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1 Introduction

Wave propagation in nonlinear periodic lattices is associated with a host of exciting phenomena
that have no counterpart whatsoever in bulk media. Perhaps, the most intriguing entities that
can exist in such systems are discrete self-localized state — better known as discrete solitions.
By their very nature, these intrinsically localized models represent collective excitations of the
chain as a whole, and are the outcome of the balance between nonlinear and linear coupling
effects [8]. One of the simplest lattice models, which deserves special attention, is represented
by Discrete Nonlinear Schrödinger (DNLS for short) equations [9]. In the past decade, the
existence of discrete solitons of the DNLS equations has drawn a great deal of interest. To
mention a few, see [1–3, 7, 14, 16]. Among the methods used are the principle of anticontinuity
[2, 16], variational methods [1, 3], centre manifold reduction [14], and Nehari manifold approach
[18]. However, most of the existing literature is devoted to the DNLS equations with constant
coefficients. Results on such DNLS equations have been summarized in the reviews [4, 9, 10].
And the experimental observations of two-dimensional discrete solitons have been reported in
[6, 11, 12, 15].
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Recently, the DNLS equations with periodic coefficients have been considered in the physics
literature, for example, [22]. Moreover, Gorbach and Johansson [13] reported results on nu-
merical simulation of discrete gap solitons (a special discrete soliton which is defined later) in
a particular periodic DNLS equation. Nonlinearity has a crucial impact on the properties of
DNLS equations, and the most popular nonlinearity is the so-called Kerr, or cubic, nonlinearity.
In recent years, one can see a growing interest to the wide class of superlinear nonlinearities
[7, 9].

Assume that T is a positive integer. In this paper, we will consider the following periodic
nonlinear difference equation

Lun − ωun = fn(un), n ∈ Z, (1.1)

where fn(u) depends T -periodically on n, i.e., fn+T (u) = fn(u) for n ∈ Z, and is continuous in
u with superlinear nonlinearity, L is a Jacobi operator (see [23]) given by

Lun = anun+1 + an−1un−1 + bnun,

where {an}, {bn} are real valued T -periodic sequences.
Since fn(0) = 0, un ≡ 0 is a solution of (1.1), which is called the trivial solution. As usual,

we say that a solution u = {un} of (1.1) is homoclinic (to 0) if

lim
|n|→∞

un = 0. (1.2)

In addition, if un �≡ 0, then u is called a nontrivial homoclinic solution. We are interested in
the existence of the nontrivial homoclinic solutions for (1.1). This problem appears when we
look for the discrete solitons of the periodic DNLS equation

iψ̇n = −Δψn + εnψn − fn(ψn), n ∈ Z, (1.3)

where Δψn = ψn+1 + ψn−1 − 2ψn is the discrete Laplacian in one spatial dimension, the given
sequence {εn} of real numbers and the sequence {fn(·)} of functions from C into C, are assumed
to be T -periodic in n, i.e., εn+T = εn and fn+T = fn. Moreover, the nonlinearity fn is supposed
to be gauge invariant, i.e.,

fn(eiθu) = eiθfn(u), θ ∈ R,

and in addition, fn(u) ≥ 0 for u ≥ 0. Since solitons are spatially localized time-periodic
solutions and decay to zero at infinity. Thus ψn has the form

ψn = une−iωt,

and
lim

|n|→∞
ψn = 0,

where {un} is a real valued sequence and ω ∈ R is the temporal frequency. Then (1.3) becomes

−Δun + εnun − ωun = fn(un), n ∈ Z (1.4)

and (1.2) holds. Therefore, the problem on the existence of solitons of the DNLS equation (1.3)
has been reduced to that on the existence of homoclinic solutions of (1.4), which is a special
case of (1.1) with an ≡ −1 and bn = 2 + εn.
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Since the operator L is a bounded and self-adjoint operator in the space l2 of two-sided
infinite sequences, we consider (1.1) as a nonlinear equation in l2 with (1.2) being satisfied
automatically. The spectrum σ(L) of L has a band structure, i.e., σ(L) is a union of a finite
number of closed intervals [23]. Thus the complement R\σ(L) consists of a finite number of
open intervals called spectral gaps and two of them are semi-infinite. The solitons of (1.3)
with the temporal frequency ω belonging to a spectral gap, in particular to a finite gap, are of
considerable importance. Such solitons are called gap solitons.

We fix a spectral gap and denote it by (α, β). When fn(u) = χnu
3 where {χn} is a

positive T -periodic sequence, (1.1) was considered in [18, 19]. It was shown that, if ω ∈ (α, β)
and β �= +∞, then (1.1) has a nontrivial solution in l2. As an extension of the cubic form
nonlinearity, Pankov also considered (1.1) in [19] when the nonlinearity fn satisfies the following
superlinear conditions.

(i) There exist p > 2 and c > 0 such that

0 ≤ fn(u) ≤ c|u|p−1

near u = 0.
(ii) There exists ν > 2 such that

0 < νFn(u) ≤ fn(u)u, u �= 0,

where Fn(u) is the primitive function of fn(u) given by

Fn(u) =
∫ u

0

fn(s)ds.

As we know, the condition (ii) is often called as Ambrosetti–Rabinowitz superlinear condi-
tion [25], which played an important role in the existence of homoclinic solutions of (1.1). The
aim of this paper is to establish the existence of nontrivial solutions of (1.1) in l2 under the
assumptions that fn satisfies more general superlinear conditions than (i) and (ii). In fact, we
have the following theorem.

Theorem 1.1 Assume that ω ∈ (α, β), fn(u) is continuous in u, fn+T (u) = fn(u) for any
n ∈ Z and u ∈ R, fn(u) = o(u) as u→ 0. And for each n ∈ Z, the following conditions hold.

(H1) fn(u)u > 0 for u �= 0 and lim|u|→∞ fn(u)/u = +∞.
(H2) fn(u)u− 2Fn(u) > 0 for u �= 0, fn(u)u− 2Fn(u) → ∞ as |u| → +∞, and

lim sup
u→0

f2
n(u)

fn(u)u− 2Fn(u)
= pn <∞.

If β �= +∞, then equation (1.1) has at least a nontrivial solution u in l2. Moreover, the solution
decays exponentially at infinity. That is, there exist two positive constants C and τ such that

|un| ≤ Ce−τ |n|, n ∈ Z. (1.5)

Theorem 1.1 gives a sufficient condition on the existence of nontrivial solutions of (1.1) in l2.
We notice that, with part of these conditions being violated, (1.1) has no nontrivial solutions
in l2. In fact, we have the following proposition.

Proposition 1.2 Assume that ω ∈ (α, β), fn satisfies the conditions in Theorem 1.1. If
β = +∞, then equation (1.1) has no nontrivial solutions in l2.



1812 Zhou Z. and Yu J. S.

Remark 1.3 It is easy to see that the condition (i) implies fn(u) = o(u) as u → 0, and
Ambrosetti–Rabinowitz superlinear condition (ii) implies F (u) ≥ c|u|ν for |u| ≥ 1 where c is a
positive constant, so lim|u|→+∞ fn(u)/u = +∞. Moreover,

0 ≤ f2
n(u)

fn(u)u− 2Fn(u)
≤ f2

n(u)
fn(u)u− 2

ν fn(u)u
=

ν

ν − 2
fn(u)
u

→ 0 as u→ 0.

Thus conditions (i) and (ii) imply that (H1), (H2) hold with pn = 0, and Theorem 1.1 improved
Theorems 5.1 and 7.1 in [19].

Example 1.4 Let {cn} be a positive T -periodic sequence, and

fn(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, u = 0,
cnu

1 − ln |u| , 0 < |u| ≤ 1,

cnu(1 + ln |u|), |u| > 1.

Then fn satisfies all conditions of Theorem 1.1 with

pn = lim
u→0

f2
n(u)

fn(u)u− 2Fn(u)
= lim

u→0

2fn(u)f ′n(u)
f ′n(u)u− fn(u)

= lim
u→0

2cn(2 − ln |u|)
1 − ln |u| = 2cn.

Clearly, fn does not satisfy (i) and (ii).

For the case when fn is saturable, i.e., asymptotically linear, we refer to [20, 27, 28] for the
existence of solutions of (1.1) in l2.

The main idea in this paper is an application of linking theorem combined with an ap-
proximation technique. This idea has been employed in [19]. We mention that critical point
theory is a powerful tool to deal with the periodic solutions and the boundary value problems
of differential equations [17, 21, 24] and is used to study periodic solutions and boundary value
problems of discrete systems in recent years [26, 29, 30].

The remaining of this paper is organized as follows. First, in Section 2, we establish the vari-
ational framework associated with (1.1) and transfer the problem of the existence of homoclinic
solutions of (1.1) into that of the existence of critical points of the corresponding functional.
We also recall some basic results from critical point theory. Then, in Section 3, by establishing
some technical lemmas, we give the proofs of the main results.

2 Preliminaries

In this section, we first establish the variational framework associated with (1.1).
On the Hilbert space E = l2, we consider the functional

J(u) =
1
2
(Lu− ωu, u) −

+∞∑
n=−∞

Fn(u),

where (·, ·) is the inner product in l2 defined by

(u, v) =
+∞∑

n=−∞
unvn, u, v ∈ E,

and the norm ‖ · ‖ is given by

‖u‖ =
( +∞∑

n=−∞
u2

n

) 1
2

, u ∈ E.
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Then J ∈ C1(E,R) and

〈J ′(u), v〉 = (Lu− ωu, v) −
+∞∑

n=−∞
fn(un)vn, u, v ∈ E. (2.1)

Equation (2.1) implies that (1.1) is the corresponding Euler–Lagrange equation for J . Therefore,
we have reduced the problem of finding a nontrivial solution of (1.1) in l2 to that of seeking a
nonzero critical point of the functional J on E.

Let S be the set of all two-sided sequences, that is,

S = {u = {un} |un ∈ R, n ∈ Z}.
Then S is a vector space with au+ bv = {aun + bvn} for u, v ∈ S, a, b ∈ R.

For any fixed positive integer k, we define the subspace Ek of S as

Ek = {u = {un} ∈ S |un+2kT = un, n ∈ Z}.
Obviously, Ek is isomorphic to R

2kT and hence Ek can be equipped with the inner product
(·, ·)k and norm ‖ · ‖k as

(u, v)k =
kT−1∑

n=−kT

unvn, u, v ∈ Ek

and

‖u‖k =
( kT−1∑

n=−kT

u2
n

) 1
2

, u ∈ Ek,

respectively. We also define a norm ‖ · ‖k∞ in Ek by

‖u‖k∞ = max{|un| : −kT ≤ n ≤ kT − 1}, u ∈ Ek.

Consider the functional Jk on Ek defined by

Jk(u) =
1
2
(Lu− ωu, u)k −

kT−1∑
n=−kT

Fn(un). (2.2)

Then

〈J ′
k(u), v〉 = (Lu− ωu, v)k −

kT−1∑
n=−kT

fn(un)vn, u, v ∈ Ek. (2.3)

Since the coefficients of the operator L are T -periodic, it is easy to see that the critical points
of Jk in Ek are exactly 2kT -periodic solutions of equation (1.1).

Let Lk be the operator L acting in Ek. It follows from the spectral theory of Jacobi
operators [23] that σ(Lk) ⊂ σ(L) and hence ‖Lk‖ ≤ ‖L‖.

Let E+
k and E−

k be the positive and negative spectral subspaces of the operator Lk − ω

in Ek, respectively. Similarly, we denote E+ and E− as the positive and negative spectral
subspaces of L−ω in E, respectively. Let δ be the distance from ω to the spectrum σ(L), that
is,

δ = min{ω − α, β − ω}.
Then, we have

±(Lu− ωu, u) ≥ δ‖u‖2, u ∈ E± (2.4)
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and
±(Lku− ωu, u)k ≥ δ‖u‖2

k, u ∈ E±
k . (2.5)

In order to obtain the existence of critical points of Jk on Ek, for the convenience of the
readers, we cite some basic notations and some known results from critical point theory.

Let H be a Hilbert space and C1(H,R) denote the set of functionals that are Fréchet
differentiable and their Fréchet derivatives are continuous on H.

Definition 2.1 Let J ∈ C1(H,R). A sequence {xj} ⊂ H is called a Palais–Smale sequence
(P.S. sequence for short) for J if {J(xj)} is bounded and J ′(xj) → 0 as j → ∞. We say
that J satisfies the Palais–Smale condition (P.S. condition for short) if any P.S. sequence for J
possesses a convergent subsequence.

Let Br be the open ball in H with radius r and center 0 and let ∂Br denote its boundary.
The following lemma is taken from [21] and will play an important role in the proofs of our
main results.

Lemma 2.2 (Linking theorem) Let H be a real Hilbert space and H = H1 ⊕H2, where H1 is
a finite-dimensional subspace of H. Assume that J ∈ C1(H,R) satisfies the P.S. condition and
the following two conditions.

(J1) There exist constants a > 0 and ρ > 0 such that J |∂Bρ∩H2 ≥ a.
(J2) There exist an e ∈ ∂B1 ∩ H2 and a constant R0 > ρ such that J |∂Q ≤ 0, where

Q � (B̄R0 ∩H1) ⊕ {re|0 < r < R0}.
Then J possesses a critical value c ≥ a. Moreover, c can be characterized as

c = inf
h∈Γ

max
x∈Q̄

J(h(x)),

where Γ = {h ∈ C(Q̄,H) : h|∂Q = id∂Q} and id∂Q is the identity operator on ∂Q.

3 Proofs of Main Results

In this section, we will give proofs of Theorem 1.1 and Proposition 1.2. In order to complete
the proof of Theorem 1.1, we need to establish some lemmas.

Lemma 3.1 Under the assumptions of Theorem 1.1, the functional Jk satisfies the P.S. con-
dition.

Proof Let {u(j)} ⊂ Ek be a P.S. sequence for Jk. We need to show that {u(j)} has a convergent
subsequence. Since Ek is finite dimensional, it suffices to show that {‖u(j)‖k} is bounded.
Choose M > 0 such that |Jk(u(j))| ≤ M for j ∈ N. By (H1), there exists a constant R such
that

Fn(u) ≥ 1
2
(‖L− ω‖ + 1)u2, n ∈ N, |u| ≥ R. (3.1)

Let

Q
(j)
k = {n ∈ Z : |u(j)

n | ≥ R,−kT ≤ n ≤ kT − 1},
R

(j)
k = {n ∈ Z : |u(j)

n | < R,−kT ≤ n ≤ kT − 1}.
Then by (2.2), we have

kT−1∑
n=−kT

Fn(u(j)
n ) =

1
2
(Lu(j) − ωu(j), u(j))k − Jk(u(j)) ≤ 1

2
‖Lk − ω‖‖u(j)‖2

k +M. (3.2)
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Since
kT−1∑

n=−kT

Fn(u(j)
n ) =

∑
n∈Q

(j)
k

Fn(u(j)
n ) +

∑
n∈R

(j)
k

Fn(u(j)
n )

≥ 1
2
(‖L− ω‖ + 1)

∑
n∈Q

(j)
k

(u(j)
n )2 +

∑
n∈R

(j)
k

Fn(u(j)
n )

=
1
2
(‖L− ω‖ + 1)

kT−1∑
n=−kT

(u(j)
n )2

+
∑

n∈R
(j)
k

[
Fn(u(j)

n ) − 1
2
(‖L− ω‖ + 1)(u(j)

n )2
]

≥ 1
2
(‖L− ω‖ + 1)‖u(j)‖2

k + 2kTm, (3.3)

where

m = min
{
Fn(u) − 1

2
(‖L− ω‖ + 1)u2 : n ∈ Z, |u| ≤ R

}
.

By the fact that fn(u) = o(u) as u → 0, and the periodic behavior of fn(u) in n, we see that
m < 0. Noticing that ‖Lk − ω‖ ≤ ‖L− ω‖, (3.2) and (3.3) imply

‖u(j)‖2
k ≤ 2(M − 2kTm).

This implies that {‖u(j)‖k} is bounded and the proof is completed. �

Lemma 3.2 Under the assumptions of Theorem 1.1, there exists k0 ∈ N such that Jk has at
least a nonzero critical point u(k) in Ek for each k ≥ k0. Moreover, 0 < Jk(u(k)) ≤ M0 for
some constant M0 independent of k.

Proof Let P+ be the spectral projector in E corresponding to σ(L)∩ [β,+∞) and P+
k be the

spectral projector in Ek corresponding to σ(Lk) ∩ [β,+∞). Then P+ and P+
k have the same

form (see Bruno et al. [5] or Pankov [19])

P+un =
+∞∑

n=−∞
K(m,n)um and P+

k un =
+∞∑

n=−∞
K(m,n)um, (3.4)

where K(m,n) satisfies
|K(m,n)| ≤ Ce−μ|m−n|, m, n ∈ Z

for some positive constants C and μ.
Let e = {en} ∈ E+ be an arbitrary unit vector and ε = min{1/8, δ(64‖L − ω‖)−1}. Then

there exists a large positive integer N such that

8C
√

2TNe−NT < ε(1 − e−μ) and
NT−1∑

n=−NT

e2n >
(
1 − ε

2

)2

. (3.5)

Let k0 = 2N . For k ≥ k0, set

e(k) = ‖P+
k Ske‖−1

k P+
k Ske ∈ E+

k ,

where Sk is the “periodization” operator, that is, Sk : E → Ek such that

Sken = en, −kT ≤ n ≤ kT − 1.
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In the following, we will use Lemma 2.2 to finish the proof.
Let H = Ek, H1 = E−

k , and H2 = E+
k . Since β �= +∞, H2 �= {0}. By Lemma 3.1, Jk

satisfies the P.S. condition.
First, we show that Jk satisfies the condition (J1) in Lemma 2.2. In fact, since fn(u) = o(u)

as u→ 0, there exists a positive constant ρ such that

0 ≤ Fn(u) ≤ 1
4
δu2, n ∈ Z, |u| ≤ ρ. (3.6)

Then, for u ∈ H2 with ‖u‖k ≤ ρ,

Jk(u) =
1
2
((Lk − ω)u, u)k −

kT−1∑
n=−kT

Fn(un)

≥ 1
2
δ‖u‖2

k −
kT−1∑

n=−kT

1
4
δu2

n

=
1
4
δ‖u‖2

k.

Take a = 1
4δρ

2. Then J |∂Bρ∩H2 ≥ a and hence Jk satisfies the condition (J1) of Lemma 2.2.
Next we prove that J satisfies the condition (J2) of Lemma 2.2. It follows from (3.4) that

en =
+∞∑

m=−∞
K(m,n)em and P+

k Sken =
+∞∑

m=−∞
K(m,n)Skem.

Then from (3.5), for −NT ≤ n ≤ NT − 1, we have

|P+
k Sken − en| =

∣∣∣∣
∑

{m≥kT}∪{m≤−kT−1}
K(m,n)(Skem − em)

∣∣∣∣
≤ 2

∑
|m|≥kT

|K(m,n)|

≤ 2C
∑

|m|≥kT

e−μ|m−n|

≤ 4C
+∞∑

m=NT

e−μm

=
4Ce−NT

1 − e−μ

<
ε

2
√

2NT
.

Let
WN = {n ∈ Z,−NT ≤ n ≤ NT − 1}, Wk = {n ∈ Z,−kT ≤ n ≤ kT − 1}.

Then
( ∑

n∈WN

(P+
k Sken)2

) 1
2

≥
( ∑

n∈WN

e2n

) 1
2

−
( ∑

n∈WN

(P+
k Sken − en)2

) 1
2

≥ 1 − ε

2
−
√

2NT · ε

2
√

2NT
= 1 − ε.
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Since ‖P+
k Ske‖k ≤ ‖Ske‖k ≤ 1, we see that

∑
n∈WN

(e(k)
n )2 ≥

∑
n∈WN

(P+
k Sken)2 ≥ (1 − ε)2 ≥

(
7
8

)2

>
3
4
, (3.7)

and ∑
n∈Wk\WN

(e(k)
n )2 = 1 −

∑
n∈WN

(e(k)
n )2 ≤ 1 − (1 − ε)2 ≤ 2ε ≤ δ

32‖L− ω‖ . (3.8)

For any z ∈ H1 and r > 0, let u = z + re(k). Noticing that (z, e(k))k = 0, we have
∑

n∈WN

u2
n =

∑
n∈WN

(z2
n + 2rzne

(k)
n + r2(e(k)

n )2)

≥
∑

n∈WN

2rzne
(k)
n + r2

∑
n∈WN

(e(k)
n )2

= −
∑

n∈Wk\WN

2rzne
(k)
n + r2

∑
n∈WN

(e(k)
n )2

≥ −
∑

n∈Wk\WN

δ

16‖L− ω‖z
2
n −

∑
n∈Wk\WN

16‖L− ω‖r2
δ

(e(k)
n )2 +

3
4
r2

≥ − δ

16‖L− ω‖‖z‖
2
k − 16‖L− ω‖r2

δ

δ

32‖L− ω‖ +
3
4
r2

= − δ

16‖L− ω‖‖z‖
2
k +

1
4
r2. (3.9)

By (H1), there exists a positive constant R1 such that

Fn(u) ≥ 4‖L− ω‖u2, n ∈ N, |u| ≥ R1.

Let
QN = {n ∈ Z : |un| ≥ R1,−NT ≤ n ≤ NT − 1},
RN = {n ∈ Z : |un| < R1,−NT ≤ n ≤ NT − 1},

and

m1 = min{Fn(u) − 4‖L− ω‖u2 : n ∈ Z, |u| ≤ R1}.

Notice the fact that fn(u) = o(u) as u → 0, and fn(u) is T -periodic in n, we see that
m1 < 0. By (3.9), we have

NT−1∑
n=−NT

Fn(un) =
∑

n∈QN

Fn(un) +
∑

n∈RN

Fn(un)

≥
∑

n∈QN

4‖L− ω‖u2
n +

∑
n∈RN

Fn(un)

= 4‖L− ω‖
∑

n∈WN

u2
n +

∑
n∈RN

(
Fn(un) − 4‖L− ω‖u2

n

)

≥ 4‖L− ω‖
(
− δ

16‖L− ω‖‖z‖
2
k +

1
4
r2

)
+ 2NTm1

= −δ
4
‖z‖2

k + ‖L− ω‖r2 + 2NTm1.
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This implies that

Jk(z + re(k)) =
1
2
((L− ω)u, u)k −

∑
n∈Wk

Fn(un)

≤ 1
2
((L− ω)z, z)k +

1
2
r2((L− ω)e(k), e(k))k −

∑
n∈WN

Fn(un)

≤ −1
2
δ‖z‖2

k +
1
2
‖L− ω‖r2

−
(
−δ

4
‖z‖2

k + ‖L− ω‖r2 + 2NTm1

)

= −1
4
δ‖z‖2

k − 1
2
‖L− ω‖r2 − 2NTm1. (3.10)

Since Jk(z) ≤ 0 for z ∈ H1, it follows from (3.10) that there exists some positive constant
R2 > ρ such that, for any u ∈ ∂Q, J(u) ≤ 0, where Q = (B̄R2 ∩H1)⊕ {re(k) : 0 < r < R2}. So
we have verified the condition (J2) of Lemma 2.2.

Now that we have verified all assumptions of Lemma 2.2, we know that Jk possesses a
critical value αk ≥ a, where

αk = inf
h∈Γ

max
u∈Q̄

J(h(u)) and Γ = {h ∈ C(Q̄,H) : h|∂Q̄ = id∂Q̄}.

A critical point u(k) of Jk corresponding to αk is nonzero as αk ≥ a > 0. It is also clear
from (3.10) that

Jk(u(k)) ≤M0 � −2NTm1. (3.11)

Obviously, M0 > 0 is independent of k. �

Lemma 3.3 There exist positive constants ξ and η such that

ξ ≤ ‖u(k)‖k∞ ≤ η (3.12)

holds for every critical point u(k) obtained by Lemma 3.2, of Jk in Ek with k ≥ k0, where k0 is
defined in Lemma 3.2.

Proof Let k ≥ k0. Since u(k) is a critical point of Jk, by (2.2), (2.3) and (3.11), we have

Jk(u(k)) =
kT−1∑

n=−kT

(
1
2
fn(u(k)

n )u(k)
n − Fn(u(k)

n )
)

≤M0. (3.13)

From (H2), there exists a positive constant η such that

1
2
fn(u)u− Fn(u) > M0, n ∈ Z, |u| > η,

then (3.13) implies that |u(k)
n | ≤ η for n ∈ Z, that is

‖u(k)‖k∞ ≤ η. (3.14)

On the other hand, let u(k) = u(k)+ + u(k)−, where u(k)+ ∈ E+
k and u(k)− ∈ E−

k . Then

δ‖u(k)+‖2
k ≤ ((L− ω)u(k), u(k)+) =

kT−1∑
n=−kT

fn(u(k)
n )u(k)+

n (3.15)
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and

δ‖u(k)−‖2
k ≤ −((L− ω)u(k), u(k)−) = −

kT−1∑
n=−kT

fn(u(k)
n )u(k)−

n . (3.16)

Since limu→0 fn(u)/u = 0, then there exists a positive constant ξ such that

|fn(u)| ≤ δ

2
|u|, n ∈ Z, |u| ≤ ξ. (3.17)

We claim that
‖u(k)‖k∞ ≥ ξ. (3.18)

In fact, if (3.18) is not true, then by (3.17), |fn(u(k)
n )| ≤ (δ/2)|u(k)

n |. By adding (3.15) with (3.16),
we get

δ‖u(k)‖2
k ≤

kT−1∑
n=−kT

fn(u(k)
n )(u(k)+

n − u(k)−
n )

≤
( kT−1∑

n=−kT

f2
n(u(k)

n )
) 1

2
( kT−1∑

n=−kT

(u(k)+
n − u(k)−

n )2
) 1

2

≤ δ

2

( kT−1∑
n=−kT

(u(k)
n )2

) 1
2

(‖u(k)+‖2
k + ‖u(k)−‖2

k)
1
2

=
δ

2
‖u(k)‖2

k.

This is a contradiction and (3.18) holds. The proof is completed. �
Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let k0 be the integer obtained in Lemma 3.2. For every k ≥ k0, assume
that u(k) = {u(k)

n } ∈ Ek is a critical point obtained by Lemma 3.2. By Lemma 3.3, there exists
an nk ∈ Z such that

|u(k)
nk

| ≥ ξ. (3.19)

Notice that
anu

(k)
n+1 + an−1u

(k)
n−1 + (bn − ω)u(k)

n = fn(u(k)
n ), n ∈ Z. (3.20)

By the periodicity of the coefficients in (3.20), we see that {u(k)
n+T } is also a solution of (3.20).

Making some shifts if necessary, without loss of generality, we can assume that 0 ≤ nk ≤ T − 1
in (3.19). Moreover, passing to a subsequence of {u(k)} if necessary, we can also assume that
nk = n∗ for k ≥ k0 and some integer n∗ such that 0 ≤ n∗ ≤ T − 1. It follows from (3.12)
and (3.19) that we can choose a subsequence, still denoted by {u(k)}, such that

u(k)
n → vn as k → ∞ for n ∈ Z.

Then v = {vn} is a nonzero sequence as (3.19) implies |vn∗ | ≥ ξ. For each n ∈ Z, letting k → ∞
in (3.20) gives us

anvn+1 + an−1vn−1 + (bn − ω)vn = fn(vn),

that is, v = {vn} is a solution of (1.1). It remains to show that v = {vn} ∈ l2. By using (3.15)
and (3.16), we have

δ‖u(k)‖2
k ≤

( kT−1∑
n=−kT

f2
n(u(k)

n )
) 1

2

‖u(k)‖k.
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This implies that

‖u(k)‖2
k ≤ δ−2

kT−1∑
n=−kT

f2
n(u(k)

n ). (3.21)

From (H2), there exists a positive constant ζ such that

f2
n(u) ≤ ζ(fn(u)u− 2Fn(u)), n ∈ Z, |u| ≤ η. (3.22)

Therefore, from (3.21),

‖u(k)‖2
k ≤ δ−2

kT−1∑
n=−kT

ζ
(
fn(u(k)

n )u(k)
n − 2Fn(u(k)

n )
)

=
2ζ
δ2
Jk(u(k)) ≤ 2ζ

δ2
M0. (3.23)

For each s ∈ N, let k > max{s, k0}. Then it follows from (3.23) that
s∑

n=−s

(
u(k)

n

)2 ≤ ‖u(k)‖2
k ≤ 2ζ

δ2
M0.

Letting k → ∞ gives us
∑s

n=−s v
2
n ≤ 2ζδ−2M0. By the arbitrariness of s, we know that

v = {vn} ∈ l2.
Finally, similar to the proof of [19, Theorem 6.1], we show that v satisfies that (1.5).
In fact, for n ∈ Z, let

wn =

⎧⎨
⎩

−fn(vn)
vn

, if vn �= 0,

0, if vn = 0.

Then
L̃vn = ωvn, (3.24)

where
L̃vn = Lvn + wnvn.

Clearly, lim|n|→∞ wn = 0. Thus, the multiplication by wn is a compact operator in l2, which
implies that

σess(L̃) = σess(L),

where σess stands for the essential spectrum. (3.24) means that v = {vn} is an eigenfunction
that corresponds to the eigenvalue of finite multiplicity ω /∈ σess(L̃) of the operator L̃. (1.5)
follows from the standard theorem on exponential decay for such eigenfunctions (see [23]).

Now the proof of Theorem 1.1 is complete. �
Proof of Proposition 1.2 By way of contradiction, we assume that (1.1) has a nontrivial
solution u = {un} ∈ l2. Then u is a nonzero critical point of J , and

〈J ′(u), u〉 = ((L− ω)u, u) −
∞∑

n=−∞
fn(un)un = 0.

Since β = +∞, then E = E− and δ = ω − α. By (2.4) and (H1), the above equality implies
that

〈J ′(u), u〉 ≤ ((L− ω)u, u) ≤ −(ω − α)‖u‖2 < 0.

This is a contradiction and the proof is complete. �
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