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1 Introduction

The theories of probabilistic normed (PN) spaces and Riesz spaces are two independent and
important areas of research in functional analysis. Much work has been done in both theories
and they have many important applications in real world problems. PN spaces are the vector
spaces in which the norms of the vectors are uncertain due to randomness. A Riesz space is
a vector space endowed with the lattice structure. Both theories have many tools in common,
therefore the aim of our work is to establish the first connections between these two large
theories. In this context, we introduce the notions of probabilistic normed Riesz space and
probabilistic Banach lattice, and investigate their certain properties.

First, let us cast a glance at the history of Riesz spaces. The concept of Riesz space, also
called vector lattice or K-lineal, was first introduced by Riesz in [1]. The first contributions
to the theory came from Freudenthal [2] and Kantorovich [3]. Since then many others have
developed the subject (see, for instance, [4–7]). Most of the spaces encountered in analysis are
Riesz spaces. They play an important role in optimization and analysis, especially in problems
of Banach spaces, measure theory and operator theory. An important application of Riesz
spaces can be found in [8].

A PN space is a generalization of an ordinary normed linear space. In a PN space, the norms
of the vectors are represented by probability distribution functions instead of nonnegative real
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numbers. Such a generalization of normed spaces may well be adapted to the setting of physical
quantities [9] and fixed point theory [10, 11]. PN spaces were first introduced by Šerstnev in [12]
by means of a definition that was closely modelled on the theory of normed spaces. Since then
the most deepest advances in this theory were obtained in [13–16]. In 1993, Alsina et al. [17]
presented a new definition of a PN space which includes Šerstnev’s definition in [12] as a
special case. Here we will adopt this definition. Following [17], many papers (for instance,
[18–22]) investigating the properties of PN spaces have appeared. A detailed history and the
development of the subject up to 2006 can be found in [23].

Now, our work can be outlined as follows. In the second section, we recall some of the
basic concepts related to PN spaces and Riesz spaces. In the third section, we introduce the
concepts of probabilistic normed Riesz space and probabilistic Banach lattice, and study their
basic properties. Next, we prove via two examples that the concepts of order convergence and
strong convergence (that is, convergence with respect to the probabilistic norm) need not be
equivalent in an arbitrary probabilistic normed Riesz space. Finally, we introduce the notion
of probabilistic norm Cauchy system, and examine its certain properties.

2 Preliminaries

First, we recall some of the basic concepts related to the theory of PN spaces. We use the
terminology of [17] and [24].

A distance distribution function is a non-decreasing function F that is left-continuous on
(−∞,∞) , is equal to zero on [−∞, 0] and F (+∞) = 1. The set of all distance distribution
functions is denoted by Δ+. The space Δ+ is partially ordered by the usual pointwise ordering
of functions, and has both a maximal element ε0 and a minimal element ε∞, defined by

ε0(x) =

⎧
⎨

⎩

0, x ≤ 0,

1, x > 0,
and ε∞(x) =

⎧
⎨

⎩

0, x < +∞,

1, x = ∞,

respectively.
Now let F, G ∈ Δ+ and h ∈ (0, 1]. If we denote the condition

G(x) ≤ F (x + h) + h for x ∈
(

0,
1
h

)

by [F, G; h] , then the function dL defined on Δ+ × Δ+ by

dL(F, G) = inf {h : both [F, G; h] and [G, F ; h] hold}
is called the modified Lévy metric on Δ+. The metric space (Δ+, dL) is compact.

A triangle function is a binary operation τ on Δ+, τ : Δ+ ×Δ+ → Δ+, that is associative,
commutative, non-decreasing in each place, and has ε0 as identity. A triangle function is said
to be Archimedean provided that τ (F, F ) = F implies that F = ε0 or F = ε∞.

Definition 2.1 ([17, 21]) A probabilistic normed space (briefly, a PN space) is a quadruple
(V, ν, τ, τ∗), where V is a real linear space, τ and τ∗ are continuous triangle functions with
τ ≤ τ∗, and ν is a mapping (the probabilistic norm) from V into the space of distribution
functions Δ+ such that, writing νp for ν(p), for all p, q in V, the following conditions hold :

(N1) νp = ε0 if and only if p = θ, the null vector in V,
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(N2) ν−p = νp,

(N3) νp+q ≥ τ (νp, νq),

(N4) νp ≤ τ∗ (
ναp, ν(1−α)p

)
, for all α ∈ [0, 1] .

A Menger PN space under T is a PN space (V, ν, τ, τ∗) in which τ = τT and τ∗ = τT∗ , for
some continuous t-norm T and its t-conorm T ∗; it is denoted by (V, ν, T ) .

For p ∈ V and t > 0, the strong t-neighborhood of p is defined by the set

Np(t) = {q ∈ V : dL (νp−q, ε0) < t} .

Since τ is continuous, the system of neighborhoods {Np(t) : p ∈ V and t > 0} determines a
Hausdorff and first countable topology on V, called the strong topology.

A sequence (pn) in (V, ν, τ, τ∗) is said to be strongly convergent (convergent with respect to
the probabilistic norm) to a point p in V , and we will write pn

PN−→ p, if for any t > 0, there
is an integer N such that pn is in Np(t) whenever n ≥ N . Thus, pn

PN−→ p if, and only if,
limn→∞ dL (νpn−p, ε0) = 0. We will call p the strong limit.

A sequence (pn) in (V, ν, τ, τ∗) is said to be strong Cauchy, if for any t > 0, there is an
integer N such that pn is in Npm

(t) whenever n, m ≥ N. If every strong Cauchy sequence is
strongly convergent to a point p in V , then we say that (V, ν, τ, τ∗) is complete in the strong
topology.

In the sequel, when we consider a PN space (V, ν, τ, τ∗), we will assume that it is endowed
with the strong topology.

Now, we list some of the basic concepts and notations related to the theory of Riesz spaces,
and we refer to [25] for more details.

Definition 2.2 A real vector space E (with elements f, g, . . .) with a partial order “ ≤ ” is
called an ordered vector space if E is partially ordered in such a manner that the vector space
structure and the order structure are compatible, that is to say,

(i) f ≤ g implies f + h ≤ g + h for every h ∈ E,

(ii) f ≥ θ implies αf ≥ θ for every α ≥ 0 in R, where θ is the null element with respect
to vector addition. If, in addition, E is a lattice with respect to the partial ordering, then E is
called a Riesz space or also a vector lattice. We will denote a Riesz space E by (E,≤) .

A Riesz space E is said to be Archimedean provided that given f, g ≥ θ in E such that
θ ≤ nf ≤ g for every n ∈ N, it follows that f = θ.

If E is a (real) Riesz space equipped with a norm ‖·‖ such that |f | ≤ |g| in E implies
‖f‖ ≤ ‖g‖ , then the norm on E is called a Riesz norm. Any Riesz space equipped with a Riesz
norm is called a normed Riesz space. We will denote a normed Riesz space E by (E, ‖·‖ ,≤) .

A sequence (fn) in a Riesz space E is said to converge in order to f if there exists a sequence
pn ↓ θ such that |fn − f | ≤ pn holds for all n ∈ N. In this case, we will write fn

ord−→ f.

Now let E be a Riesz space and θ < u ∈ E. A sequence (fn) in E is said to converge
u-uniformly to f , if for any number t > 0 there exists an index N(t) ∈ N such that |fn − f | ≤ tu

holds for all n ≥ N(t).

A sequence (fn) in E is said to converge relatively uniformly to f , if there exists an element
u > θ in E such that (fn) converges u-uniformly to f.
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3 Probabilistic Normed Riesz Spaces

First, we introduce the concepts of probabilistic normed Riesz space and probabilistic Banach
lattice.

Definition 3.1 Let (E,≤) be a (real) Riesz space equipped with a probabilistic norm ν, and
continuous triangle functions τ and τ∗. The probabilistic norm on E is a probabilistic Riesz norm
provided that |f | ≤ |g| in E implies νf ≥ νg. Any Riesz space, equipped with a probabilistic Riesz
norm is a probabilistic normed Riesz space (PNR space, briefly). If a PNR space E is complete
with respect to the strong topology, then E is a probabilistic Banach lattice (PBL, in short). We
will denote a PNR space by (E, ν, τ, τ∗,≤) or just E, if the context is clear.

Note that, for any f ∈ E, the elements f and |f | have the same probabilistic Riesz norm.

Example 3.2 Let (E, ‖·‖ ,≤) be a normed Riesz space, and define ν : E → Δ+ via νf =
ε‖f‖. Let τ and τ∗ be triangle functions such that

τ (εa, εb) ≤ εa+b ≤ τ∗ (εa, εb)

for all a, b ≥ 0. Then (E, ν, τ, τ∗,≤) is a PNR space. Hence every ordinary normed Riesz space
is a PNR space.

Example 3.3 Let (E, ‖·‖ ,≤) be the normed Riesz space of the real continuous functions f

defined on some interval [a, b] , where “≤” is the pointwise order. Let us consider the simple
space (E, ‖·‖ , G, M) , where

‖f‖ = max
t∈[a,b]

|f(t)| ; G ∈ Δ+; G 	= ε0, ε∞,

and the probabilistic norm ν : E −→ Δ+ is defined by νθ = ε0 and

νf (x) = G

(
x

‖f‖
)

, x > 0

if f 	= θ, and M is the t-norm defined by M(x, y) = min {x, y}. Hence (E, ‖·‖ , G, M,≤) is a
Menger PNR space under M .

Example 3.4 Let (Ω,F , P ) be a probability space, (B, ‖·‖ ,≤) a Banach lattice and L0 (F , B)
the random normed module of equivalence classes of B-valued, F-random variables (see [26, 27]).
Define ν : L0 (F , B) −→ Δ+ by

νf (x) = P {ω ∈ Ω : ‖f(ω)‖ < x}
for any f ∈ L0 (F , B) and x ∈ R. Then

(
L0 (F , B) , ν, τW , τM

)
is an E-normed space, which is

also a PN space (see [15]). Here the continuous triangle functions τW and τM are defined by

(τW (F, G)) (x) = sup {max {F (u) + G(v) − 1, 0} : u + v = x}
and

(τM (F, G))(x) = sup{min{F (u), G(v)} : u + v = x},
where F, G ∈ Δ+ and x ∈ R. If we define a partial order “≤” on L0 (F , B) as

f ≤ g if, and only if, f0(ω) ≤ g0(ω) a.s.,

where f0 and g0 are arbitrarily chosen representatives of f and g respectively, then (L0(F , B), ν,

τW , τM ,≤) is a PBL.
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In classical Riesz space theory, it is known that every normed Riesz space is Archimedean.
However, as the following example shows, a PNR space need not be Archimedean.

Example 3.5 Let us consider the Riesz space
(
R

2,≤)
where “≤” is the lexicographical order.

Then this space is not Archimedean (see [25]). Now let us define a probabilistic norm on R
2 by

νf =

⎧
⎨

⎩

ε0, if f = θ,

F, if f 	= θ,

where F ∈ Δ+ is fixed and F 	= ε0, ε∞. If we take τ = τ∗ = M, where M is the maximal
triangle function, then we get a PN space denoted by

(
R

2, F,M
)
. Thus ν is a probabilistic

Riesz norm, and hence
(
R

2, F,M,≤)
is a PNR space.

However, if the triangle function τ∗ of a PNR space (E, ν, τ, τ∗,≤) is Archimedean and
νf 	= ε∞ for all f ∈ E, then the space is also Archimedean. To see this, we consider such
a PNR space (E, ν, τ, τ∗,≤). Let f, g ≥ θ be given in E such that θ ≤ nf ≤ g for every
n ∈ N. Then νf ≥ ν 1

n g for every n ∈ N. Since τ∗ is Archimedean and νf 	= ε∞ for all f ∈ E, the
mapping M : R → E given by M (α) = αf for a fixed f ∈ E is continuous (see [18]). Hence
1
ng

PN−→ θ, and thus ν 1
n

g

dL−→ νθ = ε0 since the probabilistic norm is continuous (see [18]). On

the other hand, we have dL (νf , ε0) ≤ dL(ν 1
n g, ε0) for every n ∈ N. This shows that νf = ε0, i.e.,

f = θ. Hence E is Archimedean. Note that the triangle function M considered in Example 3.5
is not Archimedean.

Now we consider the continuity properties of certain mappings defined on a PNR space.
Throughout the rest of the paper, E will denote a PNR space (E, ν, τ, τ∗,≤) .

Theorem 3.6 Let E be a PNR space, (fn) and (gn) be sequences in E such that fn
PN−→ f and

gn
PN−→ g. Then we have

fn ∨ gn
PN−→ f ∨ g and fn ∧ gn

PN−→ f ∧ g.

In particular, f+
n

PN−→ f+, f−
n

PN−→ f− and |fn| PN−→ |f | . Thus the lattice operations ∨ and
∧, and the mappings f �−→ f+, f �−→ f− and f �−→ |f | are continuous.

Proof Let fn
PN−→ f and gn

PN−→ g. Then we have

|fn ∨ gn − f ∨ g| ≤ |g − gn| + |f − fn| ,
which means that

νfn∨gn−f∨g ≥ ν|g−gn|+|f−fn| ≥ τ (νg−gn
, νf−fn

) ,

and hence we get
dL(νfn∨gn−f∨g, ε0) ≤ dL (τ (νg−gn

, νf−fn
) , ε0)

for every n ∈ N. Since the continuity of τ implies its uniform continuity, we can say that
for any t > 0 there is a λ > 0 such that dL (τ (F, G) , ε0) < t whenever dL (F, ε0) < λ and
dL (G, ε0) < λ, where F, G ∈ Δ+.

Now let t > 0. Then we can find a λ > 0 such that

dL (τ (νg−gn
, νf−fn

) , ε0) < t

(hence dL (νfn∨gn−f∨g, ε0) < t) whenever fn ∈ Nf (λ) (i.e., dL (νfn−f , ε0) < λ) and gn ∈
Ng(λ) (i.e., dL (νgn−g, ε0) < λ). By hypothesis, for such a λ > 0 mentioned above, there exist
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N1 (λ) = N1 (t) ∈ N and N2 (λ) = N2 (t) ∈ N such that fn ∈ Nf (λ) for all n ≥ N1 and
gn ∈ Ng(λ) for all n ≥ N2. Now let N = N(t) = max {N1, N2} . Then for every n ≥ N we have

dL (νfn∨gn−f∨g, ε0) < t,

which shows that fn ∨ gn
PN−→ f ∨ g. Similarly, we get fn ∧ gn

PN−→ f ∧ g. Now by Definition 3.1
and the inequality |f+

n − f+| ≤ |fn − f |, we get f+
n

PN−→ f+.

Similarly, we have f−
n

PN−→ f−. Finally, the inequality ||fn| − |f || ≤ |fn − f | yields |fn| PN−→
|f | . �

Theorem 3.7 Let E be a PNR space and (fn) be a sequence in E such that fn
PN−→ f and

fn ≥ g for every n ∈ N and for some g ∈ E. Then we have f ≥ g. Hence, if fn
PN−→ f and

fn ≥ θ for all n ∈ N, then f ≥ θ. Thus the positive cone E+ = {f ∈ E : f ≥ θ} is closed with
respect to the strong topology.

The proof is obtained using Theorem 3.6, and we omit the details because, except for a
change of language and notation, it is the same as in the classical Riesz space theory (see [25]).

In what follows, we compare the strong convergence with the relatively uniform convergence
and order convergence. First we recall that, in an arbitrary normed Riesz space, relatively
uniform convergence implies the convergence with respect to the Riesz norm. However, this
may not hold in a PNR space. To hold this, we impose a sufficient condition as given in the
following theorem.

Theorem 3.8 Let E be a PNR space where the second triangle function τ∗ is Archimedean
and νf 	= ε∞ for all f ∈ E. Then relatively uniform convergence implies the strong convergence.

Proof Let (fn) be a sequence in E such that (fn) is convergent relatively uniformly to some
f ∈ E. Then there exists an element u > θ in E such that (fn) converges u-uniformly to f. To
prove that (fn) converges to f in the strong topology, we only need to prove that there exists
a subsequence (fnkj

)j∈N for every subsequence (fnk
)k∈N of (fn) such that (fnkj

)j∈N converges
to f in the strong topology because by hypothesis, there always exists a subsequence (fnkj

)j∈N

for every subsequence (fnk
)k∈N of (fn) such that |fnkj

− f | ≤ tju for every j ∈ N, where (tj)
is a sequence of numbers such that tj ↓ 0. Thus we have νfnkj

−f ≥ νtju for all j ∈ N. Since

tj → 0, we have tju
PN−→ θ as j → ∞, by hypothesis. Thus νtju

dL−→ νθ = ε0, which yields

νfnkj
−f

dL−→ ε0. Hence we may conclude that fn
PN−→ f, which completes the proof. �

If τ∗ is not Archimedean, then relatively uniform convergence may not imply strong con-
vergence. To see this, let us consider the following example.

Example 3.9 ([18]) Let E = R, viewed as a one-dimensional linear space, τ = τW and
τ∗ = τM . For p ∈ E, define ν by setting ν(0) = ε0, and

ν(p) =
1

|p| + 2
ε0 +

|p| + 1
|p| + 2

ε∞ for p 	= 0.

It is easy to see that (E, ν, τW , τM ,≤) is a PNR space, where “≤” is the usual order on R.
Note that τM is not Archimedean on all of Δ+. Now consider the real sequence (pn) =

(
1
n

)

n∈N
.

Observe that (pn) is convergent relatively uniformly to 0, however, it is not strongly convergent.

Now we shall prove via two examples that order convergence and strong convergence need
not be equivalent in an arbitrary PNR space.
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Example 3.10 Let us consider the PNR space (E, ν, τ,M,≤) , where E = R, the probabilistic
norm ν : R → Δ+ is defined by

νp =

⎧
⎨

⎩

ε a+|p|
a

, if p 	= 0,

ε0, if p = 0,

a > 0, τ is a triangle function such that τ (εc, εd) ≤ εc+d (c, d > 0) and “≤” is the usual order
on R. Now define pn = 1 − 1

n for n ∈ N and take a = 1. Then we have pn
ord−→ 1, however, (pn)

is not strongly convergent.

Example 3.11 Let E be the Riesz space L1 ([0, 1] , μ) of all Lebesgue integrable functions on
[0, 1] with norm ‖f‖ =

∫ 1

0
|f(x)| dμ. Let us define a probabilistic norm ν : E → Δ+ via

νf =

⎧
⎨

⎩

ε ‖f‖
a+‖f‖

, if f 	= θ,

ε0, if f = θ,

where a > 0. Let τ be a triangle function such that

τ (εc, εd) ≤ εc+d, c, d > 0.

Then (E, ν, τ,M,≤) is a PNR space, where “≤” is the pointwise order. Now let (Xn)n∈N
be

the sequence of intervals
[

0,
1
2

]

,

[
1
2
, 1

]

,

[

0,
1
3

]

,

[
1
3
,
2
3

]

,

[
2
3
, 1

]

,

[

0,
1
4

]

, . . . ,

and fn be the characteristic function of Xn for all n ∈ N. Then (fn) is not convergent in order
(see [25]), but it is strongly convergent to the zero element of E.

Now we present the following relations between strong convergence and order convergence.
Note that the monotone convergence considered in Theorem 3.12 is a particular case of order
convergence (see [25]).

Theorem 3.12 Let E be a PNR space and (fn) be a sequence in E. If fn ↑ and fn
PN−→ f, then

fn ↑ f ; similarly, for decreasing sequences.

Proof It follows from Theorem 3.7. �

Theorem 3.13 Let E be a PNR space and (fn) be a sequence in E. If fn
PN−→ f and fn

ord−→
g, then f = g.

Proof It follows from Theorems 3.6 and 3.7. �
A result similar to Theorem 3.12 is also valid for directed subsets of a PNR space. Recall

that a non-empty subset D of a Riesz space E is said to be upwards directed if for any f, g ∈ D

there exists an element h ∈ D such that h ≥ f ∨ g. In this case, we write D ↑ . If D ↑ and D

has the supremum f0 ∈ E, then we write D ↑ f0. A downwards directed set is defined similarly
(see [25]).

Now we introduce the strong convergence of a directed set and prove a theorem related to
this concept.

Definition 3.14 Let D be an upwards directed set in a PNR space E. Then D is strongly
convergent to some f0 ∈ E provided that for any t > 0 there is an f(t) ∈ D such that f ∈ Nf0(t)
for all f ∈ D satisfying f ≥ f(t).
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Theorem 3.15 If D is an upwards directed set in a PNR space E such that D is strongly
convergent to some f0, then sup D = f0.

Proof First, we will show that f0 is an upper bound of D. Let f∗ ∈ D be given. We will prove
that f∗ ≤ f0. Since D is strongly convergent to f0, there exists an element f(1) ∈ D such that
f ∈ Nf0(1) for all f ∈ D satisfying f ≥ f(1). Now choose f1 ∈ D such that f1 ≥ f∗∨f(1). Then
f1 ≥ f∗ and f1 ∈ Nf0(1). Now there exists an element f(1/2) ∈ D such that f ∈ Nf0(1/2) for
all f ∈ D satisfying f ≥ f(1/2). Choose f2 ∈ D such that f2 ≥ f1 ∨ f(1/2). Then f2 ≥ f1

and f2 ∈ Nf0(1/2). Continuing in this way, we obtain a sequence f∗ ≤ f1 ≤ f2 ≤ · · · in D

such that fn ∈ Nf0(1/n) for every n ∈ N, i.e., dL (νfn−f0 , ε0) < 1/n. Thus fn
PN−→ f0 as

n → ∞. Hence (fn) is increasing and strongly convergent to f0. Moreover, we have f∗ ≤ fn ↑ f0

by Theorem 3.12. Since f∗ ∈ D is arbitrary, this shows that f0 is an upper bound of D. For any
other upper bound g of D, we have fn ≤ g for all n ∈ N, thus sup fn = f0 ≤ g by Theorem 3.7.
Hence sup D = f0. �

Now, for directed subsets of a PNR space, we introduce a notion similar to a strong Cauchy
sequence.

Definition 3.16 Let D be an upwards directed set in a PNR space E. Then D is a probabilistic
norm Cauchy system provided that for any t > 0 there exists an element f(t) ∈ D such that
f1 ∈ Nf2(t) for all f1, f2 ∈ D satisfying f1, f2 ≥ f(t). The definition for a downwards directed
set is similar.

It is clear that if the directed set D is strongly convergent, then it is a probabilistic norm
Cauchy system. In the converse direction, we will prove that every probabilistic norm Cauchy
system is strongly convergent in a PBL. For this, we first present the following theorem.

Theorem 3.17 Let D be an upwards directed probabilistic norm Cauchy system in a PNR
space E. Then there exists an increasing sequence in D such that the sequence and D have the
same upper bounds (where it is possible that the set of these upper bounds is empty). A similar
assertion holds for downwards directed probabilistic norm Cauchy system.

Proof Let (tn) be a sequence of positive numbers such that tn ↓ 0. By hypothesis, there is
an element f1 ∈ D such that f ∈ Nf1(t1) for all f ∈ D satisfying f ≥ f1. Also there exists
f∗
2 ∈ D such that f ∈ Nf∗

2
(t2) for all f ∈ D satisfying f ≥ f∗

2 . Now choose f2 ∈ D such
that f2 ≥ f1 ∨ f∗

2 . Then f2 ≥ f1 and all f ≥ f2 in D satisfy the inequality θ ≤ f − f2 ≤
f − f∗

2 , thus νf−f2 ≥ νf−f∗
2
, which implies that dL (νf−f2 , ε0) ≤ dL

(
νf−f∗

2
, ε0

)
< t2, i.e.,

f ∈ Nf2(t2). Similarly, there exists an f3 ∈ D such that f3 ≥ f2 and f ∈ Nf3(t3) for all f ∈ D

satisfying f ≥ f3. Continuing in this way, we obtain an increasing sequence (fn) in D such
that f ∈ Nfn

(tn) for all f ∈ D satisfying f ≥ fn. In particular, we have fm ∈ Nfn
(tn) for

m ≥ n. This shows that (fn) is a strong Cauchy sequence. Now let us prove that if g is any
upper bound of (fn) , then g is an upper bound of D, i.e., g ∨ f = g for every f ∈ D. To show
this, let f ∈ D and fn in the sequence be given. Then there is an element f ′ ∈ D such that
f ′ ≥ f ∨ fn, and thus νf ′−fn

≤ ν(f∨fn)−fn
, i.e., dL

(
ν(f∨fn)−fn

, ε0

) ≤ dL (νf ′−fn
, ε0) < tn. On

the other hand, we can write

θ ≤ (g ∨ f) − g = g ∨ (f ∨ fn) − g ∨ fn ≤ (f ∨ fn) − fn,
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and so ν(g∨f)−g ≥ ν(f∨fn)−fn
, i.e.,

dL(ν(g∨f)−g, ε0) ≤ dL(ν(f∨fn)−fn
, ε0) < tn.

This holds for all n ∈ N. Since tn → 0, it follows that g ∨ f = g. This completes the proof. �

Theorem 3.18 Every probabilistic norm Cauchy system in a PBL is strongly convergent. If
the system is upwards directed, the strong limit is the supremum of the system. In other words,
if D ↑ and D is a probabilistic norm Cauchy system, then D is strongly convergent to some
f0, and D ↑ f0; similarly, if D is downwards directed.

Proof Let D be an upwards directed probabilistic norm Cauchy system in a probabilistic
Banach lattice E. Then by Theorem 3.17, D contains an increasing strong Cauchy sequence
(fn) such that dL (νfn−f , ε0) < λn for all f ∈ D satisfying f ≥ fn, where λn ↓ 0. Since E is
a PBL, the strong limit f0 of the sequence exists, and since (fn) is increasing, f0 is also the
supremum, i.e., fn ↑ f0 (see Theorem 3.12).

Let us prove that D is strongly convergent to f0. Since fn
PN−→ f0, given λ > 0 there exists

an N(λ) ∈ N such that dL (νfn−f0 , ε0) < λ for all n ≥ N(λ). Now choose n ≥ N(λ) such
that the corresponding λn satisfies λn ≤ λ, hence dL (νfn−f , ε0) < λ for all f ∈ D satisfying
f ≥ fn. Since τ is uniformly continuous, for each t > 0 we can find a λ > 0 such that
dL (νfn−f , ε0) < λ and dL (νfn−f0 , ε0) < λ imply that dL(τ (νfn−f , νfn−f0), ε0) < t. Now let
t > 0 and choose λ > 0 as mentioned just above. Then for any f ∈ D satisfying f ≥ fn, we
have νf−f0 ≥ τ (νf−fn

, νfn−f0), i.e.,

dL(νf−f0 , ε0) ≤ dL(τ (νf−fn
, νfn−f0), ε0) < t.

This shows that D is strongly convergent to f0. Hence we have D ↑ f0 by Theorem 3.15. �

4 Conclusion

In the classical Riesz space theory, Banach lattices receive special attention. The current work
serves as a brief introduction to the probabilistic analogues of Banach lattices. Thus we think
that there are many open problems and applications in this new research area.
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