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Abstract Let k be an integer with k ≥ 2 and G a graph with order n > 4k. We prove that if the

minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a vertex cover

with exactly k components such that k−1 of them are chorded 4-cycles. The degree condition is sharp

in general.
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1 Terminology and Introduction

In this paper, we consider only finite undirected graphs without loops or multiple edges and
we use Bondy and Murty [1] for terminology and notation not defined here. Let G = (V, E)
be a graph; the order of G be |G| = |V | and its size be e(G) = |E|. A set of subgraphs is said
to be vertex-disjoint or independent if no two of them have common vertex in G, and we use
disjoint or independent to stand for vertex-disjoint throughout this paper. Let G1 and G2 be
two subgraphs of G or subsets of V (G). If G1 and G2 have no common vertex in G, we define
E(G1, G2) to be the set of edges of G between G1 and G2, and let e(G1, G2) = |E(G1, G2)|. Let
H be a subgraph of G and u ∈ V (G) a vertex. N(u, H) is the set of neighbors of u contained
in H. We write d(u, H) = dH(u) = |N(u, H)|. Clearly, d(u, G) is the degree of u in G, and we
write d(x) to replace d(x, G). If there is no fear of confusion, we often identify a subgraph H

of G with its vertex set V (H). For a subset U of V (G), we denote by G[U ] the subgraph of G

induced by U and write dH(U) =
∑

x∈U dH(x) for a subgraph H of G. Let C be a cycle, we
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use l(C) to denote the length of C. That is, l(C) = |C|. A Hamiltonian cycle of G is a cycle
which contains all vertices of G, and a Hamiltonian path of G is a path of G which contains
every vertex in G. A cycle of length 4 is called a quadrilateral. If S is a set of subgraphs of G,
we write G ⊇ S. For a noncomplete graph G, let σ2(G) = min{d(x) + d(y)|xy /∈ E(G)}; if G

is a complete graph, let σ2(G) := ∞. In this manuscript, we always write D to be the graph
obtained from K4 by removing exactly one edge. For a cycle C of G, a chord of C is an edge
of G − E(C) which joins two vertices of C. Throughout this paper, we call a cycle C in G a
chorded 4-cycle if C is a quadrilateral with at least one chord.

In his very excellent paper [2], Enomoto proposed the following interesting conjecture.

Conjecture 1.1 ([2]) Let s and k be two positive integers with 1 ≤ s ≤ k and G be a graph
with order n ≥ 3s + 4(k − s) + 3. Suppose σ2(G) ≥ n + s. Then G can be partitioned into k + 1
disjoint cycles H1, . . . , Hk+1 satisfying |Hi| = 3 for 1 ≤ i ≤ s and |Hi| ≤ 4 for s < i ≤ k.

It is probably the first step to specify the length of |Hi| for s < i ≤ k to solve Enomoto’s
conjecture. The following result obtained by Yan stated that the length of these cycles is four.

Theorem 1.2 ([3]) Let s and k be two positive integers with 1 ≤ s ≤ k and G be a graph
with order n ≥ 3s + 4(k − s) + 3. Suppose σ2(G) ≥ n + s. Then G contains k disjoint cycles
H1, . . . , Hk satisfying |Hi| = 3 for 1 ≤ i ≤ s for 1 ≤ i ≤ s, and |Hi| = 4 for s < i ≤ k.

In fact, by a tedious proof, we can improve the condition n ≥ 3s+4(k−s)+3 of Theorem 1.2
to n ≥ 3s + 4(k − s) + 1. With respect to Conjecture 1.1, Enomoto [2] verified the case when
s = k. To our knowledge, the general case for Conjecture 1.1 is still open. It is worthy to cite
the paper of Fujita [4], which solved the packing problem for disjoint D and verified a conjecture
proposed by Kawarabayashi [5].

Theorem 1.3 ([4]) Let k be an integer with k ≥ 2, and G a graph of order n ≥ 4k + 1. If
σ2(G) ≥ n + k, then G contains k disjoint D.

In this article, we consider the following problem: Given a graph G, when does G have a
vertex cover with exactly k components which satisfy the specified condition? Many studies
have been conducted regarding partitions of graphs into vertex-disjoint cycles, which contains
specified elements, see the survey paper [6]. In particular, as a basic result, we cite a classical
result of Brandt et al. [7].

Theorem 1.4 ([7]) Let k be a positive integer and let G be a graph of order n ≥ 4k. If
σ2(G) ≥ n, then G has a 2-factor with exactly k disjoint cycles.

The goal of this article is to prove a more specific version of Theorem 1.4. We specify the
structure of most components of a vertex cover with exactly k components in a given graph G.
The main purpose of this paper is to prove the following theorem.

Theorem 1.5 Let k be an integer with k ≥ 2. Suppose G is a graph of order n > 4k with
σ2(G) ≥ n + k. Then G contains a vertex cover with exactly k disjoint cycles such that k − 1
of them are chorded 4-cycles.

Remark 1.6 The condition on σ2(G) is the best possible. Consider the graph G = Kk−1 +
(Kn−k+1

2
+ Kn−k+1

2
). Then σ2(G) = n + k − 1, but we can not find a vertex cover with

exactly k components such that k − 1 of them are chorded 4-cycles. Note also the conclusion
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of Theorem 1.5 does not hold when n = 4k; this can be shown by G = K1 + (K 3k
2

+ K 5k
2 −1).

Very recently, we obtain a result stating that except at most one cycle, the other k − 1
cycles are chorded 4-cycles.

Theorem 1.7 ([8]) Suppose G is a graph of order n ≥ 4k + 3 with σ2(G) ≥ n + k. Then
G contains a vertex cover with exactly k + 1 disjoint cycles C1, . . . , Ck, Ck+1 such that Ci are
chorded quadrilateral for 1 ≤ i ≤ k − 1 and the length of Ck is at most four.

2 Lemmas

In the following, G is a graph of order n ≥ 3.

Lemma 2.1 ([9]) Let P = x1x2 · · ·xm be a path of G with m ≥ 2 and y ∈ V (G) − V (P ). If
d(y, P ) + d(xm, P ) ≥ m + 1, then G has a path P ′ from x1 to y such that V (P ′) = V (P )∪ {y}.
Furthermore, if yx1 /∈ E(G) and d(y, P ) + d(xm, P ) ≥ m, then G has a path P ′ with vertex set
V (P ′) = V (P ) ∪ {y} whose end vertices are y and x1.

Lemma 2.2 Let P = x1 · · ·xp be a path with p ≥ 2, M = y1z1 be an edge and S be a
subgraph in G such that all of them are disjoint, where S is isomorphic to D or K4. Suppose
e({x1, xp}∪M, S) ≥ 11; then G[V (M ∪P ∪S)] contains two disjoint subgraphs S′ and P ′ such
that P ′ is a path of order p + 1, where S′ is isomorphic to D or K4.

Proof For convenience, we write V (S) = {a, b, c, d} so that dS(a) ≥ dS(b) ≥ dS(c) ≥ dS(d).
Note that dS(a) = dS(b) = 3 and dS(c) = dS(d) ≥ 2. Therefore,

11 ≤ e({x1, xp} ∪ M, S) = e({xp, y1}, S) + e({x1, z1}, S)

and e({xp, y1}, S) ≤ 8, we may assume that e({xp, y1}, S) ≥ 6 and then e({x1, z1}, S) ≥ 3.
Furthermore, we observe that e({xp, y1}, S) ≤ 6. Otherwise, it is easy to see that G[V (M ∪
S ∪ P )] contains two required disjoint subgraphs. Then it follows that e({xp, y1}, S) = 6 and
e({x1, z1}, S) ≥ 5. If d(y1, S) = 4, then we have nothing to prove as d(xp, S) ≥ 2. So, we
assume 2 ≤ d(y1, S) ≤ 3 and then d(xp, S) ≥ 3.

Case 1 d(y1, S) = 3. Then d(xp, S) = 3.

Suppose that N(y1, S) = {a, b, c}. If xpd ∈ E(G), then G[V (M ∪ S ∪ P )] contains two
required subgraphs S′ = G[{y1, a, b, c}] and P ′ = P + d. Therefore, xpd /∈ E(G) and then
{a, b, c} = N(xp, S). However, we observe N(z1, S) ∩ N(x1, S) = ∅, which contradicts the
fact that e({x1, z1}, S) ≥ 5. Hence, by symmetry, we may assume that N(y1, S) = {d, b, c}.
As G[{y1, d, b, c}] ⊇ D, x1a /∈ E(G) and xpa /∈ E(G). Then N(xp, S) = {d, b, c}. Note that
N(x1, S)∩N(z1, S) ⊆ {b}, which follows from e({x1, z1}, S) ≥ 5 that {z1b, x1b} ⊆ E(G). Hence,
G[V (M ∪S∪P )] contains two required disjoint subgraphs S′ = G[{y1, z1, b, d}] and P ′ = P +c.

Case 2 d(y1, S) = 2. Then d(xp, S) = 4.

Suppose N(y1, S) = {c, d}. If d(z1, S) ≥ 3, then we have nothing to prove. Hence, we
may assume that d(z1, S) ≤ 2 and so d(x1, S) ≥ 3. By symmetry, say cx1 ∈ E(G). Then
G[V (M ∪S ∪P )] contains two required subgraphs S′ = G[{xp, a, b, d} and P ′ = xp−1 · · ·x1cy1.
Hence, by symmetry, we may assume that N(y1, S) = {a, b} or N(y1, S) = {c, a}. In both
cases, since G[{y1, a, c, b}] ⊇ D, then we can choose P ′ = P + d. The proof is complete. �
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Lemma 2.3 ([10]) Let P = x1 · · ·xk be a path of G with k ≥ 3. If d(x1, P ) + d(xk, P ) ≥ k,
then G[V (P )] contains a cycle C such that V (C) = V (P ).

Lemma 2.4 Let S and P = x1x2 · · ·xp be two disjoint subgraphs such that S is isomorphic
to D or K4 and P be a path with order at least 2. Suppose d(x1, S) + d(xp, S) ≥ 6, then
G[V (S ∪ P )] contains a spanning cycle.

Proof By contradiction. Label V (S) = {a, b, c, d} such that dS(a) ≥ dS(b) ≥ dS(c) ≥ dS(d). If
d(x1, S) = 4 or d(xp, S) = 4 holds, it is easy to check that G[V (S∪P )] contains a spanning cycle.
A contradiction. Hence, by symmetry, we may assume that d(x1, S) = 3 and so d(xp, S) = 3.
Furthermore, by the symmetric role of c and d, we divide the proof into two cases:

Suppose N(x1, S) = {a, b, c}. In this case, xpd /∈ E(G), otherwise, G[V (S ∪ P )] contains
a spanning cycle C ′ = x1 · · ·xpdabcx1. A contradiction. Hence, N(xp, S) = {a, b, c}. Then
G[V (S ∪ P )] contains a spanning cycle C ′ = x1 · · ·xpbdacx1. A contradiction again.

Suppose N(x1, S) = {a, d, c}. Then, xpb /∈ E(G), otherwise, G[V (S ∪ P )] contains a span-
ning cycle C ′ = x1 · · ·xpbdacx1, a contradiction. Hence, N(xp, S) = {a, d, c} and so G[V (S∪P )]
contains a spanning cycle C ′ = x1 · · ·xpdbacx1, a final contradiction, which completes the
proof. �

Since it is easy to check that the following lemma holds, we omit the proof.

Lemma 2.5 Let S and P = x1x2 · · ·xp be two disjoint subgraphs such that S is isomorphic
to D or K4, and P be a path with order at least 2. Suppose d(x1, S) + d(xp, S) ≥ 7, then for
each pair of distinct vertices w1, w2 ∈ V (S), there is a hamiltonian path P ′ of G[V (S∪P )] with
two end-vertices w1 and w2.

Lemma 2.6 Let S and P = x1x2 · · ·xp be two disjoint subgraphs such that S is isomorphic to
D or K4, and P be a path with order at least 2. Suppose d(x1, S) + d(xp, S) ≥ 5, then for each
Q ⊆ V (S) with |Q| = 3, there exist two pairs of w1, w2 ∈ Q such that G[V (S ∪ P )] contains a
hamiltonian path P ′ with two end-vertices w1 and w2.

Proof Label V (S) = {a, b, c, d} such that dS(a) ≥ dS(b) ≥ dS(c) ≥ dS(d). As d(x1, S) +
d(xp, S) ≥ 5, by symmetry, say d(x1, S) ≥ 3 and so d(xp, S) ≥ 1. Let us assume for the
moment, that d(x1, S) = 4. We conclude that xpc /∈ E(G). Otherwise, we define

P ′ =

⎧
⎨

⎩

adx1 · · ·xpcb, if Q ∈ {{a, b, c}, {a, b, d}},
cxp · · ·x1abd, if Q ∈ {{a, c, d}, {b, c, d}}.

Therefore, by symmetry, xpd /∈ E(G), Then we may assume that xpb ∈ E(G), and we define
P ′ as follows:

P ′ =

⎧
⎨

⎩

bxp · · ·x1dac, if Q ∈ {{a, b, c}, {b, c, d}},
dx1 · · ·xpbca, if Q ∈ {{a, b, d}, {a, c, d}}.

Hence, d(x1, S) = 3 and so d(xp, S) ≥ 2. By the symmetric role of c and d, we consider two
cases.

Case 1 N(x1, S) = {a, b, c}. In this cases, we claim xpd /∈ E(G), for otherwise, define

P ′ =

⎧
⎨

⎩

bdxp · · ·x1ac, if Q ∈ {{a, b, c}, {b, c, d}},
dxp · · ·xpcba, if Q ∈ {{a, b, d}, {a, c, d}}.
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Consequently, we may assume xpb ∈ E(G) as d(xp, S) ≥ 2, then define

P ′ =

⎧
⎨

⎩

dacx1 · · ·xpb, if Q ∈ {{a, b, d}, {b, c, d}},
adbxp · · ·x1c, if Q ∈ {{a, b, c}, {a, c, d}}.

Case 2 N(x1, S) = {a, d, c}. We claim that xpb /∈ E(G), for otherwise, define

P ′ =

⎧
⎨

⎩

bxp · · ·x1cad, if Q ∈ {{a, b, d}, {b, c, d}},
adbxp · · ·x1c, if Q ∈ {{a, b, c}, {a, c, d}}.

Consequently, we may assume xpc ∈ E(G) as d(xp, S) ≥ 2. Then define

P ′ =

⎧
⎨

⎩

abdx1 · · ·xpc, if Q ∈ {{a, b, c}, {a, c, d}},
bacxp · · ·x1d, if Q ∈ {{a, b, d}, {b, c, d}}. �

3 Proof of Theorem 1.5

Let G be a graph of order n > 4k with σ2(G) ≥ n + k and k ≥ 2. Suppose that Theorem 1.5 is
false. According to Theorem 1.3, G contains k vertex-disjoint subgraphs S1, . . . , Sk such that
Si is isomorphic D or K4 for each i ∈ {1, . . . , k}. We choose k disjoint S1, . . . , Sk in G so that

the length of a longest path in G − V

( k⋃

i=1

Si

)

is maximum. (3.1)

Let P = x1 · · ·xp be a longest path of G − V (
⋃k

i=1 Si). Subject to (3.1), we choose k disjoint
subgraphs S1, . . . , Sk and P in G such that

size of the maximum matching in G −
(

V

( k⋃

i=1

Si

)

∪ V (P )
)

is maximum. (3.2)

Let H =
⋃k

i=1 Si, F = G− V (H) and |F | = f . Furthermore, let M = {y1z1, . . . , yrzr} be a
maximum matching of F − V (P ). Define H1 = {Si : 1 ≤ i ≤ k}. By assumption, we suppose
that G[V (F ∪ Si)] contains no Hamiltonian cycle for each Si ∈ H1 and 1 ≤ i ≤ k. Our proof
includes several claims.

For convenience, for i = 1, . . . , k, we write V (Si) = {ai, bi, ci, di} such that dSi
(ai) ≥

dSi
(bi) ≥ dSi

(ci) ≥ dSi
(di). Note that dSi

(ai) = dSi
(bi) = 3 and dSi

(ci) = dSi
(di) ≥ 2.

Claim 3.1 p + 2r ≥ f − 1.

Proof To the contrary, suppose that p+2r ≤ f−2. Let w1 and w2 be two nonadjacent vertices
in F − V (P ) ∪ V (M) subject to (3.2). Then e({w1, w2}, yizi) ≤ 2 for each i ∈ {1, 2, . . . , r} by
the maximality of M . We prove that e({w1, w2}, P ) ≤ p. If p = 1, then by (3.1), we see that
e({w1, w2}, P ) = 0 < 1. Thus, there remains the case that p ≥ 2, by the maximality of P and
Lemma 2.1, we see that e({w1, w2}, P ) ≤ p. Thus, e({w1, w2}, F ) ≤ p + 2r ≤ f − 2. It follows
that

e({w1, w2}, H) ≥ n + k − (f − 2) = 5k + 2.

By pigeonhole principle, there exists Si ∈ H1 such that e({w1, w2}, Si) ≥ 6. Without loss of
generality, say d(w1, Si) ≥ d(w2, Si). Then d(w1, Si) ≥ 3 and d(w2, Si) ≥ 2. We will show that
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G[V (Si) ∪ {w1, w2}] contains a subgraph S′
i and an edge e such that they are disjoint, where

S
′
i is isomorphic D or K4.

If d(w1, Si) = 4, then it is obvious as d(w2, Si) ≥ 2. So we may assume that N(w1, Si) =
N(w2, Si) and d(w1, Si) = d(w2, S) = 3. Without loss of generality, we may assume that
{di, bi, ci} = N(w1, Si) or {ai, bi, ci} = N(w1, Si). In both cases, we choose S′

i = G[{w1, ci, w2,

bi}] and e = aidi.
In both cases, replace Si with S′

i resulting in a contradiction to the maximality of M

while (3.1) still holds. Thus, p + 2r ≥ f − 1. �

Claim 3.2 p ≥ f − 1.

Proof By contradiction, suppose that p ≤ f − 2. According to Claim 3.1, we see that M �= ∅.
Since P is a longest path in F , let R = {x1, xp, y1, z1}. By the maximality of P and Lemma 2.1,
we obtain e({x1, y1}, P ) ≤ p and e({xp, z1}, P ) ≤ p. Note that e({x1, xp}, F−V (P )) = 0. Thus,
e(R, F ) ≤ 2p + 2(f − p − 1) = 2f − 2. As x1y1 /∈ E(G) and xpz1 /∈ E(G), we obtain

e(R, H) ≥ 2(n + k) − (2f − 2) = 10k + 2.

This implies that there exists some Si ∈ H1 such that e(R, Si) ≥ 11. By Lemma 2.2, G[V (Si ∪
P )∪{y1, z1}] contains a subgraph S′

i ⊇ D and a path P ′ of order p + 1 such that S′
i and P ′ are

disjoint. Replacing Si with S′
i, we obtain a contradiction to (3.1). Thus, p ≥ f − 1. �

Claim 3.3 We can properly choose S1, . . . , Sk such that P is a Hamiltonian path of F .

Proof Otherwise, suppose p < f . By Claim 3.2, p = f−1. Take y ∈ V (F−P ). By Lemma 2.1,
d(xi, P )+d(y, P ) ≤ p for each i ∈ {1, p}. So, d(xi, F )+d(y, F ) ≤ p+d(y, F−P ) ≤ p+f−p−1 =
f − 1 for each i ∈ {1, p}. It follows that d(x1, H) + d(xp, H) + 2d(y, H) ≥ 2(n+ k)− 2(f − 1) =
10k + 2. This implies that there exists Si ∈ H1 such that d(x1, Si) + d(xp, Si) + 2d(y, Si) ≥ 11.

Now we will show that G[V (Si ∪ F )] can be partitioned into a subgraph S′
i ⊇ D and

P ′ of order f such that they are disjoint, a contradiction. Clearly, d(y, Si) ≥ 2. If d(y, Si)
= 4, as d(x1, Si) + d(xp, Si) ≥ 3, we may assume that zx1 ∈ E(G) with z ∈ V (Si). Then
G[V (Si − z)∪{y}] ⊇ S′

i ⊇ D, which disjoints the path P ′ = P + z. Hence, we have d(y, Si) ≤ 3
and so d(x1, Si) + d(xp, Si) ≥ 5. Without loss of generality, assume d(x1, Si) ≥ d(xp, Si). Then
d(x1, Si) ≥ 3 and d(xp, Si) ≥ 1.

We claim that d(y, Si) ≤ 2. Otherwise, suppose d(y, Si) = 3. We observe that G[N(y, Si)∪
{y}] ⊇ D, thus, it follows that N(y, Si) = N(x1, Si) and so d(xp, Si) ≥ 2. If N(y, Si) =
{ai, bi, ci}, then xpdi /∈ E(G). If aixp ∈ E(G), then we can choose S′

i = G[{y, bi, x1, ci}] and
P ′ = P − x1 + aidi. Hence, aixp /∈ E(G) and so bixp /∈ E(G) by symmetry. It follows that
d(xp, Si) ≤ 1. A contradiction. Therefore, by symmetry, we assume N(y, Si) = {di, bi, ci}.
Clearly, xpci /∈ E(G) and xpdi /∈ E(G). Consequently, N(xp, Si) = {ai, bi}. Then we can
choose S

′
i = G[{x1, bi, y, di}] and P ′ = P − x1 + aici such that they are disjoint.

From the above arguments, we obtain d(y, Si) = 2 and so d(x1, Si) = 4 and d(xp, Si) ≥ 3.
Furthermore, we observe that N(y, Si) = {ci, di}. As d(xp, Si) ≥ 3, by symmetry, we may
assume that {ai, bi, ci} ⊆ N(xp, Si) or {ci, bi, di} ⊆ N(xp, Si). In both cases, we can choose
S′

i = G[{xp, ai, bi, ci}] and P ′ = P − xp + diy such that S′
i and P ′ are disjoint. This completes

the proof of Claim 3.3. �
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Claim 3.4 p ≥ 2.

Proof Otherwise, suppose p = 1. Label P = z. Then n = 4k + 1 by Claim 3.3. For each
Si ∈ H1, there exists at most one edge between z and {ci, di}, for otherwise, G[V (Si) ∪ {z}]
induces a spanning cycle, a contradiction. By symmetry, say zci /∈ E(G). Clearly, we may
assume that N(z, Si) = {ai, bi} and Si

∼= D if d(z, Si) = 2. Recalling σ2(G) ≥ n + k, therefore,
there exists Si ∈ H1, say S1 without loss of generality, such that d(z, S1) ≥ 2. This implies
d(z, S1) = {a1, b1} and S1

∼= D. Since {c1, d1, z} is an independent set, we obtain

d(c1, H − S1) + d(d1, H − S1) + 2d(z, H − S1) ≥ 2σ2(G) − 8 > 10(k − 1).

This implies that there exists Sj ∈ H1 − S1, say j = 2, such that d(c1, S2) + d(d1, S2) +
2d(z, S2)) ≥ 11. We claim d(c1, S2) ≤ 2. Otherwise, we can insert c1 into S2 and obtain a
spanning cycle S′

2. Note that G[{z} ∪ S1 − c1] ⊇ D, denoted by S′
1, then G contains a vertex

cover with exactly k disjoint cycles S′
1, S

′
2, S3, . . . , Sk, a contradiction. By the symmetry role of

c1, d1 and z, d(d1, S2) ≤ 2 and d(z, S2) ≤ 2. This gives d(c1, S2) + d(d1, S2) + 2d(z, S2) ≤ 8. A
contradiction. The claim is complete. �

Claim 3.5 If p ≥ 3, then G[V (P )] is Hamiltonian.

Proof On the contrary, suppose that G[V (P )] is not Hamiltonian. Clearly, x1xf /∈ E(G) and
d(x1, P )+d(xf , P ) ≤ f−1 by applying Lemma 2.3 to P . Then d(x1, H)+d(xf , H) ≥ n+k−(f−
1) = 5k + 1. This implies that there exists Si ∈ H1, say S1, such that d(x1, S1) + d(xf , S1) ≥ 6.

By Lemma 2.4, G[V (S1 ∪ P )] contains a spanning cycle, denoted by S′
1. Then G contains a

vertex cover with exactly k disjoint cycles S′
1, S2, . . . , Sk, a contradiction. This completes the

proof for Claim 3.5. �
From Claim 3.4 and Claim 3.5, we may assume that x1xf ∈ E(G) throughout the rest of

this paper.

Claim 3.6 There exist xi ∈ V (P ) and St ∈ H1 such that d(xi, St) ≥ 2.

Proof By contradiction. Suppose that Claim 3.6 is false. Since σ2(G) ≥ n + k, then by
Ore’s classical theorem [11], G contains a hamiltonian cycle. Hence, there exist xi ∈ V (P ) and
Sj ∈ H1 such that d(xi, Sj) ≥ 1, 1 ≤ i ≤ f and 1 ≤ j ≤ k. By Claim 3.4 and Claim 3.5,
without loss of generality, say i = j = 1.

Suppose for the moment, x1c1 ∈ E(G). As G[V (S1 ∪ P )] does not contain a Hamiltonian
cycle, then e(xf , S1− c1) = 0. By Lemma 2.1, if d(d1, P )+d(xf , P ) ≥ f +1, then there exists a
Hamiltonian path d1Px1 on V (P )∪{d1} such that two end-vertices are x1 and d1. Consequently,
G[V (S1 ∪ P )] contains a Hamiltonian cycle C ′ = d1Px1c1b1a1d1, and so G contains a vertex
cover with k cycles C ′, S2, . . . , Sk, a contradiction. Hence, d(d1, P ) + d(xf , P ) ≤ f. Then
d(d1, S1) + d(xf , S1) = d(d1) + d(xf )− (d(d1, P ) + d(xf , P ))− d(d1, H −S1)− d(xf , H − S1) ≥
n + k− f −∑k

i=2 |Si| − (k− 1) = 5. So, d(xf , S1) ≥ 5− 3 = 2 as d(d1, S1) ≤ 3, a contradiction.
Thus, x1c1 /∈ E(G) and x1d1 /∈ E(G) by symmetry. Then we can assume that x1a1 ∈ E(G) by
the symmetry role of a1 and b1, it follows that xfc1 /∈ E(G) and xfd1 /∈ E(G), namely, d(xf , S1)
≤ 2. By Lemma 2.1 and our assumption that Theorem 1.5 is false, d(xf , P )+ d(c1, P ) ≤ f − 1.
However, we have d(xf , S1) + d(c1, S1) ≥ n + k − (f − 1) − ∑k

i=2 |Si| − (k − 1) = 6, then
d(xf , S1) ≥ 6 − 3 = 3, a contradiction. �
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Since G[V (P )] contains a Hamiltonian cycle by Claim 3.5, therefore, we may assume that
d(x1, S1) ≥ 2 by Claim 3.6. Next, we shall show that there exist some xi ∈ V (P ) and Sj ∈ H1,
such that d(xi, Sj) ≥ 3, 1 ≤ i ≤ f and 1 ≤ j ≤ k. Otherwise, d(x1, S1) = 2, d(x2, Sj) ≤ 2 and
d(xf , Sj) ≤ 2 for each 1 ≤ j ≤ k. By symmetry, we must be in one of the following two cases:

Case 1 a1 ∈ N(x1, S1). In this case, by our assumption, Theorem 1.5 is false, neither c1

nor d1 belongs to N(x2, S1) ∪ N(xf , S1). By Lemma 2.1, d(c1, P ) + d(x2, P ) ≤ f − 1 and
d(d1, P ) + d(xf , P ) ≤ f − 1. Let W = {c1, x2, d1, xf}. Then

∑

x∈W

d(x, H − S1) ≥ 2(n + k) − 2(f − 1) − 6 − 4 = 10(k − 1) + 2,

thus, we can assume that there exists S2 ∈ H1 − S1, such that
∑

x∈W d(x, S2) ≥ 11. Since
d(xi, S2) ≤ 2 for each i ∈ {2, f}, we obtain 8 ≥ d(c1, S2) + d(d1, S2) ≥ 7. By symme-
try, say d(c1, S2) = 4, d(d1, S2) ≥ 3 and d(xf , S2) = 2. Take y′ ∈ N(xf , S2) ∩ N(d1, S2),
clearly, G[V (S2 − y′) ∪ {c1}] ⊇ S′

1 ⊇ D, consequently, we obtain a desired vertex cover of G:
S′

1, xfy′d1b1a1x1 · · ·xf , S3, . . . , Sk, a contradiction.

Case 2 c1 ∈ N(x1, S1). From the above case, we see that S1
∼= D and N(x1, S1) = {c1, d1}.

Furthermore, by our assumption, Theorem 1.5 is false, neither c1 nor d1 belongs to N(x2, S1)∪
N(xf , S1). By Lemma 2.1, d(c1, P ) + d(x2, P ) ≤ f and d(d1, P ) + d(xf , P ) ≤ f . Let W ′ =
{c1, x2, d1, xf}. Then

∑

x∈W ′
d(x, H − S1) ≥ 2(n + k) − 2f − 4 − 4 = 10(k − 1) + 2,

thus, we can assume that there exists S2 ∈ H1 − S1, such that
∑

x∈W ′ d(x, S2) ≥ 11. Since
d(xi, S2) ≤ 2 for each i ∈ {2, f}, we obtain 8 ≥ d(c1, S2) + d(d1, S2) ≥ 7. By symme-
try, say d(c1, S2) = 4, d(d1, S2) ≥ 3 and d(xf , S2) = 2. Take y′ ∈ N(xf , S2) ∩ N(d1, S2),
we observe G[V (S2 − y′) ∪ {c1}] ⊇ S′

1 ⊇ D, then, we obtain a desired vertex cover of G:
S′

1, xfy′d1b1a1x1 · · ·xf , S3, . . . , Sk, a contradiction once again.

From the above arguments, we may assume that d(x1, S1) ≥ 3. Without loss of generality,
we assume {a1, b1, c1} ⊆ N(x1, S1) (otherwise, {c1, a1, d1} ⊆ N(x1, S1), then we choose b1

to replace the role of d1 in the following proof and the proof is similar). It is obvious that
d(x2, S1) = 0 and d(xf , S1) = 0 as G[V (S1 ∪ P )] contains no spanning cycle. Furthermore, by
Lemma 2.1, d(x2, P ) + d(d1, P ) ≤ f and d(xf , P ) + d(d1, P ) ≤ f . Hence, 2d(d1, H − S1) +
d(x2, H − S1) + d(xf , H − S1) ≥ 2(n + k) − 2f − 6 > 10(k − 1). This implies that there exists
S2 ∈ H1 − S1 such that 2d(d1, S2) + d(x2, S2) + d(xf , S2) ≥ 11. Note d(x2, S2) + d(xf , S2) ≤ 8,
thus, d(d1, S2) ≥ 2. Without loss of generality, say d(x2, S2) ≥ d(xf , S2). Then d(x2, S2) ≥ 2
as a consequence. Let G1 = G[V (S1 ∪ S2 ∪ P )] and define S′

1 = S1 − d1 + x1. Clearly, S′
1 ⊇ D.

Claim 3.7 d1 has at most three neighbors in V (S2).

Proof By contradiction, suppose d(d1, S2) = 4. Then G[V (S2) ∪ {d1} − {u}] contains D for
each u ∈ V (S2). Define P ′ = P − x1.

We first consider the case c2x2 ∈ E(G). We observe f ≥ 3. Otherwise, f = 2. Then
d(x2, S2) ≥ 2 and we show that G1 can be partitioned into S′

1 and S′
2, and so G contains a

desired vertex cover S′
1, S

′
2, S3, . . . , Sk, where S′

2 are defined as follows: If x2a2 ∈ E(G), then
choose S′

2 = x2c2b2d1d2a2x2. By symmetry, there remains the case x2d2 ∈ E(G), then choose
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S′
2 = x2c2a2d1b2d2x2. Since S′

1 ⊇ D and Theorem 1.5 is false by our assumption, thus, G[V (P ′∪
S2)∪{d1}] does not contains a spanning cycle. If xfa2 ∈ E(G), then G[V (P ′∪S2)∪{d1}] ⊇ S′

2 =
xfa2d1d2b2c2x2P

′xf , a contradiction. So, xfa2 /∈ E(G) and then xfb2 /∈ E(G) by symmetry.
If xfd2 ∈ E(G), then G[V (P ′ ∪S2)∪{d1}] ⊇ S′

2 = xfd2b2a2d1c2x2P
′xf , a contradiction again.

Hence, xfd2 /∈ E(G). Note that d(x2, S2) ≥ 2, we can also prove that xfc2 /∈ E(G) and so
d(xf , S2) = 0. If d(xf , P ′) + d(c2, P

′) ≥ f , then by Lemma 2.1, G[V (P ′) ∪ {c2}] contains a
spanning path P ′′ such that the end-vertices are c2 and x2. Recalling d(x2, S2) ≥ 2, we may
assume that x2a2 ∈ E(G) or x2d2 ∈ E(G) by symmetry. If the former holds, then G1 can be
partitioned into S′

1 and S′′
2 = c2P

′′x2a2d1d2b2c2, a contradiction. If the latter holds, then G1

can be partitioned into S′
1 and S′′

2 = c2P
′′x2d2d1a2b2c2, a contradiction again. In both cases,

G contains a vertex cover with k disjoint cycles S′
1, S

′′
2 , S3, . . . , Sk, a contradiction. Hence,

d(xf , P ′) + d(c2, P
′) ≤ f − 1 and so d(c2, G1) + d(xf , G1) ≤ f − 1 + 2 + 3 + 4 = f + 8. Then

d(c2, H−S1−S2)+d(xf , H−S1−S2) ≥ n+k− (f +8) = 5(k−2)+2, which implies that there
exists S3 ∈ H1−S1−S2, such that d(c2, S3)+d(xf , S3) ≥ 6. By Lemma 2.4, G[V (S3∪P ′)∪{c2}]
contains a spanning cycle, denoted by S′

3. As S2 − c2 +d1 is a chorded 4-cycle, then G contains
a vertex cover with exactly k disjoint cycles S′

1, S2 − c2 + d1, S
′
3, S4, . . . , Sk, a contradiction.

Hence, we may assume that x2c2 /∈ E(G) and x2d2 /∈ E(G) by symmetry. Then it follows
that {a2, b2} = N(x2, S2) and d(xf , S2) ≥ 1. If xfc2 ∈ E(G), then G1 can be partitioned into
S′

1 and S′′
2 = xfP ′x2b2a2d2d1c2xf , a contradiction. Hence, xfc2 /∈ E(G) and so xfd2 /∈ E(G).

Therefore, by the symmetry role of a2 and b2, we may assume that xfa2 ∈ E(G), then G1 can
be partitioned into S′

1 and S′′
2 = xfP ′x2b2c2d1d2a2xf , a contradiction once again. �

By Claim 3.7, we obtain d(x2, S2)+d(xf , S2) ≥ 5. Note that d(d1, S2) ≥ 2. If d(d1, S2) = 2,
take w1, w2 ∈ N(d1, S2) with w1 �= w2, then d(x2, S2)+d(xf , S2) ≥ 7. By Lemma 2.5, G[V (S2)∪
P − x1] contains a hamiltonian path P ′ connecting w1 and w2, consequently, we can merge d1

into P ′ and obtain a spanning cycle S′
2. Then G can be partitioned into S′

1, S
′
2, S3, . . . , Sk,

a contradiction. Therefore, we may assume that d(d1, S2) = 3 by Claim 3.7. As d(x2, S2) +
d(xf , S2) ≥ 5, by Lemma 2.6, for each Q ⊆ V (S2) with |Q| = 3, there exist two pairs w1, w2 ∈ Q

such that G[V (S2 ∪ P ) − {x1}] contains a hamiltonian path P ′ with two end-vertices w1 and
w2.

Now, we are in a position to complete the proof. By symmetry, we consider two cases:
Either {a2, c2, d2} = N(d1, S2) or {a2, b2, c2} = N(d1, S2). No matter how the neighbors of
d1 in S2 are, by Lemma 2.6 and the symmetric role of a2c2 and b2c2, or a2c2 and a2d2, we
can always assume that there exists a Hamiltonian path P ′ of G[V (S2 ∪ P ) − {x1}] with two
end-vertices c2 and a2. Then G1 can be partitioned into S′

1 and S′
2 = d1c2P

′a2d1, and so G

contains a desired vertex cover with exact components S′
1, S

′
2, S3, . . . , Sk, a final contradiction

completes the proof.
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