N. Since xn ∈ S(x), we have

f(xn) +
p(x, xn)
ϕ ◦ f(x)

≤ f(x).

Thus, for any n ∈ N,

f(x̄) +
p(x, x̄)

ϕ ◦ f(x)
≤ f(x̄) +

p(x, xn)
ϕ ◦ f(x)

+
p(xn, x̄)
ϕ ◦ f(x)

≤ f(xn) +
p(x, xn)
ϕ ◦ f(x)

+
p(xn, x̄)
ϕ ◦ f(x)
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≤ f(x) +
p(xn, x)
ϕ ◦ f(x)

. (5.1)

Since p is a p-distance, p(xn, xm) → 0 (m > n → ∞) and xn → x̄ imply that p(xn, x̄) → 0.
Letting n → ∞ in (5.1), we have

f(x̄) +
p(x, x̄)
ϕ ◦ fx)

≤ f(x), i.e., x̄ ∈ S(x).

Thus, S(x) is sequentially closed w.r.t. (p, f ↓). Hence in Theorem 5.1, the condition that
for any x ∈ X, S(x) is sequentially closed w.r.t. (p, f ↓) can be replaced by one that f is
sequentially lower monotone w.r.t. p (see [46, Theorem 4.2]).

Corollary 5.2 Let (X,U), p and ϕ be the same as in Theorem 5.1. Let f : X → (−∞, +∞]
be a bounded from below, proper function which is sequentially lower monotone w.r.t. p. Then
the result of Theorem 5.1 holds.

In Theorem 4.1, if we assume that k0 ∈ K\−vcl(K) and f is ≤K -bounded from below, i.e.,
there exists w0 ∈ Y such that f(x) ≥K w0 for any x ∈ X, then the conditions (4.1) and (4.2)
in Theorem 4.1 can be removed and the result remains true.

Theorem 5.3 Let (X,U), p, Y, K, k0, ϕ and f be the same as in Theorem 4.1. Moreover, let
k0 ∈ K\ − vcl(K) and f be ≤K-bounded from below. Then for any x0 ∈ domf , either

f(x) +
p(x0, x)

ϕ ◦ f(x0)
k0 �≤K f(x0), ∀x ∈ X\{x0},

or there exists x̄ ∈ X such that
(i) f(x̄) + p(x0,x̄)

ϕ◦f(x0)
k0 ≤K f(x0);

(ii) f(x) + p(x̄,x)
ϕ◦f(x̄)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Proof Since f is ≤K-bounded from below, we may assume that there exists w0 ∈ Y such that
f(x) ≥K w0 for any x ∈ X, i.e., f(X) ⊂ (w0 + K) ∪ {∞}. We assert that for any x0 ∈ domf ,
there exists ε > 0 such that

f(X) ∩ (f(x0) − εk0 − K) = ∅. (5.2)

If not, assume that there exists x0 ∈ domf such that

f(X) ∩ (f(x0) − nk0 − K) �= ∅, ∀n ∈ N.

Since f(X) ⊂ (w0 + K) ∪ {∞}, we have

(w0 + K) ∩ (f(x0) − nk0 − K) �= ∅, ∀n ∈ N.

Hence there exists kn, k′
n ∈ K such that

w0 + kn = f(x0) − nk0 − k′
n, ∀n ∈ N.

From this,

k0 +
w0 − f(x0)

n
=

−kn − k′
n

n
∈ −K, ∀n ∈ N.

This leads to that k0 ∈ −vcl(K), contradicting the assumption that k0 ∈ K\ − vcl(K).
Thus, (5.2) holds. Now, by Theorem 4.1 and Remark 4.4 (2), we obtain the result imme-
diately. �
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Let (X,U) be a separated uniform space with the topology generated by a family {qλ}λ∈Λ

of pseudo-metrics (see [35]) and {αλ}λ∈Λ be a family of positive real numbers. Define p(x, y) =
supλ∈Λ αλqλ(x, y) for any x, y ∈ X. Then it is easy to verify that p is a p-distance on X with
p(x, x) = 0 for any x ∈ X (see [46, Example 2.4]). Thus, from Theorem 5.3, we can deduce a
vectorial version of [35, Theorem 2] as follows.

Corollary 5.4 Let (X,U) be a separated uniform space with the topology generated by a
family {qλ}λ∈Λ of pseudo-metrics, {αλ}λ∈Λ be a family of positive real numbers and (X,U) be
sequentially complete w.r.t. p := supλ∈Λ αλqλ. Let Y be a real linear space pre-ordered by a
convex cone K containing 0, k0 ∈ K\ − vcl(K) and ϕ : (Y,≤K) → (0, +∞) be a nondecreasing
function. Let f : X → Y • be a ≤K-bounded from below, proper function such that for any
x ∈ X,

S(x) :=
{

x′ ∈ X : f(x′) +
1

ϕ ◦ f(x)
sup
λ∈Λ

αλqλ(x, x′)k0 ≤K f(x)
}

is sequentially closed w.r.t. p. Then for any x0 ∈ domf , there exists x̄ ∈ X such that

(i) f(x̄) + 1
ϕ◦f(x0)

supλ∈Λ αλqλ(x0, x̄)k0 ≤K f(x0);
(ii) f(x) + 1

ϕ◦f(x̄) supλ∈Λ αλqλ(x̄, x)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.
Moreover, if K is k0-closed, then (i) and (ii) can be rewritten as follows :

(i)′ f(x̄) + 1
ϕ◦f(x0)

αλqλ(x0, x̄)k0 ≤K f(x0), ∀λ ∈ Λ;
(ii)′ ∀x ∈ X\{x̄}, ∃μ ∈ Λ such that f(x) + 1

ϕ◦f(x̄)αμqμ(x̄, x)k0 �≤K f(x̄).

Obviously, Corollary 5.4 extends [20, Corollary 2], [21, Theorem 3], [26, Theorem 3], [43,
Corollary 3.1] and [44, Theorem 3.2]. In 1996, using families of quasi-metrics, Fang [16] intro-
duced F-type topological spaces and established an EVP on F-type topological spaces, where
the perturbation involves the family of quasi-metrics. Later Hamel and Löhne (see [23]) proved
that a family of quasi-metrics is also another possibility to generate a uniform structure and
that the class of F-type topological spaces coincides with the class of separated uniform spaces.
Moreover, they obtained some interesting extensions of Fang’s result. Using p-distances, we
can also obtain some new results in the direction. As in [16, 22, 23], let (X,U) be a sep-
arated uniform space (i.e., an F-type topological space) with the topology generated by a
family {qλ}λ∈Λ of quasi-metrics and h : Λ → (0, +∞) be a nonincreasing function. Define
p(x, y) := supλ∈Λ h(λ)qλ(x, y), ∀x, y ∈ X. Then it is easy to verify that p is a p-distance on
X with p(x, x) = 0 for any x ∈ X (see [46, Example 2.3]). By Theorem 5.3, we obtain the
following invariant of [23, Corollary 11].

Corollary 5.5 Let (X,U) be a separated uniform space (equivalently, an F-type topological
space) with the topology generated by a family {qλ}λ∈Λ of quasi-metrics, h : Λ → (0, +∞) be
a nondecreasing function and (X,U) be sequentially complete w.r.t. p := supλ∈Λ h(λ)qλ. Let
Y, K, k0 and ϕ be the same as in Corollary 5.4. Let f : X → Y • be a ≤K-bounded from below,
proper function such that for any x ∈ X,

S(x) :=
{

x′ : f(x′) +
1

ϕ ◦ f(x)
sup
λ∈Λ

h(λ)qλ(x, x′)k0 ≤K f(x)
}

is sequentially closed w.r.t. p. Then for any x0 ∈ domf , there exists x̄ ∈ X such that
(i) f(x̄) + 1

ϕ◦f(x0)
supλ∈Λ h(λ)qλ(x0, x̄)k0 ≤K f(x0);
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(ii) f(x) + 1
ϕ◦f(x̄) supλ∈Λ h(λ)qλ(x̄, x)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Moreover, if K is k0-closed, then (i) and (ii) can be rewritten as follows :
(i)′ f(x̄) + 1

ϕ◦f(x0)
h(λ)qλ(x0, x̄)k0 ≤K f(x0), ∀λ ∈ Λ;

(ii)′ ∀x ∈ X\{x̄}, ∃μ ∈ Λ such that f(x) + 1
ϕ◦f(x̄)h(μ)qμ(x̄, x)k0 �≤K f(x̄).

Remark 5.6 In Theorem 5.3 and in Corollaries 5.4 and 5.5, if the condition that k0 ∈
K\ − vcl(K) is replaced by one that k0 ∈ cor(K), then the condition that f is ≤K-bounded
from below can be replaced by a weaker condition (4.2), i.e., there exist y0 ∈ Y and ε > 0 such
that f(X) ∩ (y0 − εk0 − K) = ∅. Thus, the above results also extend [2, Theorem 3.1].

Remark 5.7 Here the condition that (X,U) is sequentially complete w.r.t. p := supλ∈Λ αλqλ

(or p := supλ∈Λ h(λ)qλ) may be strictly weaker than one that (X,U) is sequentially complete.
Similarly, the condition that S(x) is sequentially closed with w.r.t. p may be strictly weaker
than one that S(x) is sequentially closed. For example, let X be a complete convex space
which is not sequentially complete (on the existence of such a space, see [39, Example 5.1.12],
[40, Example 1], [41, Example 3.1]), {‖ · ‖λ}λ∈Λ be a family of semi-norms generating the
topology on X and {αλ}λ∈Λ be a family of positive real numbers. Define a p-distance p on
X as follows: p(x, y) := supλ∈Λ αλ‖x − y‖λ, ∀x, y ∈ X. Then a sequence {xn} in X satisfying
p(xn, xm) → 0 (m > n → ∞) is a locally Cauchy sequence (see [43]). Since X is locally
complete, there exists x̄ ∈ X such that xn → x̄. That is, X is sequentially complete w.r.t.
p, but it is not sequentially complete. Besides, S(x) being locally closed implies that S(x) is
sequentially closed w.r.t. p. And there exists a locally closed set which is not sequentially
closed (see, for example, [41, Example 3.1]). Hence, a set which is sequentially closed w.r.t. p,
may be not sequentially closed. In fact, for any locally convex space X (even the space is not
locally complete), provided that S ⊂ X is a locally complete convex set containing 0, then X

is sequentially complete w.r.t. p, where p(x, y) := pS(x − y), ∀x, y ∈ X. Here, pS denotes the
Minkowski functional of S and clearly p = pS is a p-distance on X.

Corollary 5.8 (Vectorial versions of [43, Corollary 3.1] and [44, Theorem 3.2]) Let X be a
locally complete locally convex (resp. p-convex) space with the topology generated by a family
{‖ · ‖λ}λ∈Λ of semi-norms (resp. p-homogeneous F-pseudonorms) and {αλ}λ∈Λ be a family of
positive real numbers. Let Y, K, k0 and ϕ be the same as in Corollary 5.4. Let f : X → Y • be
a ≤K-bounded from below, proper function such that for any x ∈ X,

S(x) :=
{

x′ ∈ X : f(x′) +
1

ϕ ◦ f(x)
sup
λ∈Λ

αλ‖x − x′‖λk0 ≤K f(x)
}

is locally closed. Then for any x0 ∈ domf , there exists an x̄ ∈ X such that
(i) f(x̄) + 1

ϕ◦f(x0)
supλ∈Λ αλ‖x0 − x̄‖λk0 ≤K f(x0);

(ii) f(x) + 1
ϕ◦f(x̄) supλ∈Λ αλ‖(x̄ − x‖λk0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Corollary 5.9 (Vectorial versions of [43, Theorem 3.2] and [44, Theorem 3.1′]) Let X be a
locally convex (resp. p-convex) space, S ⊂ X be a locally complete bounded convex (resp. p-
convex) set containing 0 and pS be the Minkowski functional of S. Let Y, K, k0 and ϕ be the
same as in Corollary 5.4. Let f : X → Y • be a ≤K-bounded from below, proper function such
that for any x ∈ X,

S(x) :=
{

x′ ∈ X : f(x′) +
1

ϕ ◦ f(x)
pS(x − x′)k0 ≤K f(x)

}
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is locally closed. Then for any x0 ∈ domf , there exists x̄ ∈ X such that
(i) f(x̄) + 1

ϕ◦f(x0)
pS(x0 − x̄)k0 ≤K f(x0);

(ii) f(x) + 1
ϕ◦f(x̄)pS(x̄ − x)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Remark 5.10 As pointed out by Hamel (see [22, Theorem 9]), in Theorem 5.3 and in Corollar-
ies 5.4, 5.5, 5.8 and 5.9, if Y is a topological vector space and k0 ∈ K\−cl(K), then the condition
that f : x → Y • is ≤K-bounded from below can be replaced by a weaker condition: there exists
a bounded set M ⊂ Y such that {f(x) : x ∈ domf} ⊂ M + K := {m + k : m ∈ M, k ∈ K}. We
shall see that the above weaker condition can be further weakened. Since k0 �∈ −cl(K), by the
Hahn–Banach separation theorem, there exists l ∈ K+ such that l(k0) > 0. We denote the set
consisting of such linear functionals l by K+

k0
(see [31]). A subset M of Y is said to be l-lower

bounded if l(M) = {l(m) : m ∈ M} is a lower bounded scalar set, i.e., there exists α ∈ R such
that l(M) ≥ α. In fact, the requirement that M ⊂ Y is bounded can be replaced by one that
M ⊂ Y is l-lower bounded for some l ∈ K+

k0
.

Theorem 5.11 Let (X,U) be a separated uniform space and p be a p-distance such that (X,U)
is sequentially complete w.r.t. p. Let Y be a topological vector space pre-ordered by a convex
cone K containing 0, k0 ∈ K\−cl(K) and ϕ : (Y,≤K) → (0, +∞) be a nondecreasing function.
Let f : X → Y • be a proper function satisfying the following conditions :

(a) for any x ∈ X,

S(x) :=
{

x′ ∈ X : f(x′) +
p(x, x′)
ϕ ◦ f(x)

k0 ≤K f(x)
}

is sequentially closed w.r.t. p ;
(b) there exists an l-lower bounded set M , where l ∈ K+

k0
, such that {f(x) : x ∈ domf} ⊂

M + K.
Then for any x0 ∈ domf , either

f(x) +
p(x0, x)

ϕ ◦ f(x0)
k0 �≤K f(x0), ∀x ∈ X\{x0},

or there exists x̄ ∈ X such that
(i) f(x̄) + p(x0,x̄)

ϕ◦f(x0)
k0 ≤K f(x0);

(ii) f(x) + p(x̄,x)
ϕ◦f(x̄)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Proof By Theorem 4.1 and Remark 4.4 (2), we only need to prove that for any x0 ∈ domf ,
there exists ε > 0 such that f(X) ∩ (f(x0) − εk0 − K) = ∅. Assume the contrary. There exists
x0 ∈ domf such that

f(X) ∩ (f(x0) − nk0 − K) �= ∅, ∀n ∈ N.

Thus,
(M + K) ∩ (f(x0) − nk0 − K) �= ∅, ∀n ∈ N.

Hence there exist mn ∈ M , kn, k′
n ∈ K such that

mn + kn = f(x0) − nk0 − k′
n, ∀n ∈ N.

From this, we have
mn

n
− f(x0)

n
+ k0 =

−kn − k′
n

n
∈ −K.
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As M is l-lower bounded, there exists α ∈ R such that l(M) ≥ α. Thus,

α

n
− l(f(x0))

n
+ l(k0) ≤ l(mn)

n
− l(f(x0))

n
+ l(k0) ≤ 0. (5.3)

Letting n → ∞ in (5.3), we have l(k0) ≤ 0. However, by l ∈ K+
k0

, we also have l(k0) > 0, which
is a contradiction. �

Remark 5.12 From Theorem 5.11, we know that in Corollaries 5.4, 5.5, 5.8 and 5.9, if Y

is a topological vector space and k0 ∈ K\ − cl(K), then the condition that f : X → Y • is
≤K-bounded from below can be replaced by the following weaker condition: there exists an
l-bounded set M ⊂ Y , where l ∈ K+

k0
, such that {f(x) : x ∈ domf} ⊂ M + K. In particular,

we can obtain the following variant of [9, Theorem 5].

Corollary 5.13 Let (X,U), {qλ}λ∈Λ and h : Λ → (0, +∞) be the same as in Corollary 5.5. Let
Y be a locally convex topological vector space, K ⊂ Y be a convex cone with a base, k0 ∈ K\{0}
and ϕ : (Y,≤K) → (0, +∞) be a nondecreasing function. Let f : X → Y • satisfy the following
conditions :

(a) for any x ∈ X,

S(x) :=
{

x′ ∈ X : f(x′) +
1

ϕ ◦ f(x)
sup
λ∈Λ

h(λ)qλ(x, x′)k) ≤K f(x)
}

is sequentially closed w.r.t. p ;

(b) there exists an l-lower bounded set M ⊂ Y , where l ∈ K+
k0

, such that {f(x) : x ∈
domf} ⊂ M + K.

Then for any x0 ∈ domf , there exists x̄ ∈ X such that

(i) f(x̄) + 1
ϕ◦f(x0)

supλ∈Λ h(λ)qλ(x0, x̄)k0 ≤K f(x0);

(ii) f(x) + 1
ϕ◦f(x̄) supλ∈Λ h(λ)qλ(x̄, x)k0 �≤K f(x̄), ∀x ∈ X\{x̄}.

Proof Since K has a base, K+i := {l ∈ Y ∗ : l(k) > 0, ∀k ∈ K\{0}} �= ∅. First we assert that
k0 �∈ −cl(K). If not, assume that −k0 ∈ cl(K). Then there exists a net {kδ} ⊂ K such that
kδ → −k0 in Y . Take any fixed l ∈ K+i. Then l(−k0) = lim l(kδ) ≥ 0, which leads to that
l(k0) ≤ 0. However, by l ∈ K+i and k0 ∈ K\{0}, we have l(k0) > 0, which is a contradiction.
Thus, we have shown that k0 ∈ K\−cl(K). Now by Theorem 5.11 and Remark 5.12, we obtain
the result. �

In [8, 20, 22, 32, 34, 36], sequentially lower monotone functions have been considered. Such
a function class is more extensive than lower semi-continuous function class (see [8, 36]). In
the following, we study vectorial EVP for sequentially lower K-monotone w.r.t. p functions.
We observe that in Theorems 4.1 and 5.3, the condition that S(x) is sequentially closed w.r.t.
(p, f ↓) can be replaced by one that f is sequentially lower K-monotone w.r.t. p.

Theorem 5.14 Let (X,U) be a separated uniform space and p be a p-distance on X. Let Y

be a real linear space pre-ordered by a convex cone K containing 0, k0 ∈ K\ − K such that
K is k0-closed and ϕ : (Y,≤K) → (0, +∞) be a nondecreasing function. Let f : X → Y • be
sequentially lower K-monotone w.r.t. p and (X,U) be sequentially complete w.r.t. (p, f ↓). Let
x0 ∈ X, y0 ∈ Y and ε > 0 such that (4.1) and (4.2) in Theorem 4.1 hold. Then the result of
Theorem 4.1 holds.
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Proof It is sufficient to show that for any x ∈ X, S(x) is sequentially closed w.r.t. (p, f ↓).
Let {xn} ⊂ S(x) satisfy p(xn, xm) → 0 (m > n → ∞), xn → x̄ in X and f(xn+1) ≤K f(xn)
for every n. We will show that x̄ ∈ S(x). Since f is sequentially lower K-monotone w.r.t. p,
we have

f(x̄) ≤K f(xn), ∀n ∈ N. (5.4)

By xn ∈ S(x), we have

f(xn) +
p(x, xn)
ϕ ◦ f(x)

k0 ≤K f(x). (5.5)

Combining (5.4) and (5.5), we have

f(x̄) +
p(x, xn)
ϕ ◦ f(x)

k0 ≤K f(x), ∀n ∈ N. (5.6)

By (5.6), we have

f(x̄) +
p(x, x̄)

ϕ ◦ f(x)
k0 ≤K f(x̄) +

p(x, xn)
ϕ ◦ f(x)

k0 +
p(xn, x̄)
ϕ ◦ f(x)

k0

≤K f(x) +
p(xn, x̄)
ϕ ◦ f(x)

k0, ∀n ∈ N. (5.7)

By (p2) in Definition 3.1, the assumption that p(xn, xm) → 0 (m > n → ∞) and xn → x̄

implies that p(xn, x̄) → 0 (n → ∞). And since K is k0-closed, letting n → ∞ in (5.7), we have

f(x̄) +
p(x, x̄)

ϕ ◦ f(x)
k0 ≤K f(x), i.e., x̄ ∈ S(x). �

We see that under the assumption that K is k0-closed, in Theorems 5.3, 5.11 and Corol-
laries 5.4, 5.5, 5.13, the condition that S(x) is sequentially closed w.r.t. p can be replaced by
the condition that f is sequentially lower K-monotone w.r.t. p. And in Corollaries 5.8 and 5.9,
the condition that S(x) is locally closed can be replaced by the condition that f is locally
sequentially lower K-monotone, i.e., for a sequence {xn} ⊂ X which is locally convergent to
x̄ and satisfies f(xn+1) ≤K f(xn), we have f(x̄) ≤k f(xn) for every n. Particularly, inspired
by [22], we have the following corollary.

Corollary 5.15 ([22, Theorem 9]) Let (X,U), {qλ}λ∈Λ and h be the same as in Corollary 5.5.
Let Y be a topological vector space, K ⊂ Y be a convex cone containing 0, k0 ∈ K\−cl(K) such
that K is k0-closed and ϕ : (Y,≤K) → (0, +∞) be a nondecreasing function. Let f : X → Y •

be a proper function satisfying the following conditions :
(a) f is sequentially lower K-monotone w.r.t. p := supλ∈Λ h(λ)qλ;
(b) there exists an l-lower bounded set M , where l ∈ K+

k0
, such that {f(x) : x ∈ domf} ⊂

M + K.
Then for any x0 ∈ domf , there exists x̄ ∈ X such that

(i) f(x̄) + 1
ϕ◦f(x0)

h(λ)qλ(x0, x̄)k0 ≤K f(x0), ∀λ ∈ Λ;
(ii) ∀x ∈ X\{x̄}, ∃μ ∈ Λ such that f(x) + 1

ϕ◦f(x̄)h(μ)qμ(x̄, x)k0 �≤K f(x̄).

Corollary 5.16 ([22, Theorem 10]) Let (X,U), {qλ}λ∈Λ and h be the same as in Corollary 5.5.
Let Y be a real linear space pre-ordered by a convex cone K containing 0, k0 ∈ K\ − K such
that K is k0-closed and ϕ : (Y,≤K) → (0, +∞) be a nondecreasing function. Let f : X → Y •

be a proper function satisfying the following conditions :
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(a) f is sequentially K-monotone w.r.t. p := supλ∈Λ h(λ)qλ;

(b) there exists y0 ∈ Y and ε > 0 such that f(X) ∩ (y0 − εk0 − K) = ∅.
Then for any x0 ∈ X with f(x0) ∈ y0 + (−∞, +∞)k0 − K, there exists x̄ ∈ X such that

(i) f(x̄) + 1
ϕ◦f(x0)

h(λ)qλ(x0, x̄)k0 ≤K f(x0), ∀λ ∈ Λ;

(ii) ∀x ∈ X\{x̄}, ∃μ ∈ Λ such that f(x) + 1
ϕ◦f(x̄)h(μ)qμ(x̄, x)k0 �≤K f(x̄).

Problem The authors don’t know whether it is necessary to assume that K is k0-closed in
Theorem 5.14 and in Corollaries 5.15 and 5.16.
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