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Abstract Let M be a full Hilbert C∗-module over a C∗-algebra A, and let End∗
A(M) be the algebra

of adjointable operators on M. We show that if A is unital and commutative, then every derivation

of End∗
A(M) is an inner derivation, and that if A is σ-unital and commutative, then innerness of

derivations on “compact” operators completely decides innerness of derivations on End∗
A(M). If A is

unital (no commutativity is assumed) such that every derivation of A is inner, then it is proved that

every derivation of End∗
A(Ln(A)) is also inner, where Ln(A) denotes the direct sum of n copies of A.

In addition, in case A is unital, commutative and there exist x0, y0 ∈ M such that 〈x0, y0〉 = 1, we

characterize the linear A-module homomorphisms on End∗
A(M) which behave like derivations when

acting on zero products.
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1 Introduction and Preliminaries

Throughout this paper, we only consider derivations from an algebra into itself. Recall that
a derivation of an algebra A is a linear mapping Δ from A into itself, such that Δ(ab) =
Δ(a)b + aΔ(b) holds for all a, b ∈ A. For a fixed b ∈ A, the mapping a → ba − ab is clearly a
derivation, which is usually called an inner derivation (implemented by b).

One of the interesting problems in the theory of derivations is to identify those algebras on
which all the derivations are inner, i.e., the first cohomology group is trivial. The first result
of this kind is probably due to Kaplansky who proved in [1] that every derivation of a type I
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W ∗-algebra is inner. The complete solution for the W ∗-algebra case was settled by Sakai in [2]
who proved that every derivation of a W ∗-algebra is inner. Kadison showed in [3] that every
derivation of a C∗-algebra A on a Hilbert space H is spatial (i.e., it has the form a → ta − at

for some bounded linear operator t on H, where t need not be in A), and more importantly
every derivation of a von Neumann algebra is inner. Similar problems have been investigated
for non-self-adjoint operator algebras, and we refer to [4–11] for more information about this
topic. We particularly point out that Christensen in [4] proved that every derivation of a nest
algebra is inner, and later this result was generalized by the second named author of this paper
to nest algebras on Banach spaces (see [6]). More general cases were also studied, for example,
Gilfeather and Moore in [5, 9] investigated the spatiality and quasi-spatiality of derivations of
certain CSL algebras which is a generalization of nest algebras.

This note is devoted to the study for innerness of derivations on the algebra of operators
in Hilbert C∗-modules. Hilbert C∗-modules first appeared in the work of Kaplansky (see [1]),
which play a significant role in theory of operator algebras, operator K-theory, group represen-
tation theory (via strong Morita equivalence), theory of operator spaces and so on (see [12]).

For the convenience of the reader, let us review some basics of Hilbert C∗-modules. Let
A be a C∗-algebra. A pre-Hilbert A-module is a complex linear space M which is a left A-
module (with compatible scalar multiplication: λ(ax) = (λa)x = a(λx) for λ ∈ C where C

denotes the complex field, a ∈ A and x ∈ M), and equipped with an A-valued inner product
〈·, ·〉 : M×M → A satisfying: for λ ∈ C, a ∈ A, x, y, z ∈ M,

(1) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0;
(2) 〈λx + y, z〉 = λ〈x, z〉 + 〈y, z〉;
(3) 〈ax, y〉 = a〈x, y〉;
(4) 〈x, y〉 = 〈y, x〉∗.

A pre-Hilbert A-module M is called a Hilbert C∗-module over the C∗-algebra A, or briefly, a
Hilbert A-module, if it is complete with respect to the norm: ‖x‖ = ‖〈x, x〉‖ 1

2 , x ∈ M.
Let M be a Hilbert C∗-module over a C∗-algebra A. Denote by 〈M,M〉 the closure of

the linear span of all 〈x, y〉, x, y ∈ M. We call M full if 〈M,M〉 = A. Since the set 〈M,M〉
is obviously a closed two-sided involutive ideal in the C∗-algebra A, one can always consider
any Hilbert C∗-module as a full Hilbert C∗-module over the C∗-algebra 〈M,M〉. A bounded
linear A-module homomorphism from M into itself is called an operator of M. Following [12],
denote by EndA(M) the Banach algebra of all operators of M. It is well known that there is
no natural involution on this algebra. For T ∈ EndA(M), we say that T is adjointable, if there
exists an operator T ∗ ∈ EndA(M) such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ M; usually, call T ∗

the adjoint of T . Denote by End∗
A(M) the set of all adjointable operator in EndA(M). Then

it becomes a C∗-algebra. For x, y ∈ M, define the operator θx,y of M by θx,y(ξ) = 〈ξ, y〉x,
ξ ∈ M. Note that θx,y is quite different from rank one operators, in the usual sense, on a
Hilbert space. For instance, we cannot infer that x = 0 or y = 0 from θx,y = 0. Denote by
K(M) the closed linear span of {θx,y : x, y ∈ M}. Then K(M) is a closed two-side ideal in
End∗

A(M). Elements of K(M) are often referred to as “compact” operators. But considered
as operators on the Banach space M they need not be compact. We collect some properties of
θx,y in the following lemma.
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Lemma 1.1 Let M be a Hilbert C∗-module over a C∗-algebra A, x, y ∈ M. Then
(1) θx,y ∈ End∗

A(M) and θ∗x,y = θy,x;
(2) Tθx,y = θTx,y for T ∈ EndA(M), and θx,yS = θx,S∗y for S ∈ End∗

A(M);
(3) if in addition, A is commutative then aθx,y = θax,y = θx,a∗y for a ∈ A.

A C∗-algebra A is said to be σ-unital if it possesses a countable approximate unit. The
following lemma is essentially due to Brown [13]. For a more direct proof, see [12, Lemma 2.4.3].

Lemma 1.2 Let A be a σ-unital C∗-algebra, and let M be a full Hilbert A-module. Then there
exists a sequence {xi} in M, such that the sequence of partial sums of the series

∑
i〈xi, xi〉 is

a countable approximate unit of the algebra A. In particular, if A is unital with unit 1, then
there exist a positive integer k and elements x1, x2, . . . , xk ∈ M such that

∑k
i=1〈xi, xi〉 = 1.

To prove our results, we also need the following three lemmas. The latter two are famous,
which were established by Kadison and Sakai, respectively; see also [14].

Lemma 1.3 ([12, Lemma 2.1.1]) Let M be a Hilbert C∗-module over a C∗-algebra A, and T, S

be two mappings from M into itself such that 〈Tx, y〉 = 〈x, Sy〉. Then T, S are both bounded
linear A-module homomorphism of M and so, belong to End∗

A(M).

Lemma 1.4 ([3]) Every derivation of a C∗-algebra annihilates its center.

Lemma 1.5 ([15]) Every derivation of a C∗-algebra is bounded.

2 Main Results

Our first main result reads as follows.

Theorem 2.1 Let A be a unital commutative C∗-algebra and let M be a full Hilbert A-module.
Then every derivation of End∗

A(M) is an inner derivation.

Proof Let Δ be an arbitrary derivation of End∗
A(M). By Lemma 1.2, there exist a positive

integer k and elements x1, x2, . . . , xk ∈ M such that
∑k

i=1〈xi, xi〉 = 1. Define two mappings
T, S : M → M by

Tx =
k∑

i=1

Δ(θx,xi
)xi, x ∈ M, Sy = −

k∑

i=1

Δ(θxi,y)∗xi, y ∈ M.

Clearly, T and S are both linear. For any A ∈ End∗
A(M) and any x ∈ M, we have Δ(Aθx,xi

) =
Δ(A)θx,xi

+AΔ(θx,xi
), and then Δ(Aθx,xi

)xi = 〈xi, xi〉Δ(A)x+AΔ(θx,xi
)xi, 1 ≤ i ≤ k. Hence

TAx =
k∑

i=1

Δ(Aθx,xi
)xi =

k∑

i=1

〈xi, xi〉Δ(A)x + A
k∑

i=1

Δ(θx,xi
)xi = Δ(A)x + ATx.

Consequently, Δ(A) = TA − AT holds for every A ∈ End∗
A(M). Thus, it suffices to show that

T ∈ End∗
A(M).

Denote by Z the center of End∗
A(M). Since A is commutative, for every a ∈ A, we can

define an operator Ta on M by Tax = ax, x ∈ M. It is worthwhile to notice that if A is
not commutative then Ta will not be an A-module homomorphism. We then have Ta ∈ Z
and (Ta)∗ = Ta∗ . We claim that Z = {Ta : a ∈ A}. In fact, let A ∈ Z. Then for each
x ∈ M, we have Aθx,xi

xi = θx,xi
Axi, 1 ≤ i ≤ k. It follows that Ax =

∑k
i=1〈Axi, xi〉x and

so A = T∑ k
i=1〈Axi,xi〉, as desired. By Lemma 1.4, for every a ∈ A, A ∈ End∗

A(M), we have
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Δ(Ta) = 0 and Δ(aA) = Δ(TaA) = Δ(Ta)A + TaΔ(A) = aΔ(A). This implies that Δ is an
A-module homomorphism.

Suppose x, y ∈ M are arbitrary elements. Then

Δ(θx,y) =
k∑

i=1

Δ(θx,xi
θxi,y)

=
k∑

i=1

Δ(θx,xi
)θxi,y +

k∑

i=1

θx,xi
Δ(θxi,y)

=
k∑

i=1

θΔ(θx,xi
)xi,y +

k∑

i=1

θx,Δ(θxi,y)∗xi

= θTx,y − θx,Sy.

Let x, y, u, v ∈ M. On the one hand,

Δ(θu,yθx,v) = 〈x, y〉Δ(θu,v) = 〈x, y〉θTu,v − 〈x, y〉θu,Sv.

On the other hand,

Δ(θu,yθx,v) = Δ(θu,y)θx,v + θu,yΔ(θx,v)

= (θTu,y − θu,Sy)θx,v + θu,y(θTx,v − θx,Sv)

= 〈x, y〉θTu,v − 〈x, Sy〉θu,v + 〈Tx, y〉θu,v − 〈x, y〉θu,Sv.

Consequently, we obtain 〈Tx, y〉θu,v = 〈x, Sy〉θu,v. Then

〈Tx, y〉〈v, v〉〈u, u〉 = 〈Tx, y〉〈θu,vv, u〉 = 〈x, Sy〉〈θu,vv, u〉 = 〈x, Sy〉〈v, v〉〈u, u〉.
In particular, taking u = xi, v = xj , we obtain

〈Tx, y〉〈xi, xi〉〈xj , xj〉 = 〈x, Sy〉〈xi, xi〉〈xj , xj〉
where 1 ≤ i, j ≤ k. Since

∑k
i=1〈xi, xi〉 = 1, it follows that 〈Tx, y〉 = 〈x, Sy〉 holds for all

x, y ∈ M. By Lemma 1.3, we get T ∈ End∗
A(M). So Δ is an inner derivation. The proof is

complete. �

Remark 2.2 In Theorem 2.1, suppose that the condition “A is unital” is substituted with “A
is σ-unital”. Then by Lemma 1.2, there exists a sequence {xi} in M, such that the sequence of
partial sums of the series

∑
i〈xi, xi〉 is a countable approximate unit of the algebra A. Similar to

the proof of Theorem 2.1, for every positive integer k, we define two mappings Tk, Sk : M → M
by

Tkx =
k∑

i=1

Δ(θx,xi
)xi, x ∈ M, Sky = −

k∑

i=1

Δ(θxi,y)∗xi, y ∈ M.

Then we can similarly obtain
∑k

i=1〈xi, xi〉Δ(A) = TkA − ATk for all A ∈ End∗
A(M), and

〈Tkx, y〉 = 〈x, Sky〉 for all x, y ∈ M which means that Tk ∈ End∗
A(M). If we define Δk =

∑k
i=1〈xi, xi〉Δ, then Δk is an inner derivation of End∗

A(M). For every A ∈ End∗
A(M) and

x ∈ M, recalling that {∑k
i=1〈xi, xi〉}∞k=1 is an approximate unit of the algebra A, it is easily

seen that limk→∞ Δk(A)x = Δ(A)x. Similar to [16], in this case, Δ is called an (weakly)
approximately inner derivation of End∗

A(M).
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The following result states that innerness of derivations on K(M) completely decide inner-
ness of derivations on End∗

A(M).

Theorem 2.3 Let A be a σ-unital commutative C∗-algebra and let M be a full Hilbert A-
module. If every derivation of K(M) is inner, then any derivation of End∗

A(M) is also inner.

Proof Let Δ be a derivation of End∗
A(M) and let {xi} in M such that the sequence of

partial sums of the series
∑

i〈xi, xi〉 is a countable approximate unit of the algebra A. For any
x, y ∈ M, we have

Δ(θ∑ k
i=1〈xi,xi〉x,y) =

k∑

i=1

Δ(θx,xi
θxi,y) =

k∑

i=1

Δ(θx,xi
)θxi,y +

k∑

i=1

θx,xi
Δ(θxi,y) ∈ K(M).

Noticing that ‖θ∑ k
i=1〈xi,xi〉x,y−θx,y‖ ≤ ‖∑k

i=1〈xi, xi〉x−x‖‖y‖, we get θ∑ k
i=1〈xi,xi〉x,y converges

to θx,y in norm topology, as k tends to ∞. It follows from Lemma 1.5 that Δ maps K(M)
into itself. By the assumption that every derivation of K(M) is inner, there exists an operator
T ∈ K(M) such that Δ(K) = KT − TK for all K ∈ K(M). Suppose that A ∈ End∗

A(M).
Then for every x ∈ M and every i,

Aθx,xi
T − TAθx,xi

= Δ(Aθx,xi
) = Δ(A)θx,xi

+ AΔ(θx,xi
)

= Δ(A)θx,xi
+ Aθx,xi

T − ATθx,xi
.

This implies that Δ(A)θx,xi
= (AT − TA)θx,xi

. Moreover, one has
k∑

i=1

〈xi, xi〉Δ(A)x =
k∑

i=1

〈xi, xi〉(AT − TA)x

for any positive integer k. Hence Δ(A) = AT − TA for all A ∈ End∗
A(M), i.e., Δ is an inner

derivation. This completes the proof. �
The proof of Theorem 2.1 depends heavily on the commutativity of the C∗-algebra A. In

the next theorem, this commutativity condition will be removed. However, in this case we
only infer that innerness of derivations for a concrete class of Hilbert C∗-module. Let A be a
C∗-algebra. With the inner product of elements x, y ∈ A defined by 〈x, y〉 = xy∗, the algebra
A becomes a Hilbert A-module. Denote by Ln(A) the direct sum of n copies of the Hilbert
module A. Then Ln(A) is a Hilbert A-module, whose inner product is given by the formula
〈x, y〉 =

∑n
i=1〈xi, yi〉, where x = x1 ⊕ · · · ⊕ xn, y = y1 ⊕ · · · ⊕ yn ∈ Ln(A).

Theorem 2.4 Let A be a unital C∗-algebra. Suppose that every derivation of A is inner.
Then for any positive integer n, every derivation of End∗

A(Ln(A)) is an inner derivation.

Proof Since A is unital, θ1,1 is the identity operator on the Hilbert A-module A. Thus
End∗

A(A) = K(A). For a positive integer n, we can identify End∗
A(Ln(A)) with the set of

n × n matrices over End∗
A(A). Hence End∗

A(Ln(A)) = K(Ln(A)). We write Mn(A) for the
C∗-algebra of n × n matrices over A. From [12, Proposition 2.2.2], we know that there exists
an isometric algebra ∗-isomorphism φn from K(Ln(A)) into Mn(A) such that

φn : θa1⊕···⊕an,b1⊕···⊕bn
−→

⎡

⎢
⎢
⎢
⎣

a1b
∗
1 · · · a1b

∗
n

...
. . .

...

anb∗1 · · · anb∗n

⎤

⎥
⎥
⎥
⎦

.
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So it suffices to prove that every derivation of Mn(A) is inner. To do this, we will proceed by
induction. It should be mentioned that the techniques used here are similar to those in the
proof of [17, Theorem 2], which characterizes the derivations of matrix algebras.

The conclusion holds clearly for n = 1, since every derivation of A is inner. Suppose that
the conclusion is true for n − 1 and that Δ is a derivation of Mn(A). Let Eij (1 ≤ i, j ≤ n) be
the n× n matrix units and E be the n × n identity matrix. We write P1 = E11, P2 = E − E11

and Bij = PiMn(A)Pj, where 1 ≤ i, j ≤ 2. Then P1 and P2 are idempotents with P1P2 = 0,
and B11 = a11E11, B12 =

∑n
j=2 a1jE1j , B21 =

∑n
i=2 ai1Ei1, B22 =

∑n
i,j=2 aijEij , where all

aij (1 ≤ i, j ≤ n) are in A. Obviously,

Mn(A) = B11 ⊕ B12 ⊕ B21 ⊕ B22.

Since Δ(P1) = Δ(P1)P1 + P1Δ(P1), we see that P1Δ(P1)P1 = P2Δ(P1)P2 = 0. Put S0 =
P1Δ(P1) − Δ(P1)P1. Define a mapping Δ1 : Mn(A) → Mn(A) by

Δ1(A) = Δ(A) − (AS0 − S0A), A ∈ Mn(A).

Then clearly, Δ1 is a derivation such that Δ1(P1) = 0. Because of Δ1(E) = 0, we have
Δ1(P2) = 0. Moreover, for any A ∈ Mn(A), we have

Δ1(P2AP2) = Δ1(P2)AP2 + P2Δ1(A)P2 + P2AΔ1(P2) = P2Δ1(A)P2.

Accordingly, Δ1|B22 , the restriction of Δ1 to B22, is a derivation of B22. Since B22 is isomorphic
with Mn−1(A), by the induction hypothesis, there exists an operator T0 ∈ B22 such that
Δ1(A22) = A22T0 − T0A22 for all A22 ∈ B22. Define a new derivation Δ2 : Mn(A) → Mn(A)
by

Δ2(A) = Δ1(A) − (AT0 − T0A), A ∈ Mn(A).

Then clearly, Δ2(E11) = 0 and Δ2(A22) = 0 for every A22 ∈ B22, and in particular, Δ2(E22)
= 0. Thus Δ2(E12) = Δ2(E11E12E22) = E11Δ2(E12)E22 = a0E12 for some element a0 ∈ A.
Define another new derivation Δ3 : Mn(A) → Mn(A) by

Δ3(A) = Δ2(A) + A(a0E11) − (a0E11)A, A ∈ Mn(A).

It is easily seen that Δ3(E11) = Δ3(E12) = 0, and Δ3(A22) = 0 for all A22 ∈ B22. Noting that
aE2j ∈ B22 for 2 ≤ j ≤ n and a ∈ A, we obtain

Δ3(aE1j) = Δ3(E12(aE2j)) = Δ3(E12)(aE2j) + E12Δ3(aE2j) = 0.

Hence Δ3(A12) = 0 for all A12 ∈ B12. Thus for 2 ≤ i ≤ n and b ∈ A, it follows that from
Δ3(E11) = Δ3(E1i) = Δ3(bEii) = 0 that

Δ3(bEi1) = Δ3((bEi1)E11) = Δ3(bEi1)E11 = Δ3(bEi1)E1iEi1

= (Δ3(bEi1)E1i + bEi1Δ3(E1i))Ei1

= Δ3(bEii)Ei1 = 0,

which implies that Δ3(A21) = 0 for all A21 ∈ B21. Also, for every c ∈ A, from cE12 ∈ B12 and
E21 ∈ B21 we see that Δ3(cE11) = Δ3((cE12)E21) = 0, i.e., Δ3(A11) = 0 for all A11 ∈ B11.
Consequently, for any A ∈ Mn(A), we have

Δ3(A) = Δ3(P1AP1) + Δ3(P1AP2) + Δ3(P2AP1) + Δ3(P2AP2) = 0.
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We now can conclude that Δ is an inner derivation, which is implemented by T0 − a0E11 +
E11Δ(E11) − Δ(E11)E11. The proof is complete. �

In [18], Jing et al. proved that an additive mapping on a standard operator algebra is almost
a derivation if it satisfies the expansion formula of derivations on pairs of elements with zero
product. The authors in [19, 20] continued the investigation in this direction, who extended
the result in [18] to prime rings, and obtained a similar result for generalized skew derivations
of prime rings.

We will conclude by characterizing the linear A-module homomorphisms on End∗
A(M)

which behave like derivations when acting on zero products. It should be mentioned that a
C∗-algebra (in particular, End∗

A(M)) is semiprime, but not prime.

Theorem 2.5 Let A be a unital commutative C∗-algebra and let M be a Hilbert A-module with
the property that there exist x0, y0 ∈ M such that 〈x0, y0〉 = 1. Suppose that Δ : End∗

A(M) →
End∗

A(M) is a linear A-module homomorphism, such that Δ(AB) = Δ(A)B + AΔ(B) for
every pair A, B ∈ End∗

A(M) with AB = 0. Then Δ(AB) = Δ(A)B +AΔ(B)−AΔ(I)B for all
A, B ∈ End∗

A(M). Particularly, if in addition Δ(I) = 0, then Δ is a derivation. Here, 1 and
I denote the unit of A and the identity operator on M, respectively.

Proof Let P ∈ End∗
A(M) be an arbitrary idempotent. For every A ∈ End∗

A(M), it follows
from AP (I − P ) = A(I − P )P = 0 that

Δ(AP )(I − P ) + APΔ(I − P ) = Δ(AP (I − P )) = 0

and

Δ(A − AP )P + (A − AP )Δ(P ) = Δ(A(I − P )P ) = 0.

Comparing these equalities, we obtain Δ(AP ) = Δ(A)P +AΔ(P )−APΔ(I). If we take A = I,
then PΔ(I) = Δ(I)P . Hence

Δ(AP ) = Δ(A)P + AΔ(P ) − AΔ(I)P. (2.1)

Let A ∈ End∗
A(M) and x ∈ M. We claim that

Δ(Aθx,y0) = Δ(A)θx,y0 + AΔ(θx,y0) − AΔ(I)θx,y0 . (2.2)

In fact, we can take a positive number λ small enough, such that 〈λx+x0, y0〉 is invertible in A.
Denote x′ = λx + x0 and a = 〈x′, y0〉−1. Then θax′,y0 is an idempotent. By the equality (2.1),
it follows that Δ(Aθax′,y0) = Δ(A)θax′,y0 + AΔ(θax′,y0)−AΔ(I)θax′,y0 . Since Δ is assumed to
be an A-module homomorphism, we get

Δ(Aθx′,y0) = Δ(A)θx′,y0 + AΔ(θx′,y0) − AΔ(I)θx′,y0 .

This equality minus the following one

Δ(Aθx0,y0) = Δ(A)θx0,y0 + AΔ(θx0,y0) − AΔ(I)θx0,y0

will imply that (2.2) holds.
Let A, B ∈ End∗

A(M). For any x ∈ M, by the equality (2.2), we have

Δ(ABθx,y0) = Δ(AB)θx,y0 + ABΔ(θx,y0) − ABΔ(I)θx,y0 .
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On the other hand,

Δ(ABθx,y0) = Δ(A)θBx,y0 + AΔ(θBx,y0) − AΔ(I)θBx,y0

= Δ(A)Bθx,y0 + AΔ(B)θx,y0 + ABΔ(θx,y0)

− ABΔ(I)θx,y0 − AΔ(I)Bθx,y0 .

Hence
Δ(AB)θx,y0 = Δ(A)Bθx,y0 + AΔ(B)θx,y0 − AΔ(I)Bθx,y0 .

By letting the two sides of this equation act on x0, we obtain

Δ(AB)x = (Δ(A)B + AΔ(B) − AΔ(I)B)x

for all x ∈ M, which implies Δ(AB) = Δ(A)B + AΔ(B) − AΔ(I)B. Obviously, if Δ(I) = 0
then Δ is a derivation. We are done. �
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