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Abstract In this paper, we first establish an abstract inequality for lower order eigenvalues of a

self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et

al. (Calc. Var. Partial Differential Equations, 38, 409–416 (2010)). Then, making use of it, we

obtain some universal inequalities for lower order eigenvalues of the biharmonic operator on manifolds

admitting some special functions. Moreover, we derive a universal inequality for lower order eigenvalues

of the poly-Laplacian with any order on the Euclidean space.
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1 Introduction

Let Ω be a bounded domain in an n-dimensional Euclidean space R
n. The Dirichlet eigenvalue

problem of the poly-Laplacian with any order is described by
⎧
⎪⎨

⎪⎩

(−Δ)lu = λu, in Ω,

u|∂Ω =
∂u

∂ν

∣
∣
∣
∣
∂Ω

= · · · =
∂l−1u

∂νl−1

∣
∣
∣
∣
∂Ω

= 0,
(1.1)

where Δ is the Laplacian and ν denotes the outward unit normal vector field of ∂Ω. Prob-
lem (1.1) is called the Dirichlet Laplacian problem when l = 1 and the clamped plate problem
when l = 2.

In this paper, we are concerned about inequalities for lower order eigenvalues of self-adjoint
operators and problem (1.1). To begin with, we give a brief review of related results. For the
Dirichlet Laplacian problem, Payne et al. [22] proved that its lower order eigenvalues satisfy

λ2 + λ3 ≤ 6λ1 (1.2)
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for Ω ⊂ R
2. This led to the famous Payne–Pólya–Weinberger conjecture for Ω ⊂ R

n. In 1993,
Ashbaugh and Benguria [2] established the following universal inequality

1
n

n∑

i=1

λi+1 ≤
(

1 +
4
n

)

λ1 (1.3)

for Ω ⊂ R
n. For more references on the solution of this conjecture, we refer the readers to

[3, 4, 10, 15, 21, 24]. In 2008, Sun et al. [25] further derived some universal inequalities for
lower order eigenvalues of the Dirichlet Laplacian problem on bounded domains in a complex
projective space and a unit sphere. Chen and Cheng [6] proved (1.3) still holds when Ω is a
bounded domain in a complete Riemannian manifold isometrically minimally immersed in R

n.
Γi is usually used to denote the i-th eigenvalue of the clamped plate problem. In 1998,

Ashbaugh [1] announced the following interesting inequalities without proofs
n∑

i=1

(Γ
1
2
i+1 − Γ

1
2
1 ) ≤ 4Γ

1
2
1 (1.4)

and
n∑

i=1

(Γi+1 − Γ1) ≤ 24Γ1. (1.5)

In 2010, for a bounded domain Ω in an n-dimensional complete Riemannian manifold M , Cheng
et al. [8] proved

n∑

i=1

(Γi+1 − Γ1)
1
2 ≤ [

(2n+ 4)Γ
1
2
1 + n2H2

0

] 1
2
(
4Γ

1
2
1 + n2H2

0

) 1
2 , (1.6)

where H0 is a nonnegative constant which only depends on M and Ω. When M is an n-
dimensional complete minimal submanifold in a Euclidean space, (1.6) implies

n∑

i=1

(Γi+1 − Γ1)
1
2 ≤ [8(n+ 2)Γ1]

1
2 . (1.7)

The proofs of (1.4) and (1.5) were given by Cheng et al. [9]. In fact, they considered
problem (1.1) and proved

n∑

i=1

(λ
1
l

i+1 − λ
1
l
1 )l−1 ≤ (2l)l−1λ

l−1
l

1 (1.8)

for l ≥ 2, and
n∑

i=1

(λi+1 − λ1) ≤ 4l(2l − 1)λ1. (1.9)

It is easy to find that (1.8) and (1.9) respectively become (1.4) and (1.5) when l = 2. More-
over, (1.9) covers (1.3) when l = 1. In 2011, Jost et al. [18] derived the inequality

n+1∑

i=2

λi +
n−1∑

i=1

2(l − 1)i
2l + i− 1

(λn+1−i − λ1) ≤ (n+ 4l(2l − 1))λ1, (1.10)

which covers (1.3) when l = 1 and improves (1.5) when l = 2.
It is natural to consider whether these inequalities can be deduced to self-adjoint operators

on Hilbert spaces. Harrell and Davies [12] first realized that some results (e.g. the PPW
inequality) of Payne et al. [22] for higher order eigenvalues of the Laplcian rely on some
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facts involving auxiliary operators and their commutators. Some inequalities for higher order
eigenvalues of the Laplacian, biharmonic operator and the poly-Laplacian have been deduced
to self-adjoint operators on Hilbert spaces (see [5, 13, 14, 16, 17, 19, 23]). To the authors’
knowledge, fewer inequalities for lower order eigenvalues of self-adjoint operators on Hilbert
spaces have been obtained by using purely algebraic arguments.

The structure of this paper is as follows. In Section 2, we establish an abstract inequal-
ity (2.2) for lower order eigenvalues of self-adjoint operators on Hilbert spaces, which extends
the recent work of Cheng et al. [8]. The latter sections are devoted to deriving some explicit
inequalities for lower order eigenvalues of problem (1.1) on some Riemannian manifolds. In fact,
Cheng et al. [8] considered Riemannian manifolds isometrically immersed in a Euclidean space.
We study eignvalues of biharmonic operator on manifolds admitting some special functions in
Section 3. The first kind is Riemannian manifolds admitting spherical eigenmaps. As we know,
any compact homogeneous Riemannian manifold admits eigenmaps for the first eigenvalue of
the Laplacian (see [20]). And another kind is Riemannian manifolds admitting some functions
fr : M → R such that ⎧

⎨

⎩

〈∇fr,∇fs〉 = δrs,

Δfr = 0.
(1.11)

Product manifolds of Euclidean spaces with any complete manifolds satisfy this condition (see
[11, 26]). Utilizing Theorem 2.1, we derive some universal inequalities for lower order eigenvalues
of the biharmonic operator on these manifolds in Theorem 3.1. In Section 4, a universal
inequality for the poly-Laplacian with any order on a bounded domain in R

n is obtained, which
covers (1.7) when l = 2.

2 Self-Adjoint Operators on Hilbert Spaces

In this section, we establish an abstract inequality which relates lower order eigenvalues of
self-adjoint operators to two collections of auxiliary operators and their commutators.

Theorem 2.1 Let H be a complex Hilbert space with a given inner product 〈·, ·〉 and cor-
responding norm ‖ · ‖. Let A : D ⊂ H → H be a self-adjoint operator defined on a dense
domain D which is semibounded beblow and has a discrete spectrum μ1 ≤ μ2 ≤ · · · . Let
{Ti : D → H}n

i=1 be a collection of skew-symmetric operators and {Bi : A(D) → H}n
i=1 be

a collection of symmetric operators which leave D invariant. Denote by {ui}∞i=1 the normal-
ized eigenvectors corresponding to the i-th eigenvalues μi of A. This family of eigenvectors are
further assumed to be an orthonormal basis for H. If the operators {Bi}n

i=1 satisfy

〈Biu1, uj+1〉, for 1 ≤ j < i ≤ n, (2.1)

we have
n∑

i=1

(μi+1 − μ1)
1
2 〈[Ti, Bi]u1, u1〉 ≤ 2

{ n∑

i=1

〈[A,Bi]u1, Biu1〉
n∑

i=1

‖Tiu1‖2

} 1
2

, (2.2)

where [A,B] = AB −BA is called the commutator of operators A and B.

Proof We consider the vectors φi given by

φi = Biu1 − aiu1, (2.3)
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where ai = 〈Biu1, u1〉. Then, according to (2.1), it is easy to check that

〈φi, uj+1〉 = 0, for 0 ≤ j < i ≤ n. (2.4)

Moreover, (2.4) yields
〈φi, Biu1〉 = ‖φi‖2. (2.5)

Since (2.4) holds, we can take φi as a trial vector in the Rayleigh–Ritz ratio and get

μi+1 ≤ 〈Aφi, φi〉
〈φi, φi〉 . (2.6)

It follows from (2.4) and (2.5) that

〈Aφi, φi〉 = 〈[A,Bi]u1, φ
i〉 + 〈BiAu1, φ

i〉 = 〈[A,Bi]u1, φ
i〉 + μ1‖φi‖2. (2.7)

Substituting (2.7) into (2.6), we obtain

(μi+1 − μ1)‖φi‖2 ≤ 〈[A,Bi]u1, φ
i〉. (2.8)

As we know, 〈·, ·〉 is taken to be linear in its first argument and conjugate linear in its second
argument. Since

〈[A,Bi]u1, u1〉 = 〈Biu1, Au1〉 − 〈BiAu1, u1〉 = 0,

we have
〈[A,Bi]u1, φ

i〉 = 〈[A,Bi]u1, Biu1〉. (2.9)

Hence, substituting (2.9) into (2.8), we get

(μi+1 − μ1)‖φi‖2 ≤ 〈[A,Bi]u1, Biu1〉. (2.10)

Since
ai〈Tiu1, u1〉 = −〈Biu1, u1〉〈Tiu1, u1〉 = −ai〈Tiu1, u1〉,

we obtain
Re ai〈Tiu1, u1〉 = 0. (2.11)

Moreover, we have

2Re〈TiBiu1, u1〉 = 〈TiBiu1, u1〉 + 〈u1, TiBiu1〉 = 〈[Ti, Bi]u1, u1〉. (2.12)

Hence, taking the real parts in both sides of the following equality

−2〈Tiu1, φ
i〉 = 2〈u1, TiBiu1〉 + 2ai〈Tiu1, u1〉,

and utilizing (2.11) and (2.12), we obtain

〈[Ti, Bi]u1, u1〉 = −2Re〈φi, Tiu1〉. (2.13)

Multiplying both sides of (2.13) by (μi+1 − μ1)
1
2 and using (2.10), we deduce

(μi+1 − μ1)
1
2 〈[Ti, Bi]u1, u1〉 = −2(μi+1 − μ1)

1
2 Re〈φi, Tiu1〉

≤ δ(μi+1 − μ1)‖φi‖2 +
1
δ
‖Tiu1‖2

≤ δ〈[A,Bi]u1, Biu1〉 +
1
δ
‖Tiu1‖2, (2.14)
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where δ is a positive constant. Taking sum on i from 1 to n in (2.14), we have

δ2
n∑

i=1

〈[A,Bi]u1, Biu1〉 − δ
n∑

i=1

(μi+1 − μ1)
1
2 〈[Ti, Bi]u1, u1〉 +

n∑

i=1

‖Tiu1‖2 ≥ 0. (2.15)

The left-hand side of (2.15) is a quadratic polynomial of δ. From (2.8) and (2.9), we know
that 〈[A,Bi]u1, Biu1〉 ≥ 0 for i = 1, . . . , n. Therefore, we know that its discriminant must be
nonpositive. This yields (2.2). �

3 The Biharmonic Operator on Riemannian Manifolds Admitting Some Special
Functions

In this section, we obtain some universal inequalities for lower order eigenvalues of the bihar-
monic operator on manifolds admitting some special functions.

Theorem 3.1 Let M be an n-dimensional complete Riemannian manifold. Denote by Γi the
i-th eigenvalue of the clamped plate problem on a bounded domain Ω of M .

(i) Suppose that M admits a spherical eigenmap ϕ. Namely, the components ϕ1, . . . , ϕm+1

of map ϕ : M → S
m(1) are all eigenfuctions corresponding to the same eigenvalue λ of the

Laplacian on M , where S
m(1) is an m-dimensional unite sphere. Then we have
n∑

i=1

(Γi+1 − Γ1)
1
2 ≤ n

[(
λ+ 6Γ

1
2
1

)(
λ+ 4Γ

1
2
1

)] 1
2 (3.1)

and
n∑

i=1

[
(Γi+1 − Γ1)

1
2 − 5Γ

1
2
1

] ≤ nλ. (3.2)

(ii) If there exist m functions fr : M → R such that (1.11) holds, then
m∑

r=1

(Γr+1 − Γ1)
1
2 ≤ 2(2m+ 4)

1
2 Γ

1
2
1 . (3.3)

Proof (i) Since ϕ1, . . . , ϕm+1 are the components of an eigenmap, it holds
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−Δϕα = λϕα,
m+1∑

α=1

|∇ϕα|2 = λ,

m+1∑

α=1

ϕ2
α = 1.

(3.4)

In order to make use of Theorem 2.1, we construct some functions satisfying (2.1) by using
{ϕα}m+1

α=1 . We consider an (m+1)×(m+1) matrix Q =
( ∫

Ω
ϕαu1uβ+1

)

(m+1)×(m+1)
. According

to the QR-factorization theorem, we know that there exists an orthogonal (m + 1) × (m + 1)
matrix P =

(
pαβ

)

(m+1)×(m+1)
such that U = PQ is an upper triangle matrix. Namely, we have

m+1∑

γ=1

pαγ

∫

Ω

ϕγu1uβ+1 = 0, for 1 ≤ β < α ≤ m+ 1.

Define functions ψα by

ψα =
m+1∑

γ=1

pαγϕγ .
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Thus we infer ∫

Ω

ψαu1uβ+1 = 0, for 1 ≤ β < α ≤ m+ 1. (3.5)

Moreover, because P is an orthogonal matrix, it follows from (3.4) that
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−Δψα = λψα,
m+1∑

α=1

|∇ψα|2 = λ,

m+1∑

α=1

ψ2
α = 1.

(3.6)

According to (3.5), taking A = Δ2, Bα = ψα and Tα =
[
Δ, ψα

]
in Theorem 2.1, we derive

m+1∑

α=1

(Γα+1 − Γ1)
1
2 〈[[Δ, ψα], ψα]u1, u1〉

≤ 2
{ m+1∑

α=1

〈[Δ2, ψα]u1, ψαu1〉
m+1∑

α=1

‖[Δ, ψα]u1‖2

} 1
2

. (3.7)

Now we need to calculate and estimate both sides of (3.7). A straightforward calculation
gives

〈[Δ2, ψα]u1, ψαu1〉

=
∫

Ω

u1ψα[u1Δ2ψα + 2ΔψαΔu1 + 2〈∇ψα,∇Δu1〉 + 2〈∇Δψα,∇u1〉

+ 2Δ〈∇ψα,∇u1〉]

=
∫

Ω

[
u2

1(Δψα)2 + 4u1Δψα〈∇ψα,∇u1〉 + 4〈∇ψα,∇u1〉2 − 2|∇ψα|2u1Δu1

]
. (3.8)

Moreover, using the Cauchy–Schwarz inequality, one gets
∫

Ω

|∇u1|2 = −
∫

Ω

u1Δu1 ≤
(∫

Ω

u2
1

) 1
2
[ ∫

Ω

(−Δu1)2
] 1

2

= Γ
1
2
1 . (3.9)

Then it follows from (3.6), (3.8) and (3.9) that

m+1∑

α=1

〈[Δ2, ψα]u1, ψαu1〉 = λ2

∫

Ω

u2
1 + 4

∫

Ω

m+1∑

α=1

〈∇ψα,∇u1〉2 − 2λ
∫

Ω

u1Δu1

≤ λ2 + 4
∫

Ω

m+1∑

α=1

|∇ψα|2|∇u1|2 − 2λ
∫

Ω

u1Δu1

≤ λ2 + 6λΓ
1
2
1 . (3.10)

At the same time, it follows from (3.6) and (3.9) that

m+1∑

α=1

‖[Δ, ψα

]
u1‖2 =

∫

Ω

m+1∑

α=1

[
u2

1(Δψα)2 + 4〈∇ψα,∇u1〉2 + 4u1Δψα〈∇ψα,∇u1〉
]

≤ λ2 + 4λΓ
1
2
1 . (3.11)
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On the other hand, according to the definition of the commutator, it holds

〈[[Δ, ψα], ψα]u1, u1〉

=
∫

Ω

u1

[
Δ(ψ2

αu1) − 2ψαΔ(ψαu1) + ψ2
αΔu1

]

=
∫

Ω

{
2u1Δ(ψ2

αu1) − 2u1ψα

[
ψαΔu1 + 2〈∇ψα,∇u1〉 + u1Δψα

]}

= −2
∫

Ω

[
u1ψα〈∇ψα,∇u1〉 + u2

1ψαΔψα

]

= 2
∫

Ω

u2
1|∇ψα|2. (3.12)

Moreover, since
n∑

j=1

|∇ψj |2 ≤
m+1∑

α=1

|∇ψα|2 = λ,

we observe that
|∇ψj |2 ≤ λ

n
, for j = 1, . . . , n. (3.13)

Therefore, making use of (3.13), we can deduce
m+1∑

α=1

(Γα+1 − Γ1)
1
2 |∇ψα|2

≥
n∑

i=1

(Γi+1 − Γ1)
1
2 |∇ψi|2 + (Γn+1 − Γ1)

1
2

m+1∑

k=n+1

|∇ψk|2

=
n∑

i=1

(Γi+1 − Γ1)
1
2 |∇ψi|2 + (Γn+1 − Γ1)

1
2

n∑

j=1

(
λ

n
− |∇ψj |2

)

≥
n∑

i=1

(Γi+1 − Γ1)
1
2 |∇ψi|2 +

n∑

j=1

(Γj+1 − Γ1)
1
2

(
λ

n
− |∇ψj |2

)

=
λ

n

n∑

i=1

(Γi+1 − Γ1)
1
2 . (3.14)

Combining (3.12) and (3.14), we obtain
m+1∑

α=1

(Γα+1 − Γ1)
1
2 〈[[Δ, ψα], ψα]u1, u1〉 = 2

m+1∑

α=1

(Γα+1 − Γ1)
1
2

∫

Ω

u2
1|∇ψα|2

≥ 2λ
n

n∑

i=1

(Γi+1 − Γ1)
1
2 . (3.15)

Substituting (3.10), (3.11) and (3.15) into (3.7), we can infer (3.1).

From
[
(λ+ 6Γ

1
2
1 )(λ+ 4Γ

1
2
1 )

] 1
2 ≤ λ+ 5Γ

1
2
1 , we know that (3.2) is true.

(ii) Similar to the proof of (i), using the QR-factorization theorem, we can construct func-
tions {hr}m

r=1 by using {fr}m
r=1, such that hr satisfy
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

Ω

hru1ut+1 = 0, 1 ≤ t < r ≤ m,

〈∇hr,∇hs〉 = δrs,

Δhr = 0.

(3.16)
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Therefore, taking A = Δ2, Br = hr and Tr =
[
Δ, hr

]
in Theorem 2.1, we get

m∑

r=1

(Γr+1 − Γ1)
1
2 〈[[Δ, hr], hr]u1, u1〉

≤ 2
{ m∑

r=1

〈[Δ2, hr]u1, hru1〉
m∑

r=1

‖[Δ, hr]u1‖2

} 1
2

. (3.17)

According to (3.16), {∇hr}m
r=1 is a set of orthonormal vector fields. Hence, we have

m∑

r=1

〈∇hr,∇u1〉2 ≤ |∇u1|2. (3.18)

Using (3.9), (3.16) and (3.18), we obtain
m∑

r=1

〈[Δ2, hr]u1, hru1〉

=
∫

Ω

m∑

r=1

[
u2

1(Δhr)2 + 4u1Δhr〈∇hr,∇u1〉 + 4〈∇hr,∇u1〉2 − 2|∇hr|2u1Δu1

]

=
∫

Ω

m∑

r=1

[
4〈∇hr,∇u1〉2 − 2|∇hr|2u1Δu1

]

≤ (2m+ 4)
∫

Ω

|∇u1|2

≤ (2m+ 4)Γ
1
2
1 (3.19)

and
m∑

r=1

‖[Δ, hr

]
u1‖2 =

∫

Ω

m∑

r=1

[
u2

1(Δhr)2 + 4〈∇hr,∇u1〉2 + 4u1Δhr〈∇hr,∇u1〉
]

≤ 4Γ
1
2
1 . (3.20)

Moreover, according to (3.12) and (3.16), the term on the left-hand side of (3.17) is

〈[[Δ, hr], hr]u1, u1〉 = 2
∫

Ω

u2
1|∇hr|2 = 2. (3.21)

Substituting (3.19)–(3.21) into (3.17), we derive (3.3). �

4 The Poly-Laplacian with Any Order on the Euclidean Space

In this section, we obtain a universal inequality for problem (1.1). Moreover, it covers (1.7)
of [8] when l = 2.

Theorem 4.1 Let Ω be a bounded domain in R
n. Denote by λi the i-th eigenvalue of prob-

lem (1.1). Then we have
n∑

i=1

(λi+1 − λ1)
1
2 ≤ [

4l(n+ 2l − 2)
] 1

2λ
1
2
1 . (4.1)

Proof Similar to the proof of Theorem 3.1, by utilizing the QR-factorization theorem, one can
prove that there exists a set of Cartesian coordinate system (x1, . . . , xn) of R

n such that the
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following orthogonality conditions are satisfied:
∫

Ω

xiu1uj+1 = 0 for 1 ≤ j < i ≤ n. (4.2)

Namely, Bi = xi (i = 1, . . . , n) satisfy (2.1). Therefore, taking A = (−Δ)l, Bi = xi and
Ti = ∂

∂xi
in Theorem 2.1, we have

n∑

i=1

(μi+1 − μ1)
1
2

〈[
∂

∂xi
, xi

]

u1, u1

〉

≤ 2
{ n∑

i=1

〈[(−Δ)l, xi]u1, xiu1〉
n∑

i=1

∥
∥
∥
∥
∂

∂xi
u1

∥
∥
∥
∥

2} 1
2

. (4.3)

Utilizing ∫

Ω

|∇ku1|2 ≤ λ
k
l
1 (4.4)

(cf. [7]) and
(−Δ)l(xiu1) = xi(−Δ)lu1 − 2l∇(−Δ)lu1 · ∇xi,

we have
n∑

i=1

〈[(−Δ)l, xi]u1, xiu1〉

= −2l
n∑

i=1

∫

Ω

xiu1∇(−Δ)lu1 · ∇xi

= l

n∑

i=1

∫

Ω

u1(−Δ)l−1u1 − 2l(l − 1)
n∑

i=1

∫

Ω

(−Δ)l−2u1∇xi · ∇(∇u1 · ∇xi)

= l

n∑

i=1

∫

Ω

|∇l−1u1|2 − 2l(l − 1)
∫

Ω

(−Δ)l−2u1Δu1

= l(n+ 2l − 2)
∫

Ω

|∇l−1u1|2

≤ l(n+ 2l − 2)λ
l−1

l
1 . (4.5)

At the same time, it is not difficult to get
〈[

∂

∂xi
, xi

]

u1, u1

〉

= 1 (4.6)

and
n∑

i=1

∥
∥
∥
∥
∂

∂xi
u1

∥
∥
∥
∥

2

=
∫

Ω

|∇u1|2 ≤ λ
1
l
1 . (4.7)

Substituting (4.5)–(4.7) into (4.3), we obtain (4.1). �
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