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Abstract Recently, C.-C. Yang and I. Laine have investigated finite order entire solutions f of non-

linear differential-difference equations of the form fn + L(z, f) = h, where n ≥ 2 is an integer. In

particular, it is known that the equation f(z)2 + q(z)f(z + 1) = p(z), where p(z), q(z) are polynomials,

has no transcendental entire solutions of finite order. Assuming that Q(z) is also a polynomial and

c ∈ C, equations of the form f(z)n + q(z)eQ(z)f(z + c) = p(z) do posses finite order entire solutions. A

classification of these solutions in terms of growth and zero distribution will be given. In particular, it is

shown that any exponential polynomial solution must reduce to a rather specific form. This reasoning

relies on an earlier paper due to N. Steinmetz.

Keywords Convex hull, difference equation, entire solution, exponential polynomial, Nevanlinna

theory
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1 Introduction

In [1] Yang investigates transcendental finite order entire solutions f of nonlinear differential
equations of the form

L(f) − p(z)fn = h(z), (1.1)

where L(f) is a linear differential polynomial in f with polynomial coefficients, p(z) is a non-
vanishing polynomial, h(z) is entire, and n ≥ 4 an integer. In particular, it is proved in [1] that
f has to be unique, unless L(f) ≡ 0. Furthermore, if h has only a few distinct zeros in the
sense that N(r, 1/h) = o(T (r, h)), then (1.1) does not admit a transcendental entire solution f .
We recall that the order σ(f) and the hyper-order σ2(f) of a meromorphic f are given by

σ(f) = lim sup
r→∞

log T (r, f)
log r

and σ2(f) = lim sup
r→∞

log log T (r, f)
log r

,

while
λ(f) = lim sup

r→∞
log N(r, 1/f)

log r
and λ2(f) = lim sup

r→∞
log log N(r, 1/f)

log r

stand for the corresponding convergence exponents of zeros of f .
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In [2] the ideas of Yang are developed further and applied, for example, to meromorphic
solutions f of (1.1), where p(z), h(z) are now allowed to be meromorphic, and the coefficients
of L(f) are meromorphic functions of growth S(r, f). In particular, if f has only a few poles
in the sense that N(r, f) = S(r, f), then some conclusions about the uniqueness of f as well as
the exact form of (1.1) are made in [2].

Yang and Laine [3] then investigated finite order entire solutions f of nonlinear differential-
difference equations of the form

fn + L(z, f) = h(z), (1.2)

where L(z, f) is a linear differential-difference polynomial in f with meromorphic coefficients
of growth S(r, f), h(z) is meromorphic, and n ≥ 2 is an integer. In particular, it is shown in [3]
that the equation

f(z)2 + q(z)f(z + 1) = p(z), (1.3)

where p(z), q(z) are polynomials, admits no transcendental entire solutions of finite order.

The aim of this paper is to classify the finite order entire (meromorphic) solutions f of

f(z)n + q(z)eQ(z)f(z + c) = P (z), (1.4)

where q(z), Q(z), P (z) are polynomials, n ≥ 2 is an integer and c ∈ C \ {0}. Supposing that
f is a meromorphic solution of (1.4), we note that if z0 is a pole of f of multiplicity k ≥ 1,
then, by (1.4), z0 + c is a pole of f of multiplicity ≥ nk. Continuing inductively, we see that
zm = z0 + mc is a pole of f of multiplicity ≥ nmk. If n ≥ 2, then the hyper-exponent of
convergence λ2({zm}) of the sequence {zm} satisfies λ2({zm}) ≥ 1. Since λ2({zm}) ≤ σ2(f)
is true in general, we conclude that every meromorphic solution f of (1.4) with σ2(f) < 1 is
entire in the case n ≥ 2.

Entire finite order solutions of (1.4) do exist, while a solution does not have to be unique.
For example, f1(z) = ez + 1 and f2(z) = ez − 1 both solve

f(z)2 − 2ezf(z − log 2) = 1. (1.5)

Although we are interested in finite order entire solutions of (1.4), we note that (1.4) possesses
infinite order entire solutions also. For example, the function f(z) = eez

+ e−ez

solves f(z)2 −
f(z + log 2 + πi) = 2.

We will show that every entire finite order solution f of (1.4) satisfies σ(f) = deg(Q). Hence
it seems plausible that such an f could be an exponential polynomial of the form

f(z) = P1(z)eQ1(z) + · · · + Pk(z)eQk(z), (1.6)

where Pj ’s and Qj ’s are polynomials in z. It turns out that every solution f of the form (1.6)
reduces to a function that belongs to one of the following two classes of transcendental entire
functions:

Γ1 = {h = eα(z) + d : d ∈ C and α polynomial, α �= const.},
Γ0 = {h = eα(z) : α polynomial, α �= const.}.
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For example, the solutions f1, f2 of (1.5) belong to Γ1 \ Γ0. There are solutions in Γ0 also.
Indeed, the function f(z) = ez2

solves

f(z)2 − ez2−2z−1f(z + 1) = 0. (1.7)

We note that if f ∈ Γ1 \Γ0, then the second main theorem of Nevanlinna yields σ(f) = λ(f) =
deg(α), and hence f has infinitely many zeros. We state the findings in this paper as follows.

Theorem 1.1 Let n ≥ 2 be an integer, let c ∈ C\{0}, and let q(z), Q(z), P (z) be polynomials
such that Q(z) is not a constant and q(z) �≡ 0. Then we identify the finite order entire solutions
f of equation (1.4) as follows :

(a) Every solution f satisfies σ(f) = deg Q and is of mean type.

(b) Every solution f satisfies λ(f) = σ(f) if and only if P (z) �≡ 0.

(c) A solution f belongs to Γ0 if and only if P (z) ≡ 0. In particular, this is the case if
n ≥ 3.

(d) If a solution f belongs to Γ0 and if g is any other finite order entire solution to (1.4),
then f = ηg, where ηn−1 = 1.

(e) If f is an exponential polynomial solution of the form (1.6), then f ∈ Γ1. Moreover, if
f ∈ Γ1\Γ0, then σ(f) = 1.

The assumption n ≥ 2 in (a) is necessary since f(z) = ez is a solution of f(z)+f(z+πi) = 0.
If n ≥ 3, then (1.4) may possess more than one entire solution with finite order. For example,
the functions f1(z) = ez and f2(z) = −ez both solve f(z)3 − e2z−1f(z + 1) = 0. Solutions in
Γ1 \Γ0 and in Γ0 are possible, as is shown by means of (1.5) and (1.7), respectively. As for the
sharpness of (e), we note that if f ∈ Γ0, then σ(f) = 1 does not hold in general by (1.7).

The remainder of this paper is organized as follows. Section 2 contains auxiliary results
most of which can be found in the existing literature. Rather straightforward proofs for (a)–
(d) are then given in Section 3. The proof of (e), to be carried out in Sections 4–5, is more
involved forming the core of this paper. The key idea is to use the value distribution results for
exponential polynomials due to Steinmetz [4].

2 Auxiliary Results

The following auxiliary results will be instrumental in proving Theorem 1.1.

Lemma 2.1 ([5, Corollary 2.5]) Let f(z) be a meromorphic function in the complex plane
with order σ = σ(f) < ∞, and let c be a fixed non-zero complex constant. Then, for each ε > 0,
we have

m

(
r,

f(z + c)
f(z)

)
+ m

(
r,

f(z)
f(z + c)

)
= O(rσ−1+ε) + O(log r).

Lemma 2.2 ([5, Theorem 2.1]) Let f(z) be a meromorphic function in the complex plane with
order σ = σ(f) < ∞, and let c be a fixed non-zero complex constant. Then, for each ε > 0, we
have

T (r, f(z + c)) = T (r, f(z)) + O(rσ−1+ε) + O(log r).
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Lemma 2.3 ([6, Lemma 2.2]) Let T : (0, +∞) → (0, +∞) be a non-decreasing continuous
function, s > 0, 0 < α < 1, and let F ⊂ R+ be the set of all r such that

T (r) ≤ αT (r + s).

If the logarithmic measure of F is infinite, then

lim sup
r→∞

log T (r, f)
log r

= ∞.

Lemma 2.4 Let f(z) �≡ 0 and p(z) be polynomials, n ≥ 1 be an integer, and let c �= 0 be a
constant. If

f(z)n = p(z)f(z + c) (2.1)

for all z ∈ C, then f(z) and p(z) are constants.

Proof If f(z + c) has a zero that is not a zero of f(z), we arrive at a contradiction by (2.1).
Hence every zero of f(z + c) must be a zero of f(z), but possibly with a different multiplicity.
In other words, every distinct zero of f(z) must be a zero of f(z − c). Since c �= 0 and since
f(z) has at most finitely many (distinct) zeros, we have a contradiction. Hence f(z) cannot
have any zeros, in which case f(z) and p(z) are constants. �

3 Proof of Theorem 1.1 (a)–(d)

Proof of (a) Suppose there is an entire solution f of (1.4) with σ(f) < ∞. Using Lemma 2.1
in (1.4), we conclude that

nm(r, f) = m(r, P (z) − q(z)eQ(z)f(z + c))

≤ m(r, P ) + m(r, q) + m(r, eQ) + m(r, f(z + c)) + O(1)

≤ m(r, eQ) + m

(
r,

f(z + c)
f(z)

)
+ m(r, f) + O(log r)

≤ m(r, eQ) + m(r, f) + O(rσ(f)−1+ε) + O(log r),

that is, (n − 1)m(r, f) ≤ m(r, eQ(z)) + O(rσ(f)−1+ε) + O(log r). Since n ≥ 2, this shows that
σ(f) ≤ deg(Q), see (4.1) below. Furthermore, equation (1.4) gives

m(r, eQ) = m

(
r,

P (z) − f(z)n

q(z)f(z + c)

)

≤ m

(
r,

P (z)
q(z)f(z + c)

)
+ m

(
r,

f(z)n

q(z)f(z + c)

)
+ O(1)

≤ 2m

(
r,

f(z)
f(z + c)

)
+ m

(
r,

1
f

)
+ (n − 1)m(r, f) + O(log r)

≤ nT (r, f) + O(rσ(f)−1+ε) + O(log r),

which shows that deg(Q) ≤ σ(f). Hence σ(f) = deg(Q). As for the type of f , it is clear that
lim supr→∞ T (r, f) · r− deg(Q) ∈ (0,∞). �

Proof of (b) Suppose that f is an entire solution of (1.4) with σ(f) < ∞. We prove λ(f) <

σ(f) ⇐⇒ P (z) ≡ 0, which is logically equivalent to (b).
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Let λ(f) < σ(f), and suppose on the contrary to the assertion that P (z) �≡ 0. We can
factorize f as

f(z) = T (z)eα(z), (3.1)

where T (z) and f(z) have the same zeros, if any, and α(z) is a polynomial. By (a) and the
assumptions, we have

λ(f) = σ(T ) < σ(f) = deg(α) = deg(Q) = q.

From equation (1.4), we get

T (z)nenα(z) + q(z)eQ(z)+α(z+c)T (z + c) = P (z). (3.2)

Note that
deg(Q(z) + α(z + c)) = deg(nα(z)) = q

by (3.2). Let λ(f) < β < σ(f). Then

N

(
r,

1
P (z) − q(z)eQ(z)+α(z+c)T (z + c)

)
= N

(
r,

1
T (z)nenα(z+c)

)
= O(rβ),

which is impossible by the second main theorem for three small target functions [7, Theorem 2.5].
Hence P (z) ≡ 0.

Conversely, suppose that P (z) ≡ 0, and factorize f as in (3.1). By (3.2) it follows that

T (z)n

q(z)T (z + c)
= −eQ(z)+α(z+c)−nα(z). (3.3)

If T (z) has infinitely many zeros, then there exists a zero z0 of T (z) such that none of the points
zm = z0 +mc, m ∈ N∪{0}, is a zero of q(z). If z0 is of multiplicity k ≥ 1, then, by (3.3), z0 + c

is a zero of T (z) of multiplicity nk. Continuing inductively, we see that zm is a zero of T (z)
of multiplicity nmk. Since n ≥ 2, the sequence of zeros (counting multiplicities) is of infinite
convergence exponent. This is a contradiction, and hence λ(f) = 0 < q = σ(f) by (a). �
Proof of (c) If f ∈ Γ0 is a solution of (1.4), then P (z) ≡ 0 by (b).

Conversely, suppose that P (z) ≡ 0, and factorize f as in (3.1). The proof of (b) shows
that T (z) must be a polynomial. From (3.3) we now have that T (z)n

q(z)T (z+c) must be a constant.
Finally, Lemma 2.4 implies that T (z) and q(z) must both be constants. This shows that f ∈ Γ0.

Finally assume that n ≥ 3. If P (z) �≡ 0, then the second fundamental theorem for three
small target functions and Lemma 2.3 yield

nT (r, f) = T (r, fn) ≤ N(r, fn) + N

(
r,

1
fn

)
+ N

(
r,

1
fn − P (z)

)
+ O(log r)

≤ N

(
r,

1
f

)
+ N

(
r,

1
f(z + c)

)
+ O(log r)

≤ 2T (r, f) + O(rσ(f)−1+ε) + O(log r),

contradicting n ≥ 3. Hence P (z) ≡ 0, and so f ∈ Γ0. �
Proof of (d) Since f ∈ Γ0, we have P (z) ≡ 0, and so g ∈ Γ0 as well. Substituting f(z) = eα(z),
resp. g(z) = eA(z), into (1.4), we obtain

enα(z)−α(z+c) = enA(z)−A(z+c).
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Taking logarithms, denoting S(z) = A(z) − α(z), and assuming that the polynomial S(z) �≡ 0,
we conclude that for some integer k,

n =
S(z + c)

S(z)
+ k

2πi
S(z)

.

If S(z) is non-constant, then letting |z| → ∞, we obtain n = 1, which is a contradiction.
Therefore S = 2πi k

n−1 is a constant, and we immediately see that (eS(z))n−1 ≡ 1. �

4 On Exponential Polynomials

Let P (z) = aqz
q + · · · + a0, where aq �= 0. It is well known [7, p. 7] that

T (r, eP (z)) = |aq|r
q

π
+ o(rq). (4.1)

This elementary observation generalizes to exponential polynomials f of the form (1.6). Indeed,
following the reasoning in [4], suppose that the polynomials Qj(z) in (1.6) are pairwise different
and normalized by Qj(0) = 0. The representation (1.6) is then uniquely determined, and the
functions Pj(z)eQj(z) are linearly independent. Let

q = max{deg(Qj) : Qj(z) �≡ 0},
and let w1, . . . , wm (m ≤ k) be pairwise different leading coefficients of the polynomials Qj(z)
of maximum degree q. Then f can be written in the form

f(z) = H0(z) + H1(z)ew1zq

+ · · · + Hm(z)ewmzq

, (4.2)

where the functions Hj(z) are either exponential polynomials of degree < q or ordinary poly-
nomials in z. Due to the construction, we have Hj(z) �≡ 0 for 1 ≤ j ≤ m. It follows that
H0(z) ≡ 0 if and only if all polynomials Qj(z) in (1.6) are of maximal degree.

The convex hull of a set W ⊂ C, denoted by co(W ), is the intersection of all convex
sets containing W . If W contains only finitely many elements, then co(W ) is obtained as an
intersection of finitely many closed half-planes, and hence co(W ) is either a compact polygon
(with a non-empty interior) or a line segment. We denote the perimeter of co(W ) by C(co(W )).
If co(W ) is a line segment, then C(co(W )) equals to twice the length of this line segment.
Through the rest of the paper, we fix the notation for W = {w1, . . . , wm}, W0 = {0, w1, . . . , wm}
and Q(z) = bqz

q + · · · + b0.

Theorem 4.1 ([4, Satz 1]) Let f be given by (4.2). Then

T (r, f) = C(co(W0))
rq

2π
+ o(rq). (4.3)

Note that growth rates (4.1) and (4.3) coincide in the special case when f(z) = eP (z). This
is a consequence of the fact that the convex hull of the two-element set {0, aq} is just the line
segment [0, aq].

Repeated application of (4.3) yields the following immediate consequence.

Corollary 4.2 Let q ∈ N, a0(z), . . . , an(z) be either exponential polynomials of degree < q or
ordinary polynomials in z, and let b1, . . . , bn ∈ C \ {0} be distinct constants. Then

n∑
j=1

aj(z)ebjzq

= a0(z)
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holds only when a0(z) ≡ a1(z) ≡ · · · ≡ an(z) ≡ 0.

We note that Corollary 4.2 is a special case of Borel–Nevanlinna theorem on linear combi-
nations of entire functions, see [8, pp. 70, 108] and [9, p. 77].

Theorem 4.3 ([4, Satz 2]) Let f be given by (4.2). If H0(z) �≡ 0, then

m

(
r,

1
f

)
= o(rq), (4.4)

while if H0(z) ≡ 0, then

N

(
r,

1
f

)
= C(co(W ))

rq

2π
+ o(rq). (4.5)

Taking n = 2 in the proof of (a) in Section 3 and making use of (4.1), (4.3) and (4.4), we
have the following consequence.

Corollary 4.4 Let f be given by (4.2), where H0(z) �≡ 0. If f is a solution of (1.4), where
n = 2, then C(co(W0)) = 2|bq|.

The next result deals with exponential polynomial solutions of (1.4) in the case when co(W0)
is a line segment.

Lemma 4.5 Let f be given by (4.2), and suppose that f is a solution of (1.4), where n = 2.
If the points 0, w1, . . . , wm are collinear, then m = 1.

Proof Assume on the contrary to the assertion that m ≥ 2. For each i ∈ {1, . . . , m}, we may
write wi = kiw, where the constants ki ∈ R \ {0} are distinct and w ∈ C \ {0}. Moreover, we
may suppose that ki > kj for i > j. Equation (1.4) can be written as

m∑
i=0

m∑
j=0

Hi(z)Hj(z)e(ki+kj)wzq

+ q(z)eQ(z)
m∑

h=0

Hh(z + c)ekhw(z+c)q

= P (z), (4.6)

where k0 = 0. By Corollary 4.2 there exists an index j ∈ {0, 1, . . . , m} such that 2k1w =
bq + kjw, for otherwise H1(z) ≡ 0, which is a contradiction.

Case 1 If j = 1, then bq = k1w. In the case H0(z) ≡ 0 at least one term of the form
Hi(z)2e2kiwzq

remains in the left-hand side of (4.6), since m ≥ 2. Corollary 4.2 then implies
that Hi(z) ≡ 0, which a contradiction. In the case H0(z) �≡ 0 at least one term of the form
2H0(z)Hi(z)ekiwzq

remains in the left-hand side of (4.6), yielding Hi(z) ≡ 0, which is also a
contradiction.

Case 2 If j �= 1, then a term of the form q(z)eQ0(z)H1(z + c)e(bq+k1w)zq

, where Q0(z) =
Q(z)− bqz

q + k1w((z + c)q − zq), remains in the left-hand side of (4.6). Now H1(z + c) ≡ 0 by
Corollary 4.2, which is a contradiction. �

5 Proof of Theorem 1.1 (e)

We may write the exponential polynomial solution f in the form (4.2), where q = deg(Q) by (a).
We may assume that n = 2 by (c).

The following lemma shows that exponential polynomial solutions of (1.4) are of the desired
form in the case m = 1.
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Lemma 5.1 Let f be given by (4.2), where m = 1. If f is a solution of (1.4), then either
f ∈ Γ1 \ Γ0 or f ∈ Γ0. Moreover, if f ∈ Γ1 \ Γ0, then σ(f) = 1.

Proof Substituting f(z) = H0(z) + H1(z)ew1zq

into (1.4) (with n = 2) yields

P (z) − H0(z)2 = 2H1(z)H0(z)ew1zq

+ q(z)eQ0(z)H0(z + c)ebqzq

+ H1(z)2e2w1zq

+ q(z)eQ0(z)+P1(z)H1(z + c)e(bq+w1)z
q

, (5.1)

where Q0(z) = Q(z) − bqz
q and P1(z) = w1(z + c)q − w1z

q are polynomials of degree ≤ q − 1.
We break the rest of the proof into two cases.

Case 1 Suppose that bq �= w1. Applying Corollary 4.2 to (5.1) in three different subcases
bq = −w1, bq = 2w1 and bq �∈ {±w1, 2w1} always results in H0(z) ≡ 0 ≡ H1(z), which is a
contradiction.

Case 2 Suppose that bq = w1. Then (5.1) reduces to the form

P (z) − H0(z)2 =
(
2H1(z)H0(z) + q(z)eQ0(z)H0(z + c)

)
ew1zq

+
(
H1(z)2 + q(z)eQ0(z)+P1(z)H1(z + c)

)
e2w1zq

,

and an application of Corollary 4.2 yields the following equations:

H1(z)2 + q(z)eQ0(z)+P1(z)H1(z + c) = 0, (5.2)

2H1(z)H0(z) + q(z)eQ0(z)H0(z + c) = 0, (5.3)

H0(z)2 = P (z). (5.4)

Note that H0(z) is a polynomial by (5.4).
Suppose first that deg(Q0 + P1) = 0. Now an exponential polynomial cannot satisfy (5.2),

so we deduce that H1(z) must be a polynomial. Furthermore, an application of Lemma 2.4
to (5.2) shows that H1(z) reduces to a constant. Hence the polynomial Q0(z) in (5.3) must be
a constant, and an application of Lemma 2.4 to (5.3) shows that H0(z) reduces to a constant
also. This shows that f ∈ Γ1.

Suppose then that deg(Q0 +P1) ≥ 1. Now H1 ∈ Γ0 by (5.2) and (c). Denote H1(z) = eα(z),
where α(z) is a polynomial. Then (5.3) implies

2eα(z)−Q0(z)H0(z) = −q(z)H0(z + c). (5.5)

If H0(z) ≡ 0, then f ∈ Γ0, while if H0(z) �≡ 0, then α(z) − Q0(z) must be a constant. Hence,
by Lemma 2.4 and (5.5), we deduce that H0(z) must reduce to a constant. This shows that
f ∈ Γ1 \ Γ0 in the case H0(z) �≡ 0.

Conclusion We have shown above that every solution f of (1.4) of the form f(z) = H0(z)+
H1(z)ew1zq

must belong to either Γ1 \ Γ0 or Γ0. If f ∈ Γ1 \ Γ0, then H0(z) is a constant d �= 0
and H1 ∈ Γ0 with σ(H1) ≤ q − 1. Now (5.3) reads 2H1(z) = −q(z)eQ0(z), and a substitution
to (5.2) yields

H1(z) = 2eP1(z)H1(z + c). (5.6)

We have σ(H1(z)) = σ(H1(z + c)) by Lemma 2.2, and hence σ(H1) = deg(P1) by (5.6) and
the fact that σ(H1) ≤ q − 1 = deg(P1). Write H1(z) = eα(z), where deg(α) = deg(P1). We
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conclude by (5.6) that α(z) = P1(z) + α(z + c) + d0 for some d0 ∈ C. Since the polynomials
α(z) and α(z + c) have the same leading coefficients, this leads to a contradiction, unless q = 1.
In other words, σ(f) = 1. �

Remark 5.2 We thank the referee for the following observations. Multiplying (5.6) by ew1zq

and recalling that P1(z) + w1z
q = w1(z + c)q, we obtain

f − d = 2(f(z + c) − d).

It thus follows that f(z) = Π(z)2−z/c + d for a c-periodic entire function Π(z) of finite order.
Since Π(z)2−z/c is of the form eβ(z) for some polynomial β(z) of degree q, we must have q = 1
and Π(z) = Ke2πiz/c for some K ∈ C\{0}. Therefore f(z) = Ke(2πi−log 2)z/c +d ∈ Γ1 \Γ0 with
σ(f) = 1, as desired. In order that this f solves (1.4), we must have K = −2d, q(z) ≡ −2K

and Q(z) = (2πi − log 2)z/c.

The case m = 1 now being discussed, we complete the proof by dealing with the case m ≥ 2.

Lemma 5.3 If m ≥ 2, then f of the form (4.2) is not a solution of (1.4).

Proof Suppose on the contrary to the assertion that f solves (1.4). We write

G(z) = f(z)2 − P (z) = M(z) +
m∑

i,j=0
wi+wj �=0

Hi(z)Hj(z)e(wi+wj)z
q

, (5.7)

where M(z) is either an exponential polynomial of degree < q or an ordinary polynomial in z (or
a linear combination of both). Denote Y = {2w1, . . . , 2wm} and X = {wi + wj : wi + wj �= 0}.
It is clear by convexity and by the fact Y ⊂ X that co(Y ) = co(X). We break the rest of the
proof into two cases, and aim for a contradiction in both cases.

Case 1 Suppose that H0(z) ≡ 0. By substituting z + c in place of z in (4.2), we see that
f(z + c) has the same leading coefficients w1, . . . , wm as f(z) does. Hence Theorem 4.3 yields

N

(
r,

1
f(z + c)

)
= C(co(W ))

rq

2π
+ o(rq) = N

(
r,

1
f

)
+ o(rq), (5.8)

and so, using (1.4) with n = 2, we have

N

(
r,

1
G

)
= C(co(W ))

rq

2π
+ o(rq). (5.9)

If M(z) ≡ 0 in (5.7), then Theorem 4.3 yields

N

(
r,

1
G

)
= C(co(X))

rq

2π
+ o(rq). (5.10)

Comparing (5.9) and (5.10), we have C(co(X)) = C(co(W )). But this is a contradiction to
the fact that C(co(X)) = C(co(Y )) = 2C(co(W )). If M(z) �≡ 0, then m

(
r, 1

G

)
= o(rq) by

Theorem 4.3. Now (5.8) and (5.9) imply

2T (r, f) = T

(
r,

1
G

)
+ O(log r) = N

(
r,

1
G

)
+ o(rq)

= N

(
r,

1
f

)
+ o(rq) ≤ T (r, f) + o(rq), (5.11)
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which is impossible by (a).

Case 2 Suppose that H0(z) �≡ 0. Then

m

(
r,

1
f

)
= o(rq) = m

(
r,

1
f(z + c)

)
+ o(rq)

by Theorem 4.3 and Lemma 2.1. Therefore, by (1.4) and Lemma 2.2,

N

(
r,

1
G

)
= N

(
r,

1
f(z + c)

)
+ O(log r)

= N

(
r,

1
f

)
+ o(rq) = T (r, f) + o(rq). (5.12)

If M(z) �≡ 0 in (5.7), then (5.11) holds by (5.12) and Theorem 4.3. This is again a contradiction,
and hence M(z) ≡ 0. Applying Theorems 4.1 and 4.3 to (5.12), we deduce that

C(co(Y )) = C(co(W0)). (5.13)

The set co(W0) cannot reduce to a line segment due to Lemma 4.5. Hence co(W0) is a
polygon with a non-empty interior. If the origin would be an interior point of co(W0), then
co(W0) = co(W ), and (5.13) leads to a contradiction. Hence 0 ∈ ∂ co(W0). The corner points
of the polygon co(W0) are among the points 0, w1, . . . , wm. Noting that co(W0) is also trigono-
metrically convex [10, p. 63], we may choose its non-zero corner points u1, . . . , ut, t ≤ m, such
that 0 ≤ arg(uj) < arg(uj+1) ≤ 2π for j ∈ {1, . . . , t − 1}. Now

C(co(W0)) = |u1| + |u2 − u1| + · · · + |ut − ut−1| + |ut|. (5.14)

We see that the points 2u1, . . . , 2ut are corner points of co(Y ). However, if t < m, then co(Y )
may have more corner points. Such points, if any, are of the form 2wj , where wj is an interior
point of co(W0). Let L denote the length of the polygonal path on ∂ co(Y ) joining 2ut and 2u1,
measured in the counterclockwise direction. Hence L ≥ 2|ut − u1| with equality if and only if
2u1, . . . , 2ut are the only corner points of co(Y ). Now

C(co(Y )) = 2|u2 − u1| + · · · + 2|ut − ut−1| + L. (5.15)

By (5.13), we have
|u1| + |ut| = |u2 − u1| + · · · + |ut − ut−1| + L,

and hence, combining Corollary 4.4 with (5.13) and (5.15), it follows that

|bq| = |u1| + |ut| − L/2.

Denote Wb,0 = {0, bq, bq + w1, . . . , bq + wm}, W ∗
b,0 = {0, bq + w1, . . . , bq + wm} and g(z) =

q(z)eQ(z)f(z + c). Then Theorem 4.1 yields

T (r, g) = C(co(Wb,0))
rq

2π
+ o(rq). (5.16)

Note that the polygon co(Wb,0) has a non-empty interior because the same is true for co(W0).
Suppose that bq is an interior point of co(Wb,0). Then co(Wb,0) = co(W ∗

b,0). Similarly as
in (5.14), we have

C(co(W ∗
b,0)) = |u1 + bq| + |u2 − u1| + · · · + |ut − ut−1| + |ut + bq|.
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Equations (1.4) and (5.16) imply 2C(co(W0)) = C(co(W ∗
b,0)). Recalling that C(co(W0)) = 2|bq|,

we now compute

2|u1| + |u2 − u1| + · · · + |ut − ut−1| + 2|ut|
= |u1 + bq| + |ut + bq| ≤ |u1| + |ut| + 2|bq|
= |u2 − u1| + · · · + |ut − ut−1| + L + 2(|u1| + |ut| − L/2)

= 2|u1| + |u2 − u1| + · · · + |ut − ut−1| + 2|ut|,
that is,

|u1 + bq| + |ut + bq| = 2|u1| + |u2 − u1| + · · · + |ut − ut−1| + 2|ut|
= |u1| + |ut| + 2|bq|.

(5.17)

This shows that arg(u1) = arg(bq) = arg(ut), which is impossible.
Suppose then that bq is not an interior point of co(Wb,0). Then bq must be a boundary point

of co(Wb,0). If bq + uj �= 0 for all j ∈ {1, . . . , t}, then bq, bq + u1, . . . , bq + ut are the non-zero
corner points of co(Wb,0). Similarly as in (5.14), we have

C(co(Wb,0)) = |bq| + |u1| + |u2 − u1| + · · · + |ut − ut−1| + |ut + bq|.
Following the reasoning above, we get C(co(Wb,0)) = 2C(co(W0)) = 4|bq|, and hence

|u1| + |u2 − u1| + · · · + |ut − ut−1| + 2|ut|
= |bq| + |ut + bq| ≤ |ut| + 2|bq|
= |u2 − u1| + · · · + |ut − ut−1| − |u1| + L + 2(|u1| + |ut| − L/2)

= |u1| + |u2 − u1| + · · · + |ut − ut−1| + 2|ut|,
that is,

|bq| + |ut + bq| = |u1| + |u2 − u1| + · · · + |ut − ut−1| + 2|ut| = |ut| + 2|bq|.
We conclude that arg(ut) = arg(bq), and hence one of bq or bq +ut is not a non-zero corner point
of co(Wb,0). This is a contradiction. Finally, suppose that bq + uj = 0 for some j ∈ {1, . . . , t}.
For this particular j, we have C(co(W0)) = 2|bq| = 2|uj |, which is a contradiction. �

Acknowledgements We thank the referee for useful comments.
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