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Abstract If K is a field with involution and E an arbitrary graph, the involution from K naturally

induces an involution of the Leavitt path algebra LK(E). We show that the involution on LK(E) is

proper if the involution on K is positive-definite, even in the case when the graph E is not necessarily

finite or row-finite. It has been shown that the Leavitt path algebra LK(E) is regular if and only if

E is acyclic. We give necessary and sufficient conditions for LK(E) to be ∗-regular (i.e., regular with

proper involution). This characterization of ∗-regularity of a Leavitt path algebra is given in terms

of an algebraic property of K, not just a graph-theoretic property of E. This differs from the known

characterizations of various other algebraic properties of a Leavitt path algebra in terms of graph-

theoretic properties of E alone. As a corollary, we show that Handelman’s conjecture (stating that

every ∗-regular ring is unit-regular) holds for Leavitt path algebras. Moreover, its generalized version

for rings with local units also continues to hold for Leavitt path algebras over arbitrary graphs.
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1 Introduction

Leavitt path algebras can be regarded as the algebraic counterparts of the graph C∗-algebras,
the descendants from the algebras investigated by Cuntz in [1]. Leavitt path algebras can also
be viewed as a broad generalization of the algebras constructed by Leavitt in [2] to produce
rings without the Invariant Basis Number property.

The Leavitt path algebra LK(E) was introduced in the papers [3] and [4]. The algebra
LK(E) was first defined for a row-finite graph E (countable graph such that every vertex emits
only a finite number of edges) and a field K. Although their history is very recent, a flurry of
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activity has followed the papers [3] and [4]. The main directions of research include: charac-
terization of algebraic properties of a Leavitt path algebra LK(E) in terms of graph-theoretic
properties of E; study of the modules over LK(E); computation of various substructures (such
as the Jacobson radical, the center, the socle and the singular ideal); investigation of the rela-
tionship and connections with C∗(E) and general C∗-algebras; classification programs; study
of the K-theory; and generalization of the constructions and results first from row-finite to
countable graphs and finally, from countable to completely arbitrary graphs. For examples of
each of these directions see [3, 5–11].

The base field K is naturally endowed with an involution − (the identity involution can
always be considered in the absence of other possibilities). A given involution on K naturally
induces an involution of a Leavitt path algebra LK(E). The presence of an involution on a ring
yields some favorable features: the ring is isomorphic to its opposite ring and a certain dose
of symmetry is present. For example, a left Rickart ∗-ring is also a right Rickart ∗-ring while
this is not the case for one-sided Rickart rings. Also, consideration of a complex Leavitt path
algebra LC(E) as an algebra with involution (induced from the complex-conjugate involution
on C), brings LC(E) a step closer to its analytic counterpart C∗(E). These facts justify our
interest in the study of the involution on a Leavitt path algebra.

Raeburn [12] showed that the involution on LK(E) is proper if the involution on K is
positive-definite and E is a row-finite countable graph without sinks. We extend this result to
arbitrary graphs (Proposition 3.3). We also show that the converse holds: if the induced invo-
lution on LK(E) is positive-definite for every (equivalently some) graph E, then the involution
on K is positive-definite (Proposition 3.4).

In [13], Abrams and Rangaswamy characterized the (von Neumann) regular Leavitt path
algebras LK(E) as precisely those with acyclic underlying graphs E. In light of our consider-
ation of the involution on LK(E), we wonder when is LK(E) ∗-regular (regular with proper
involution). In Theorem 4.3, we characterize ∗-regular Leavitt path algebras as exactly those
with E acyclic and K that is proper up to a certain extent (determined by the least upper
bound of the numbers of all paths that end at any given vertex of E). Note that we do not
impose any conditions on the cardinality of E: we work with completely arbitrary graphs.

Most existing characterization theorems for Leavitt path algebras have the following form:

LK(E) has (ring-theoretic) property (P ) if and only if E has (graph-theoretic) property (P ′).

Such theorems have been formulated and proven for a good number of ring-theoretic properties.
For example, simple, purely infinite simple, exchange, semisimple, regular and other Leavitt
path algebras have been characterized. It is interesting that the underlying field K did not play
any role in those characterization theorems. Theorem 4.3, however, has a different form:

LK(E) has property (P ) if and only if E has property (P ′) and K has property (P ′′).

In other words, Theorem 4.3 is the first characterization theorem that involves a ring-theoretic
property of the field K as well. Moreover, the characterization of LK(E) that is positive-definite
(Proposition 3.4) also has the above form that features the field K as well.

The paper is organized as follows. In Section 2 we recall the basic definitions, examples and
properties of Leavitt path algebras, whereas in Section 3 we focus on the involution of LK(E)
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and prove Propositions 3.3 and 3.4. We devote Section 4 to the proof of the characterization
theorem for the ∗-regular Leavitt path algebras (Theorem 4.3). Finally, in Section 5 we consider
[11, Problem 48, p. 380] that we shall refer to “Handelman’s conjecture”. This conjecture is
stating that every ∗-regular ring is unit-regular. We prove that Handelman’s conjecture holds
for Leavitt path algebras. In fact, we formulate a generalized version of the conjecture for rings
with local units and show that it holds for Leavitt path algebras over arbitrary graphs.

2 Definitions and Preliminaries

We recall some graph-theoretic concepts, the definition and standard examples of Leavitt path
algebras.

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 (with no restriction on
their cardinals) together with maps r, s : E1 → E0. The elements of E0 are called vertices and
the elements of E1 edges. For e ∈ E1, the vertices s(e) and r(e) are called the source and range
of e. If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite. If E0 is finite
and E is row-finite, then E1 must necessarily be finite as well; in this case we say simply that
E is finite.

A vertex which emits (receives) no edges is called a sink (source). A vertex v is called an
infinite emitter if s−1(v) is an infinite set. A path μ in a graph E is a finite sequence of edges
μ = e1 · · · en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, s(μ) = s(e1) and
r(μ) = r(en) are the source and range of μ, respectively, and n is the length of μ. We view the
elements of E0 as paths of length 0.

If μ is a path in E, with v = s(μ) = r(μ) and s(ei) �= s(ej) for every i �= j, then μ is called
a cycle. A graph which contains no cycles is called acyclic.

Let K denote an arbitrary base field and E an arbitrary graph. The Leavitt path K-algebra
LK(E) is the K-algebra generated by the set E0∪E1∪{e∗ | e ∈ E1} with the following relations:

(V) vw = δv,wv for all v, w ∈ E0.
(P1) s(e)e = er(e) = e for all e ∈ E1.
(P2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(CK1) e∗f = δe,fr(e) for all e, f ∈ E1.
(CK2) v =

∑
e∈s−1(v) ee∗ for every v ∈ E0 that is neither a sink nor an infinite emitter.

The first three relations are the path algebra relations. The last two are the so-called
Cuntz–Krieger relations.

We let r(e∗) denote s(e), and we let s(e∗) denote r(e). If μ = e1 · · · en is a path in E,
we write μ∗ for the element e∗n · · · e∗1 of LK(E). With this notation, the Leavitt path algebra
LK(E) can be viewed as a K-vector space span of {pq∗ | p, q are paths in E}. (Recall that the
elements of E0 are viewed as paths of length 0, so that this set includes elements of the form v

with v ∈ E0.)
If E is a finite graph, then LK(E) is unital with

∑
v∈E0 v = 1LK(E); otherwise, LK(E) is a

ring with a set of local units consisting of sums of distinct vertices of the graph.
Many well-known algebras can be realized as the Leavitt path algebra of a graph. The most

basic graph configurations are shown below (the isomorphisms for the first three can be found
in [3], the fourth in [14], and the last one in [15]).
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Example 2.1 The ring of Laurent polynomials K[x, x−1] is the Leavitt path algebra of the
graph given by a single loop graph. Matrix algebras Mn(K) can be realized by the line graph
with n vertices and n − 1 edges. Classical Leavitt algebras L(1, n) for n ≥ 2 can be obtained
by the n-rose — a graph with a single vertex and n loops. Namely, these three graphs are

•�� • �� • �� • • �� • • �� ��
��

��

The algebraic counterpart of the Toeplitz algebra T is the Leavitt path algebra of the graph
having one loop and one exit:

•�� �� •
Combinations of the previous examples are possible. For instance, the Leavitt path algebra

of the graph

• �� • �� • • �� • ����
��

��

is Mn(L(1, m)), where n denotes the number of vertices in the graph and m denotes the number
of loops.

3 The Involution on a Leavitt Path Algebra

We recall some standard definitions first.
An involution ∗ on a ring R is an additive map ∗ : R → R that satisfies (ab)∗ = b∗a∗ and

(a∗)∗ = a for all a, b ∈ R. For any a ∈ R, the element a∗ is called the adjoint of a. An element
p in a ring with involution ∗ is called a projection if p is a self-adjoint (p∗ = p) idempotent
(p2 = p).

If there is an involution defined on a ring R, then R is said to be a ∗-ring. If R is also an
algebra over K with an involution −, then R is a ∗-algebra if (ax)∗ = ax∗ for a ∈ K, and x ∈ R.

Let n be a positive integer. An involution ∗ on a ring R is said to be n-proper if

x∗
1x1 + · · · + x∗

nxn = 0 implies x1 = · · · = xn = 0

for any n elements x1, . . . , xn in R. A ring with an n-proper involution will be referred to as
an n-proper ring. This property is clearly left-right symmetric, since each element xi = a∗

i for
some ai ∈ R. A 1-proper involution is simply said to be proper.

The involution ∗ is said to be positive-definite if it is n-proper for every positive integer n.

A ∗-ring with a positive-definite involution will be referred to as a positive-definite ring.
A field can have both an n-proper involution and an involution that is not n-proper. For

example, consider the field C: it is 2-proper (in fact positive-definite) for the conjugate involu-
tion (a + ib �→ a − ib) and not 2-proper for the identity involution. Also, the same involution
can be n-proper and not (n + 1)-proper (identity involution on C for n = 1).

Before we turn to Leavitt path algebras, let us recall one last fact about general ∗-rings.
Recall that if R is a ring with involution −, then the involution − induces the ∗-transpose
involution on the ring Mn(R) of n × n matrices over R given by

A = (aij) �→ A∗ = (aji).



∗-Regular Leavitt Path Algebras of Arbitrary Graphs 961

We believe that the following lemma is well known but we are not aware of a reference for
it. For completeness, we provide a proof here.

Lemma 3.1 Let n be a positive integer and let R be a ring with involution −. Then the
∗-transpose involution on Mn(R) is proper if and only if the involution − in R is n-proper.

Proof Assume that the involution − is n-proper in R. Suppose A∗A = 0 for some matrix A =
(aij) ∈ Mn(R). Then the diagonal entries of the product A∗A are zero and so

∑n
j=1 ajiaji = 0

for every i = 1, . . . , n. Since − is n-proper, aij = 0 for all i, j. Hence A = 0.

Conversely, suppose
∑n

i=1 aiai = 0 for ai ∈ R. Consider A to be the matrix of Mn(R)
that has the elements a1, . . . , an in its first column and zeroes in the rest of its columns. Then
A∗A = 0. Since the ∗-transpose involution is proper, A = 0. So ai = 0 for every i. �

We turn now to Leavitt path algebras. Let K be a field with involution − and let E be
an arbitrary graph. Recall that a typical element of the Leavitt path algebra LK(E) can be
written as

∑n
i=1 kipiq

∗
i where pi and qi are paths and ki ∈ K. It is straightforward to see that

the map ∗ given by
( n∑

i=1

kipiq
∗
i

)∗
=

n∑

i=1

kiqip
∗
i

defines the involution on LK(E) making it into a ∗-algebra.
If K is the field of complex numbers C and we consider the conjugate involution, the

∗-algebra structure of LC(E) agrees with the ∗-algebra structure of LC(E) (that is used for
instance to see LC(E) as a dense ∗-subalgebra of C∗(E) as shown in [10, Theorem 7.3]).

As we will see in the next section, the ∗-regularity of a Leavitt path algebra LK(E) is closely
related to the condition stating that the involution of LK(E) is n-proper or positive-definite.
In this section, we characterize the positive-definiteness of LK(E).

The following proposition can be proved by easily adapting Raeburn’s result [12, Lemma
1.3.1] to our notation and context.

Proposition 3.2 Let E be a row-finite, countable graph without sinks. If the involution − on
K is positive-definite, then the involution ∗ on LK(E) is proper.

Proof The proof follows completely [12, Lemma 1.3.1]. One only needs to take into account
that the axioms in [12] are given so that a path e1e2 · · · en in [12] corresponds to the path
enen−1 · · · e1 here (i.e., the edges in [12] are multiplied so that the action of f precedes the action
of e in the product ef, contrary to the action we consider here). Because of this difference,
the assumptions of [12, Lemma 1.3.1] that LK(E) is column-finite with no sources, correspond
exactly to our assumptions that LK(E) is row-finite with no sinks. �

It is noted in [12] that the condition that E does not have sinks (sources, in the terminology
of that paper) can be avoided by using the so-called Yeend’s trick. This assumption can also
be avoided using a technique called the Desingularization Process. The added benefit of the
desingularization is that it can help us also get rid of the row-finiteness assumption. The
desingularization of a graph E is a new graph F obtained by adding a tail (more details can
be found in [16] or [17]) to every sink or infinite emitter. The resulting graph F is a row-finite
graph without sinks such that LK(E) embeds in LK(F ) via an embedding that is a ∗-algebra
homomorphism (see [17, Proposition 5.1] for more details).
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Finally, the last remaining assumption (that the graph is countable) in Proposition 3.2 can
be avoided by means of the Subalgebra Construction (see [13] for more details). We recall here
the relevant concept EF used in this construction. We shall use EF in our main theorem too.

Let F be a finite set of edges in E. We define s(F ) (resp. r(F )) to be the sets of those
vertices in E that appear as the source (resp. range) vertex of at least one element of F . The
graph EF is then defined as follows (see [13, Definition 2]):

E0
F = F ∪ (r(F ) ∩ s(F ) ∩ s(E1 \ F )) ∪ (r(F ) \ s(F )),

E1
F = {(e, f) ∈ F × E0

F | r(e) = s(f)} ∪ {(e, r(e)) | e ∈ F with r(e) ∈ (r(F ) \ s(F ))},
where s((x, y)) = x and r((x, y)) = y for any (x, y) ∈ E1

F .

The graph EF is finite (see the comment after [13, Definition 2]). Also, by [13, Proposition 1],
there is an algebra homomorphism θ : LK(EF ) → LK(E). Furthermore, [13, Proposition 2]
shows that for every finite set of elements S of LK(E), there is a subalgebra B(S) of LK(E)
containing S. The subalgebra B(S) is of the form LK(EF )⊕(

⊕m
i=1 Kxi) where F is a finite set of

edges defined using S (see [13, p. 7]) and xi, i = 1, . . . , m is a finite set of vertices (defined in [13,
p. 8]). By [13, Proposition 2], LK(E) is a directed union of subalgebras B(S), where the S varies
over all finite subsets of LK(E). Furthermore, and key to our current discussion, θ preserves
the involution by the construction (as it can be seen from the proof of [13, Proposition 1]) so it
is a ∗-algebra homomorphism.

Proposition 3.3 Let E be an arbitrary graph. If the involution − on K is positive-definite,
then the involution ∗ on LK(E) is proper.

Proof We prove the claim first for the case when E is a countable. Let F be a desingularization
of E. By the Desingularization Process, F is a row-finite graph without sinks and there is a
∗-algebra monomorphism φ : LK(E) → LK(F ). Now, suppose that a∗a = 0 in LK(E). Apply
φ to get that φ(a)∗φ(a) = 0 in LK(F ). Since F is row-finite and does not contain sinks,
Proposition 3.2 can be applied and so φ(a) = 0. Then a = 0 since φ is a monomorphism.

Now suppose that E is arbitrary and let a ∈ LK(E) be such that a∗a = 0. By the
Subalgebra Construction, for the finite set S = {a, a∗}, there is a finite set of edges F and a
finite number of vertices xi, i = 1, . . . , m such that the subalgebra B(S) of LK(E) is of the form
LK(EF )⊕ (

⊕m
i=1 Kxi) and a, a∗ ∈ B(S). Since

⊕m
i=1 Kxi is a direct summand in the previous

equation for B(S), we can actually attach a finite number of isolated vertices v1, . . . , vm �∈ E0
F

to the graph EF so that we obtain a new finite graph G such that

LK(G) ∼= LK(EF ) ⊕
( m⊕

i=1

Kvi

)

via a ∗-algebra isomorphism.
Since B(S) is a subalgebra of LK(E), the equation a∗a = 0 holds in B(S) ∼= LK(G). Apply

the previous case to LK(G) in order to deal with possible sinks in G. Then we have a = 0. This
finishes the proof. �

The last result of this section is a characterization of Leavitt path algebras which have
positive-definite involutions in terms of the corresponding property in the field K.

Proposition 3.4 Let K a field with involution. The following conditions are equivalent :
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(i) The involution on K is positive-definite.

(ii) The involution on LK(E) is positive-definite for every graph E.

(iii) The involution on LK(E) is positive-definite for some graph E.

Thus, if E is an arbitrary graph, LK(E) is positive-definite if and only if K is positive-
definite.

Proof (i) ⇒ (ii) Given E, let us consider the graph MnE obtained from E by attaching a line
of length n − 1 to every vertex of E so that each line ends at the given vertex of the graph
(see more details in [7]). The graph MnE has the property that Mn(LK(E)) is isomorphic to
LK(MnE) as ∗-algebras by [7, Proposition 9.3].

By Proposition 3.3, we know that LK(MnE) is ∗-proper. So, Mn(LK(E)) is ∗-proper. Now
apply Lemma 3.1 to get that LK(E) is n-proper.

(ii) ⇒ (iii) is a tautology.

(iii) ⇒ (i) Suppose that
∑n

i=1 kiki = 0 for ki ∈ K. Let E be a graph such that the involution
on LK(E) is positive-definite. Let v ∈ E0. Since v is a projection then 0 = (

∑n
i=1 kiki)v =

∑n
i=1(kiv)∗(kiv) and therefore kiv = 0 for all i by hypothesis. But E0 is a set of linearly

independent elements in LK(E) by [11, Lemma 1.5], so that ki = 0 for all i, as needed. �

4 ∗-Regular Leavitt Path Algebras

The (von Neumann) regular Leavitt path algebras LK(E) were characterized in [13] as those
whose graphs E are acyclic. In light of the consideration of LK(E) as a ring with involution,
we wonder which acyclic graphs have LK(E) that is ∗-regular. We provide an answer to this
question in this section.

Recall that a ring R is (von Neumann) regular if for every a ∈ R there exists b ∈ R such that
aba = a, or equivalently [18, Theorem 4.23], every right (resp. left) principal ideal is generated
by an idempotent. This statement continues to hold if R is a ring with local units since b ∈ bR

(and b ∈ Rb) for all b in R so the principal right (and left) ideals of R have the same form as
the principal right (left) ideals of a unital ring.

If R is a ∗-ring, the projections take over the role of idempotents. Thus, the concept of
regularity for rings corresponds to ∗-regularity for ∗-rings: a ∗-ring R is said to be ∗-regular
if every principal right ideal is generated by a projection. This definition naturally extends
to rings with local units. Note that the condition of ∗-regularity is left-right symmetric since
aR = pR implies that Ra∗ = Rp for any a ∈ R and a projection p ∈ R. So every principal left
ideal of R is also generated by a projection in the case when every principal right ideal is.

A ∗-ring is ∗-regular if and only if it is regular and the involution ∗ is proper (see [19,
Exercise 6A, §3]). In the next proposition we give a proof of this fact for rings with local units.

Proposition 4.1 Let R be a ring with local units and with an involution ∗. Then R is ∗-
regular if and only if R is regular and ∗ is proper.

Proof If R is ∗-regular, then it is also regular because every projection is an idempotent.
Now assume that a∗a = 0 for some a ∈ R. Then aR = pR for some projection p so a = pa

(a = px for some x ∈ R implies that pa = ppx = px = a) and p = ay for some y ∈ R. So,
a∗ = a∗p = a∗ay = 0. Hence a = 0. Thus ∗ is proper.
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Conversely, suppose that R is regular and ∗ is proper. Since every principal right ideal is
generated by an idempotent, it is enough to show that for an arbitrary idempotent x in R,
Rx∗ = Rp for some projection p ∈ R. First observe that for any x ∈ R, rR(x) = rR(x∗x) where
rR(b) denotes the right annihilator of the element b ∈ R. This is because x∗xy = 0 implies that
(xy)∗xy = y∗(x∗xy) = 0 so that xy = 0 for any y ∈ R. By the regularity of R, Rx∗x = Rf for
some idempotent f ∈ R. Thus rR(x) = rR(x∗x) = rR(f) and so the left annihilators lR(rR(x))
and lR(rR(f)) are also equal.

We claim that Rx = lR(rR(x)). To see this, first note that, since x is an idempotent,
rR(x) = {a−xa | a ∈ R}. So if y ∈ lR(rR(x)), then y(a−xa) = 0 for all a ∈ R, that is ya = yxa

for all a ∈ R. Since R is a ring with local units, there is an idempotent u ∈ R such that yu = y

and xu = x. Hence y = yu = yxu = yx ∈ Rx. Thus lR(rR(x)) ⊆ Rx. Since the reverse
inclusion is obvious, Rx = lR(rR(x)).

Similarly, Rf = lR(rR(f)). Thus Rx = Rf = Rx∗x. Hence x = ax∗x for some a ∈ R. Let
p = ax∗. We claim that p is a projection with Rx∗ = Rp. To see this, note that x = px and so
pp∗ = pxa∗ = xa∗ = p∗. Since (pp∗)∗ = pp∗, we get p = p∗. From pp∗ = p∗ and p = p∗ we have
p2 = p and so p is a projection. From p = ax∗ and x∗ = x∗p we have that Rx∗ = Rp. �

We turn to Leavitt path algebras now. For any vertex v in a graph E, let μ(v) denote the
cardinality of the set of all the paths α in E with r(α) = v (including the trivial path v). With
this notation, we recall the statement of [20, Lemma 3.4 and Proposition 3.5]. Let E be a finite
acyclic graph and v a sink in E. The set

Iv =
{∑

i

kiαiβ
∗
i

∣
∣
∣
∣ αi, βi paths in E with r(αi) = r(βi) = v, ki ∈ K

}

is an ideal of LK(E) isomorphic to the matrix ring Mμ(v)(K). If {v1, . . . , vm} is the set of all
sinks in E, then LK(E) =

⊕m
i=1 Ivi

∼= ⊕m
i=1 Mμ(vi)(K). Let us denote this isomorphism by φ

and let us call it the canonical isomorphism.

From [20, Lemma 3.4 and Proposition 3.5] it can be seen that the restriction of φ on a
direct summand Iv, for a vertex v, is given by φ(

∑
i,j kijαiα

∗
j ) = (kij) ∈ Mμ(v)(K) where

i, j = 1, . . . , μ(v), αi and αj are paths ending at v and kij ∈ K.

Lemma 4.2 Let E be a finite acyclic graph and let {v1, . . . , vm} be all the sinks in E. The
canonical isomorphism φ : LK(E) =

⊕m
i=1 Ivi

→ ⊕m
i=1 Mμ(vi)(K) is a ∗-algebra isomorphism

(with the standard involution on LK(E) and the ∗-transpose involution on the matrix algebras).

Proof Since φ maps direct summands Ivi
on direct summands Mμ(vi)(K), it is enough if we

prove the statement when E has only one sink v. If α1, . . . , αμ(v) are all the different paths
(including the trivial path) ending in v, then a typical element of LK(E) = Iv has the form
∑

i,j kijαiα
∗
j for i, j = 1, . . . , μ(v), αi and αj paths ending at v and kij ∈ K. Then we have

φ

(( ∑

i,j

kijαiα
∗
j

)∗)
= φ

( ∑

i,j

kijαjα
∗
i

)

= φ

( ∑

i,j

kjiαiα
∗
j

)

= (kji) = (kij)∗.

This proves the claim since (kij)∗ =
(
φ
( ∑

i,j kijαiα
∗
j

))∗
. �

We finally have all the ingredients in hand to prove the main result of the paper.
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Theorem 4.3 Let E be an arbitrary graph, K be a field with involution − and let σ =
sup{μ(v) : v ∈ E0} in case the supremum is finite or σ = ω otherwise. The following conditions
are equivalent :

(i) LK(E) is ∗-regular.
(ii) LK(E) is regular and proper.
(iii) E is acyclic and K is n-proper for every finite n ≤ σ.

Proof (i) ⇔ (ii) is Proposition 4.1.
(ii) ⇔ (iii) By [13, Theorem 1], LK(E) is regular if and only if E is acyclic. So it is enough

if we show, under the assumption that LK(E) is regular (equivalently, E is acyclic), that the
involution − in K is n-proper for every finite n ≤ σ if and only if the involution ∗ in LK(E) is
proper.

Now [13, Proposition 2 and Theorem 1] also state that, when E is acyclic, LK(E) is a

directed union of subalgebras B(S) where each B(S)
θ∼= LK(EF )⊕ (

⊕m
i=1 Kxi) with EF a finite

acyclic graph constructed corresponding to various non-empty finite subsets F of edges in E.
Moreover θ is a ∗-algebra isomorphism as we noted before. For a fixed F , EF has a finite

number of sinks. Let us denote them by v1, . . . , vk. Then LK(EF )
φ∼= ⊕k

i=1 MμEF
(vi)(K) as ∗-

algebras by Lemma 4.2. Thus, the involution ∗ in LK(E) is proper if and only if the ∗-transpose
involution is proper in MμEF

(vi)(K) with vi ∈ EF for all the various graphs EF corresponding
to each B(S) in the stated directed system of subalgebras of LK(E).

We distinguish two situations.

Case 1 Suppose that σ is infinite. Then either μ(v) is infinite for some vertex v or for every
positive integer n, there is a vertex vn with μE(vn) an integer larger than n. In either case for
each integer n > 1, we can choose a vertex vn and a finite subset Fn of edges that appear in
the n − 1 distinct paths (other than the trivial path vn) ending in vn. The vertex vn is a sink
in EFn

by the definition of the graph EFn
.

Moreover, e1 · · · ek is a path of length k in E ending in vn if and only if the path in EFn

given by (e1, e2)(e2, e3) · · · (ek, vn) has length k and ends in vn. Thus, vn is a sink in EFn
with

μEFn
(vn) = n. The graph EFn

is finite acyclic (by [13, Lemma 1]). So, LK(EFn
) contains the

ideal Ivn
∼= Mn(K).

Since this holds for every n, the involution ∗ is proper in each subalgebra B(S) if and only
if the ∗-transpose involution is proper in Mn(K) for each positive integer n. This is equivalent,
by Lemma 3.1, to the statement that the involution − in K is n-proper for every n, that is,
that K is positive-definite.

Case 2 Suppose that σ is finite, say σ = n for some positive integer n. If n = 1, every vertex
in E is isolated and LK(E) is isomorphic to

⊕
v∈E0 Kv where Kv ∼= K. Both of those algebras

are proper, so we are done.
Suppose n > 1 and let v be a vertex for which μ(v) = n. Let Fv be the non-empty finite set

of edges in all the μE(v) − 1 nontrivial paths ending in v. As noted in Case 1, v is a sink (and
in this case, the only sink) in the finite acyclic graph EFv

and, moreover, μEFv
(v) = μE(v).

So by Lemma 4.2, we have LK(EFv
) ∼= MμE(v)(K) as ∗-algebras. Moreover, as n is the

least upper bound of {μ(v) : v ∈ E0}, then all matrices MμEFi
(vi)(K) appearing in all other
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subalgebras B(S) for various other finite subsets of edges Fi and sinks vi will all have order
that is less than or equal to n.

Therefore the involution ∗ is proper in each B(S) if and only if the ∗-transpose involution
is proper in MμE(v)(K). Since μ(v) = n, the last statement holds exactly when the involution
− in K is n-proper, again by Lemma 3.1. This finishes the proof. �

It is interesting to point out that the presence of involution gives a more prominent role to
the field K than it had in the previous characterization theorems (e.g., simplicity [3], purely
infinite simplicity [15], finite-dimensionality [20], just to cite a few). In particular, Theorem 4.3
also contrasts the characterization of regularity from [13] that was independent of the field K.

We further illustrate this behavior with an easy example. If E is the graph

• �� • ,

then LK(E) ∼= M2(K) as ∗-algebras for any field K. If K = R with the identity involution,
LR(E) is ∗-regular because R is positive-definite. However if K = C with the identity involution,
then LC(E) ∼= M2(C) is regular but it is not ∗-regular (since the identity involution in C is
not 2-proper). Furthermore, if K = C with the conjugate involution, then LC(E) is ∗-regular,
because the conjugation of complex numbers is positive-definite.

Also, since the identity involution on a field of characteristic n > 0 is not n-proper, the
properness (thus also ∗-regularity) of a Leavitt path algebra over such field depends on the
characteristic of the field. This fact also brings the field characteristic into spotlight.

Let us note the following corollary of Theorem 4.3.

Corollary 4.4 Let K be a field with involution. The following conditions are equivalent :

(i) The involution on K is positive-definite.

(ii) LK(E) is ∗-regular for every acyclic graph E.

Proof (i) ⇒ (ii) follows directly from Theorem 4.3.

(ii) ⇒ (i) Let us assume that LK(E) is ∗-regular for every acyclic E. Consider the line of
length n− 1 (see the second graph in Examples 2.1). The Leavitt path algebra of this graph is
isomorphic to Mn(K). From the assumption that this algebra is ∗-regular, we obtain that K is
n-proper by Lemma 3.1. Since this holds for every n, K is positive-definite. �

It is also interesting to note that the two equivalences of Corollary 4.4 parallel the first two
equivalences of Proposition 3.4. The last equivalence of Proposition 3.4 in the ∗-setting would
have the form: “LK(E) is ∗-regular for some acyclic graph E”. However, this statement is
weaker than the other two equivalences in Corollary 4.4 so we do not have complete analogy
with Proposition 3.4. To see this, consider a graph consisting of a single vertex and the complex
numbers with the identity involution. The Leavitt path algebra of this graph is ∗-regular but
the field is not positive-definite.

5 Handelman’s Conjecture for Leavitt Path Algebras

We close this paper by pointing out that Handelman’s conjecture has a positive answer for the
family of Leavitt path algebras of arbitrary graphs. The conjecture can be stated as follows.

Conjecture 5.1 (Handelman [21, Problem 48, p. 380]) Every ∗-regular ring is unit-regular.
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This conjecture assumes that the ring is unital. First, we note that it is true for unital
Leavitt path algebras. Let us assume that a unital LK(E) is ∗-regular. Then E is acyclic by
Theorem 4.3. Then we have that LK(E) is unit-regular by [13, Theorem 2].

To prove that the conjecture remains true for Leavitt path algebras of arbitrary graphs, we
adapt the notion of unit-regularity for rings with local units, as was done in [13] for instance.

Recall that a ring R with identity is said to be unit-regular if for each a ∈ R, there is a unit
(an invertible element) u such that aua = a. If R is a ring with local units, then R is called
locally unit-regular if for each a ∈ R there is an idempotent (a local unit) v and local inverses
u, u′ such that uu′ = v = u′u, va = av = a and aua = a.

Clearly, a unit-regular (unital) ring is locally unit-regular (take the idempotent v from the
definition of locally unit-regular to be the identity). Conversely, if a ring with identity is locally
unit-regular, then it is unit-regular (see also [13, Lemma 3 (1)]). To see this, let a ∈ R. Then
there is an idempotent v and local inverses u, u′ in vRv such that uu′ = v = u′u, va = av = a

and aua = a. Then w = u + (1− v) and w′ = u′ + (1− v) satisfy ww′ = 1 = w′w and a = awa.
Hence R is unit-regular.

Corollary 5.2 Let E be an arbitrary graph and let K be a field with involution. Suppose
LK(E) is ∗-regular. Then

(i) LK(E) is locally unit-regular.
(ii) If LK(E) is a unital ring, then LK(E) is unit-regular.

Proof (i) If LK(E) is ∗-regular, we have that E is acyclic by Theorem 4.3. Then LK(E) is
locally unit-regular by [13, Theorem 2].

(ii) is a consequence of the fact that every unital locally unit-regular ring is unit-regular. �
Let us also note that the converse of Handelman’s conjecture is not true. The examples of

unit-regular and not ∗-regular rings can be found in the class of Leavitt path algebras as well.
For instance, M2(C) with the identity involution on C is such an example: we know that it is
not ∗-regular but it is unit-regular (as a semisimple ring, see [21, p. 38]).
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