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1 Introduction and Setup

The purpose of this paper is to investigate the relationships among the scale-invariant finite
range parabolic Harnack inequality, short time heat kernel estimates and conditions on jump-
ing kernels for a class of symmetric jump-type Markov processes. It can be regarded as a
complement to two recent papers [1-2].

A now well-known fundamental result on diffusions is that a scale-invariant parabolic Har-
nack inequality is equivalent to Gaussian upper and lower bounds on the heat kernel. But unlike
the case of diffusion processes, such equivalent relation is not true for general jump-type Markov
process. Very recently in [3], the above types of relations have been discussed for the random
walk case. This paper is motivated by [3] and [2]. In [2], we established sharp two-sided heat
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kernel estimate for finite range a-stable-like processes and derived a scale-invariant parabolic
Harnack principle for them. Unlike in [3] and [4], a finite range (i.e. truncated) a-stable-like
process does not have the polynomial bounds on the heat kernel for large ¢. It has the polyno-
mial bounds on the heat kernel only for small ¢ and small |2 — y|. Therefore a natural question

arises.

Question 1.1 Suppose Y is a pure jump symmetric Markov process. What is the necessary
and sufficient conditions on jumping kernel J(x,y) for Y to have a scale-invariant parabolic
Harnack inequality in finite range (that is, for x,y with bounded distance)?

In this paper, we would like to answer the above question for a class of jump-type Markov
processes on metric measure spaces.

The approach of this paper is adapted from those of [4, 1]. However, due to the mild
assumption on jumping kernel J(z,y) for z,y with large distance, a quite large amount of
refinement is required and there are also new challenges to overcome. We hope our paper will
motivate more research in this direction.

In the following, if f and g are two functions defined on a set D, f < g means that there
exists ¢ > 0 such that ¢ f(z) < g(z) < ¢ f(z) for all z € D.

Let (F, p, it) be a locally compact separable metric space with metric p and a Radon measure
1 having full support on F. We assume u(F') = oo throughout this paper. Assume further that
there is a metric space G O F', and p(-, -) can be extended to be a metric on G with dilation for
F,i.e. there is a constant ¢; > 1 such that for every z,y € F and § > 0, "'z, 6 'y € G with

e o p(a,y) < p(67 e, 67 y) < e 6 pla, y). (1.1)

Clearly the above condition is satisfied if F© C R™ as we can take G to be R™. See [5] for a
non-Euclidean example of F' satisfying the above condition.

We assume that there exists a strictly increasing function V : Ry — R such that V(0) =0
and there exist constants ¢y > ¢; > 0 and d > dy > 0 such that

do d
c1 (f) < “//((]:)) < ¢y (f) for every 0 <r < R < o (1.2)
and
a V(r) <u(B(x,r)) < e V(r) for every z € F and r > 0. (1.3)

Let ¢ be a strictly increasing continuous function ¢ : Ry — Ry with ¢(0) = 0, ¢(1) =1
and satisfy the following: There exist constants co > ¢; > 0, ¢3 > 0, and #2 > 1 > 0 such that

B B2
1 (f) < Z((f; < 02<1:> for every 0 < r < R < o0, (1.4)
/T ® ds < 3 e for every r > 0. (1.5)
o o(s) T T e(r)

Remark 1.1 Note that conditions (1.2)—(1.4) are equivalent to the existence of constants
c4,c5 > 1 and Ly > 1 such that, for every r > 0,

cad(r) < p(Lor) < cs¢p(r) and 4V (r) < V(Lor) < e5 V(r).
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Denote the diagonal set {(x,z); x € F} by d. Let k > 0 and J be a symmetric measurable

function on I x F'\ d such that J(2,y)1{(z,):p(x,y)>x} is bounded and for all (z,y) € F' x F'\d
1
J(z,y) = for p(z,y) <x and sup/ J(2, y)u(dy) < oo.
V(p(xay))¢(p(x,y)) zeF J{yeF:p(y,z)>K}

(1.6)
The constant £ in (1.6) plays no special role, so for convenience we will simply take k = 1 in
the rest of this paper.
For u € L?(F, j1), define
&(u) := & (u,u) ::/ (u(z) — u(y))*J (z, y)p(dz)u(dy) (L.7)

FxF
and for 7 > 0,

Ep(u) == ép(u,u) == &(u,u) + ﬂ/Fu(x)Q,u(dx)

Let C.(F') denote the space of continuous functions with compact support in F', equipped with

the uniform topology. Define
(&) :={f € C(F): 8(f) < o0} (1.8)

Using [1, Lemma 2.1 (1)] and our (1.6), one can follow the proof of [1, Proposition 2.2] and
check that (&£,.%) is a regular Dirichlet form on L2(F, ), where .7 := 2(&)"". So there
is a Hunt process Y associated with it on F, starting from quasi-every point in F' (see [6]).
Function J(z,y) is the jumping intensity kernel for Y and it determines a Lévy system of Y,
which describes the jumps of the process Y: for any non-negative measurable function f on
Ry X F x F, x € F and stopping time T (with respect to the filtration of Y),

/OT (/F f(S,Kw)J(Kw)M(dy)) ds] , (1.9)

When J(z,y) =0 for p(z,y) > 1, we call Y a finite range jump process.

E. | Y f(s,Ye,Yo)| =Es

s<T

Theorem 1.2 The process Y is conservative; that is, Y has infinite lifetime Py-a.s. for q.e.
rel.

Proof Note that under condition (1.6), sup,cp [(1 A p(z,y)?)J (z,y)u(dy) < oo. For every

A > 0, using Fubini’s theorem and assumptions (1.2)—(1.3), we have

oo

[ utan) = [T e B ) =3 [ p(Bla e dn

<cA (1 +/ rd e)‘rdr) < 00.
1

It now follows from [7, Theorem 3.1] that Y is conservative. O

Remark 1.3 (i) In [1], the following condition is assumed as condition (1.1) there. For x € F'
and 7 > 0, let B(z,r) denote the open ball centered at x with radius ». We assume that there
exist a point zg € F, a constant £ € (0, 1], and an increasing sequence r,, — oo so that for
everyn > 1,0 <r <1, and x € B(zg, ),

there is some ball B(y, kr) C B(x,r) N B(xg, ). (1.10)
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This condition is only used in [1] for the proof of conservativeness of Y in [1, Theorem 4.7]. So
in view of the above Theorem 1.2, condition [1, (1.1)] can be dropped from [1].

(ii) There is a gap in the proof of [1, Lemma 6.1] for the case of v > 77 > 0. An extra
condition on J is needed to ensure the comparability on line 17 of [1, p.312] to be valid. Clearly,

in the notion of [1] where
! < J(x,y) < ‘
cV(p(z, y))or(p(z,y))b(Crp(e,y)) Vip(z,9)¢1(p(x, y)) ¥ (Cap(z, y))
for p(z,y) > 1 and some positive constants ¢, Cy, Cy with ¢, satisfying the conditions (1.2)—(1.4)

for ¢, if we assume
Cy=Cy and ¢(r+1)<cyp(r) foreveryr >1, (1.11)

then comparability and hence Lemma 6.1 of [1] hold true. Obviously the second condition
in (1.11) is satisfied if ¢» = 1 or ¢(r) = 7" for some constant v > 0. A condition such as (1.11)
should have been imposed on the jumping kernel for the main results in [1] for the case of
~v2 > 1 > 0 such as heat kernel estimates [1, Theorem 1.2] and the scale-invariant parabolic
Harnack inequality [1, Theorem 4.12]. The jumping kernel of any relativistic a-stable process
on R? satisfies the condition (1.11) (see [1, Example 2.4]) so all the results in [1] are applicable
to relativistic a-stable processes on R?. This paper is motivated by finding the most general
condition of J(x,y) for p(x,y) > 1 (that is, on ¢ in setting of [1]) under which the scale-
invariant parabolic Harnack inequality in finite range and the short time heat kernel estimates
established in [1] remain true.

In Section 3 we will show the Holder continuity of transition density function of Y so that
the process can be refined to start from every point in F. We say UJS holds (see [3]) if for a.e.
x,y € F,

J(x,y) < ¢ / J(z,y)u(dz) whenever r < Jp(z,y). (UJs)
V(T) B(xz,r)

For R > 0, we say UJS<p holds if the above holds for a.e. z,y € F and r < p(;;’y) A R, where
the constant ¢ may depend on R. It is easy to check that finite range jump process satisfies
UJS<;. Clearly, under condition (1.11), the jumping kernel J(z,y) of [1, (1.9) and (1.12)]
satisfies UJS. We would like to emphasize that UJS is a quite weak condition, especially in
R™. For example, if a jumping kernel J(z,y) =< j(Jx — y|) for some decreasing function j, then

by an elementary geometry, one can see easily that for r < é\x -y,

/B i / J(1z — ydz > eri(lz — yl),

B(z,r)n{[z—y[<[|z—yl}
for some positive constant ¢ independent of r. Thus UJS holds for such case. Under some mild
geometric condition on the state space, the above argument works for metric measure spaces.
Let Zs := (V,Y5) be a space-time process where Vi = V) — s. The filtration generated by Z
satisfying the usual condition will be denoted as {%, s > 0}. The law of the space-time process
s — Z, starting from (¢,2) will be denoted as P(:*). For every open subset D of [0,00) x F,
define 7p = inf{s > 0: Zs ¢ D}.
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We say that a non-negative Borel measurable function u(t,z) on [0,00) X F' is parabolic
(or caloric) on D = (a,b] x B(xg,r) for Y if there is a properly exceptional set .4, of YV
so that for every relatively compact open subset Dy of D, u(t,z) = E(t®) [w(Z:p, )] for every
(t,x) € D1 N ([0,00) x F'\ A,). Here a set A" C F is called properly exceptional with respect
to the process Y if p(4") =0 and

P*({Y:,Y;—} C F\ A foreveryt >0)=1 forx e FF\ .

It is well-known (see [6]) that every exceptional set is &-polar and every &-polar set is contained
in a properly exceptional set. Later we will show in Theorem 3.1 below that every bounded
parabolic function is (locally) Holder continuous and so the properly exceptional set .4” can be
dropped.

We say the (scale-invariant) parabolic Harnack inequality PHI(¢)<g, holds for Y if the
following is true: For every § € (0,1), there exists ¢ = ¢(¢,d, R1) > 0 such that for every
29 € F, tg > 0, R < R; and every non-negative function u on [0,00) X F that is parabolic on
(to, to +40¢(R)] x B(zo,4R),

sup  u(ty,y1) <c inf  wu(ts,ya), (PHI(¢)<g,)
(t1,y1)€Q— (t2,y2)€Q+

where Q_ = [to+0¢(R), to+20¢(R)] x B(xo, R) and Q4+ = [to+30¢(R), to+40¢(R)] x B(zo, R).
Note that we do not assume a priori that the parabolic function w > 0 is bounded on
(to,to +40¢(R)] x B(z,4R).
The purpose of this paper is to give the necessary and sufficient condition for PHI(¢)<g,
to hold.

Theorem 1.4 Suppose that the jumping kernel is continuous and satisfies (1.6). Then
PHI(¢)<r, is equivalent to UJS<p, .

Remark 1.5 If J(x,y) < V(p(@y))l(b(p(myy)) on F x F, it is shown in [1, Theorem 4.12] (the case
of 41 = 72 = 0) that a global version of scale-invariant parabolic Harnack inequality PHI(¢)
holds in the sense that PHI(¢)<pg, holds for every Ry > 0 with constant ¢ = ¢(¢,d) > 0
independent of Ry > 0.

In Section 4, we show that if J(z,y) is continuous on F' x F'\ d, then condition UJS<p is

necessary for PHI(¢)<g to hold. In Section 5, we show PHI(¢)<g holds for every R > 0 if
UJS<p, is satisfied for some Ry > 0. We also show that if the jumping kernel satisfies (1.6)
then bounded parabolic functions are (locally) Holder continuous. An interesting fact is that
UJS<pg, is not needed for the Holder continuity of bounded parabolic functions of X (see
Theorem 3.1).
Notations Throughout this paper, for a,b € R, a A b := min{a,b} and a V b := max{a, b}.
A statement that is said to be hold quasi-everywhere (q.e. in abbreviation) on a set A C F
if there is an &-polar set .4 such that the statement holds for every point in A\ .4#". For a
process {Y;}i>0 on F and A C F (resp. on [0,00) x F and A C [0,00) X F), let

TAa=1AY):=inf{t>0:Y; ¢ A}, ca=0a(Y):=inf{t >0:Y; € A}.

Given a jumping intensity kernel J(z,y), define #;(x) := fF J(@, )L () > 13 1(dY).
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2 A Priori Estimates on Heat Kernels and Exit Times
We first recall the following inequalities from [1, Lemma 2.1].

Lemma 2.1 There exists positive constant ¢ such that for all r > 0,

1 c
sup

neF/B@,,r)c V(o €)6(o(m, €)% < g(r)’

We need two auxiliary symmetric jump-type processes X and Z; their associated Dirichlet
forms are all of the type (1.7) but with jumping kernels Jx and Jyz, respectively. These jumping

kernels are defined as follows:

JX(xay) = J(wvy)l{p(x,y)ﬁl} (21)
and

J(z,y) for p(z,y) < 1;
Jz(z,y) = 1 (2.2)

V(o p)ootay)) POV
Let &% and &% denote the Dirichlet forms of X and Z on L?(F;u), respectively. Process Z
is studied in [1]. By Theorem 1.2 and [1, Theorem 1.2] (for the case of 1 = 72 = 0), Z is a
conservative process, has jointly continuous transition density function po(¢, z,y) and so it can
be refined to start from every point in F. Since X can be constructed from Z by removing
jumps of size larger than 1, X can be refined to start from every point in F' and has infinite
lifetime (see Remark 3.5 of [8]). On the other hand, Y can be constructed from X by adding

jumps of size larger than 1 according to J(z,¥)1{(z,y)>1}, Which can occur at most finite many

z.y)
times in any finite time interval in view of the second condition in (1.6) (see Remark 3.4 of [8]).
Consequently, Y can be refined to start from every point in F' and has infinite lifetime.

It is easy to see that there is a constant ¢ > 1 such that for every u € F,
1 EE (u,u) < S (u,u) < cEF (u,u) and ¢ rEL (u,u) < EF (u,u) < ¢ EF (u,u).

This implies in particular that they share the same class of capacity zero sets and the same
quasi notions such as quasi-continuity (cf. [6]). Moreover, by Theorem 3.1 of [1], there is a

constant ¢; > 0 such that
0(||lull3) < e1min {&* (u,u), & (u,u)}  for every u € Z,

where 0(r) = s(v—1(1/ry) and V~1 is the inverse function of r — V(r). Observe that (&1,.%)
and (&%,.7) are the Dirichlet forms of the 1-subprocesses of Y and X, respectively. We have
by [8, Theorem 3.1] in the same way as that for [1, Theorem 3.2] that there are properly
exceptional sets A% of X and A of Y with A% C A4, positive symmetric kernels px (¢, x,y)
defined on (0, 00) x (F'\ A% ) x (F\ A%) and p(t, z,y) on (0,00) x (F\ A") x (F\ 4") such that
px (t,z,y) and p(t,z,y) are the transition density functions of X (starting from x € F'\ A%)
and Y (starting from x € F'\ A7), respectively, with respect to the measure p on F, for each
y€ F\ Ay and t > 0, z — px(t,z,y) is &X-quasi-continuous, and for each y € F\ .4 and

t >0, x— p(t,x,y) is &-quasi-continuous. Moreover,

co €t

for every z,y € F'\ A% and t > 0
V(e(0) e

px(t,w,y) <
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and

coel

Vie=(t))

Here ¢~1(r) denotes the inverse function of r +— ¢(r). It is easy to see by the Chapman—

p(t,z,y) < for every z,y € F'\ A and ¢ > 0.

Kolmogrov equation and the above upper bound estimate on p(t, z,y) that for each y € F'\ A,
(t,x) v+ p(t,x,y) is a parabolic function of Y on (0,00) x F.

Proposition 2.2 (i) For each T > 0, there exists ¢; = ¢1(T) > 0 such that
px(t7$,y) <a ( ,1 N ! )
Vie='(®)  Vip(z,y))o(p(x,y))
for allt € (0,T] and z,y € F\ Nx.
(ii) There exist 0 < Ry <1 and ca > 0 such that
. ( 1 A t
SV ) TV (ol y) (ol )
forallt € (0,T1] and x,y € F'\ Ax with p(x,y) € [0, Ry] where T := ¢(Ry).

) < px(t,z,y)

Proof Let po(t,z,y) be the transition density function of the symmetric jump-type Markov
process Z on F. Since X can be constructed from Z by removing jumps of size larger than 1
via Meyer’s construction, by [8, Lemma 3.6] and [9, Lemma 3.1(c)] we have for every ¢ > 0 and
x,y € F\ Ny,

pX(taxvy) S etl‘jJ||oop0(t7x’y) and pO(taxay) S pX(t,Z‘,y)‘i'tHJl”oo’

where

Ti(a,y) = Lot and (o) = /F Tz, y)u(dy).

1
Vip(z,y))o(p(z,
Applying the estimates on po(t, z,y) in [1, Theorem 1.2] (for the case v; = 72 = 0) to the above

two inequalities, we have

. cretl Fnlles 1 t
pxlty) = (V(¢1<t>> : V<p(w,y>>¢<p<x,y>>) 23)

and

1 1 ¢
o (Vim0 A Vot ysttony) ~ 1l < pxte (2.4)

Now (i) follows immediately from (2.3). Since V and ¢ are strictly increasing functions, there
exists 0 < Ry < 1 such that
1 1 1 1
<

20 V(6-1(1)) = en Vig-L(ey) ~ Ml 18 S 0(R)

and
20, V(ple ) (ol ) = e1 Vol w)d(o(e,y)) 17 plz,y) < R
Thus we get (ii) from (2.4) and the above two inequalities. -

For every open subset D C F, we denote by X the subprocess of X killed upon leaving D.
Recall that A% is the properly exceptional set of X in the paragraph proceeding Proposition 2.2.
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Then X has a transition density function p (¢, x,y) defined on (0,00) x (F\ Ax) x (F\ A%);

in fact by Dynkin—Hunt formula, which is a consequence of the strong Markov property of X,
px(tz,y) = px(t,2,y) — E* (1 o <ap(t — 70(X), Xop(x),9)]- (2.5)

Proposition 2.3  For every c¢; € (0,1), 0 < ca < ¢3 < 00, there is a constant ¢4 > 0 such that
for every xg € F and r < Ry,

1
Vie'(t)
Proof Let k := c2/(2¢3) and B, := B(xq,r). We first show that there is a constant ¢5 € (0, 1) so
that (2.6) holds for every r < R., z, y € B(zg,c17) \ Ax and t € [k c5¢(r), c56(r)]. For r < R,
and t € [kesd(r), csp(r)], and z, y € B(xg,c17), we have p(x,y) < 2c17 < 2¢10~ 1 ((kes) ~ ).
So, by (1.2)—(1.4),

V(2016 ((res) ~'1)6(2e16 ™ (res) ™18)) < Clies) ™'tV (6™ (res) 1)),

where C' = C(cq) is independent of ¢5. Thus by (2.5) and Proposition 2.2, we have for x,y €
B(.’L‘o, 617‘) \ JVX7

B T
X(ﬂco )(

P t,x,y) > cq forx, y € B(xg,c11) \ Ax and t € [cap(1), c30(r)].  (2.6)

Py ()
KRC5Cq

Z V(61 ((es) 1))
—c-E* 1 t— TB,. (X)
7E [”TB*XK” (V(¢1(t — 7,00 " v<p<XTBT<X>,y>>¢<p<xmr(x>,y»)] 2D

where constants cg, ¢7 are independent of ¢; € (0, 1]. Observe that
P(Xrp (x),y) 2 (L—c)r,  t—7p, (X) <t <csé(r)
and so
t— TBT (X) t

V(X oy, 00 W) 00Xy 30029)) ~ V(L= e)r)o((1 - e2)r)
t

= V(1= en)dH((es) B — e)s (e5) 1)
By (1.2)—(1.4), from the above inequality we get
t— TB,,‘(X) Cs
V(o(Xrp, (x), ¥)0(0(X7s, (x):9)) V(¢ ((es)7'1)°

where Cy = Cy(cy) is independent of ¢5. Note that by Proposition 2.2 (i) and Lemma 2.1,

<Co (2.8)

Py (Xi ¢ B(x, (1 —c1)r/2))

- / p(t, 2, y)ldy)
B(z,(1—cy)r/2)c

t t
= /B(;c,(l—cl)r/2)c V(P(zvy))sb(/’(%y))u(dZ) = o(r)

Here the conservativeness of X is used in the first equality. Thus, for ¢t < ¢5¢(r) we have

P, (X; ¢ B(z,(1 —c1)r/2)) < cges,



On Heat Kernel Estimates and Parabolic Harnack Inequality 1075

where cg is independent of cs.

Now applying [8, Lemma 3.8], we have
P, (TB(x,(lfcl)r)(X) < t) < 2cgcs. (2.9)
Consequently, we have from (2.7), (2.8) and (2.9)
KRC5Cgq C5C7Co
— P, (75,.(X) <t
V(oM (k) 1)~ V(g ((ee) ) B =D

oo VO () ) !
- ( T Y (o1 (o)1) ) V(@ ((res)~10)’

By (1.4), there exists ¢, > 0 independent of ¢5 such that
V(e ((ses) D) _
V(g ((es)71t)) =
Now we choose ¢ small and apply (1.2)-(1.4) so that p¥ (¢, z,y) > Cgv(¢_11(t)). This estab-
lishes (2.6) for any xg € F, r < Ry and t € [k c50(r), c5¢(7)].
Now for r < Ry and ¢ € [ca¢p(r), c3p(r)], define kg = [c3/c5] + 1. Here for a > 1, [a] denotes

the largest integer that does not exceed a. As the previous argument works when c5 is small,

Pt z,y) >

without loss of generality we may assume that c; < ¢z, so t/ky € [kes0(r), c5p(r)]. Using
semigroup ko times, we conclude that for z,y € B(xg,c17) \ Ax and t € [cad(r), c30(r)],

PRt 2, y)

- / / PRET (t kg, 1) - pROT ( Koy wig— 1, y) p(dwr) - - p(dwpg—1)
B(zog,r) B(zo,r)

>

/ / PR (kg 2, wy) -
B(wo,¢~1(t/(csko))) B(wo,¢~1(t/(csko)))

N (g, wry 1, y)pa(duwn) - - p(duogy 1)

o o <v<¢1<t/<cSkO>>>>’“°‘1 Lo
V(e=1(t)) V(e=1(t)) V(g=1(t))

where in the last inequality we have used (1.2)—(1.4). The proof of (2.6) is now completed. [

For every open subset D C F, we denote by Y? the subprocess of Y killed upon leaving D.
Recall that 4" is the properly exceptional set of Y in the paragraph proceeding Proposition 2.2.
Similarly to the case of X?, Y'” has a transition density function p” (¢, x, %) defined on (0, c0) x
(F\A) X (F\A).
Theorem 2.4 (i) There are constants R, € (0,1) and ¢ > 1 such that for every t < ¢(R.)
and x,y € F\ A with p(z,y) < R.

1 t
pli,2y) < € <v<¢—1<t>> : v<p<x,y>>¢<p<x,y>>> (2.10)

and

1 1 t
pli,2,y) 2 € (v<¢—1<t>> : v<p<x,y>>¢<p<x,y>>> ' 211)

(ii) Moreover, for every ¢y € (0,1), ca,c3 > 0, there is a constant ¢4 > 0 such that for every
rg € F and r < R,,

pB@or) (t,z,y) > c4 for x, y € B(zg,c1m) \ A and t € [cagp(r), c3p(r)]. (2.12)

1
V(e~(t))
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Proof Recall that px (¢, x,y) is the transition density function of finite range process X on
F. Since X can be constructed from Y by removing jumps of size larger than 1 via Meyer’s

construction, as in the proof of Proposition 2.2, we have for z,y € F'\ .4,
eit”/h Hme (ta z, y) < p(ta z, y) and p(t, z, y) < pX(tv z, y) + t”J2 HOO,

where

J2(x,y) = J(wvy)l{p(x,y)>1} and sz(x) ::/ J2(x,y)ﬂ(dy)
F

Applying Proposition 2.2 to the above two inequalities, we have

1 t
P20 = 0 (1) N Vot urstony) T ERAIES L myePLY
(2.13)
and
p(ta,y) > 1e—tllszloo( Lo ! ) (2.14)
Y 2, Vis—1(0) " Vol 9)oo(r, 1)

for every t < ¢(Ry) and x,y € F \ A with p(z,y) < Ry. Now (2.11) follows immediately
from (2.14). Since V and ¢ are strictly increasing functions, there exists 0 < R, < 1 such that
1

vig-(p) TPl < 20

C1 if t S qb(R*)

1
V(e~'(1))
and

t t
V(o )olo(e ) T I =2 () (oe, )
we get (2.10) from (2.13).
(ii) follows from our Proposition 2.3 and [8, (3.18) in Lemma 3.6]. In fact, for x,y €
B(zg,c1m) \ A and t € [ca0(r), c3o(1)],

if p(x,y) < R,

1
V(= (1)
]
Using Proposition 2.2 (i) and [8, (3.18) in Lemma 3.6], we have the following exit time

pB@o.r) (t,z,y) > et IImpg(IOaT’) (t,z,y) > e_c2¢(R*)HjJ2|‘oop§(mo’r)(t7x7y) > ¢y

estimate.

Lemma 2.5 There exists v € (0,1) such that for every x € F\ A and 0 <r <1,
- el
P (TR (22 (Y) <7y0(r) < 1— g€ (2.15)

Proof Recall that X is finite range process on F and that px (¢, z,y) is its transition density
function. As in (2.9), there exists v € (0,1) such that for every z € FF'\ A and 0 < r < 1.
P(TB(z,r/2)(X) = v¢(r)) > 1/2. Applying [8, (3.18) in Lemma 3.6], we have that for every
reF\ A and 0<r <1,
1
]P)I(TB(LT/Q) (Y) = 7¢(T)) > eir‘/(b(r)”/‘IHOOIPI(TB(:E,T/Q)(X) = 7¢(T)) > 267”/1”00' O
Recall that Zs = (V,Ys) is a space-time process where Vy =V — s. Let

QM t, 6,2, 1) = [t — 6¢(r), 1] x B(x,7).
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Also, for each A C [0,00) x F', denote As :={y € F': (s,y) € A}
Define U(t,x,r) = {t} x B(z,r). We can prove the following lemma in a similar way to
those for [1, Lemmas 6.2 and Corollary 6.3].

Lemma 2.6 (i) There exists Cy > 0 such that for every x € F\ A, r € (0,1], § € (0,7],

t > 6¢(r), and any compact subset A C Q'(t,8,z,7),

m® pi(A)

V(r)e(r)’

where T, = Tq1(1,5,2,,) and m @ p s a product of the Lebesgue measure m on Ry and p on F.
(ii) For every 0 < 6 < -, there exists C3 > 0 such that for every R € (0, R, /2], r € (0, R/2],

xg € F and (t',x), (t,z) € [t — 30¢(R),t] X B(xg, R) witht' <t —9d¢(R)/2 and z ¢ N,

Vr)e(r
PO (00 2) < Tie-856(R)11% Blao2B)) = C3V(g%§zglg)' (2.16)

P42 (g4 < 1) > C

Proof Using Lemma 2.5, the proof of (i) is the same as that of [1, Lemmas 6.2].
For (ii), we can prove in the same way as that of [1, Corollary 6.3], but here we give an
alternative proof. Note that B(x,r) C B(z,3R/2). The left hand side of (2.16) is equal to

P> (thi(ﬁo,QR) c B(l’,’f’)) _ L( )pB(mo,QR)(t o t’,z,y)dy,

which, by (2.12) and Remark 1.1, is greater than or equal to
1 > o Vi(r) Vir)
V=t (t—t) — “V(¢~H(64(R)/2)) V(R)

where c3 depends on §. O

crp(B(x,r)) > c3

Y
&

3 Holder Continuity of Parabolic Functions

In this section, using heat kernel estimates established in the previous section, we show that
bounded parabolic functions are Holder continuous. Recall that R, is the constant in Theo-

rem 2.4.

Theorem 3.1  Suppose the jumping kernel J satisfies (1.6). Then there are constants ¢ =
¢(Ry) >0 and k = k(Rx) > 0 such that for every 0 < R < R. and for every function h that is
bounded and parabolic in (0,(2R)) x B(xo,2R),

[h(s,2) = h(t,y)| < ¢||hlloo,g R (67 (|t = s[) + p(z,y))" (3.1)

holds fOT’ (S,Z‘), (ta y) € (05 ¢(R)) X (B(x07 R) \‘/%1)7 where
1]l R == sup |h(t,y)]
(t,y)€[0, 6(2R)] X F

and Ny, is the properly exceptional set of Y in the definition of the parabolic function h. In
particular, for the transition density function p(t,z,y) of Y and any to € (0, p(R.)), there are
constants ¢ = c(to) > 0 and k > 0 such that for any t, s € [to, 1] and (z;,y;) € (F\A)x (F\A)
with i = 1,2,

|p(s,x1,y1) —p(t,xg,y2)| < )r@ (¢_1(|t - S|) + p(wl,xg) + p(yl,yQ))K . (32)

V(g1 (to))o~ (to
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Proof By enlarging .4, if needed, we may and do assume that .4, D 4, where A4 is the
properly exceptional set of Y in the paragraph proceeding Proposition 2.2. As before, let
Zs = (Vs,Y5) be the space-time process of Y, where V; = V) — s. Without loss of generality,
assume that 0 < h(z) < ||hl|eo,gr = 1 for z € [0, $(2R)] x F. Let

Qt,x,r) = [t —vo(r),t] x Bla,r).
By Lemma 2.6 (i) there is a constant 0 < ¢; < 1 such that if z € F\ A, 0 <7 <1, t> ~vo(r)
and A C Q(¢t,z,r) with m®”;%‘((t‘? ) = 1/3, then

P& (04 < 7)) > e, (3.3)

where 7, 1= Tt By Lévy system formula (1.9) with f(s,y,2) = 1 (¥) 17\ B(x,5)(2)

and T = 7., there is a constant ¢ > 0 such that if s > 2r,

P&E)(Y, ¢ B(z,s)) ”)U /F\B(“) (Yo, y) p (dy)d]

Observe that for 0 < 2r < s < 1/2, by condition (1.6) and Lemma 2.1,

TB(z,m) NYO(1))
Em[ / / J(Yu,y)u(dy)dU}
0 F\B(z,s)
TB(z,m) NYP(T))
< Ex[/ (/ J(Yu, y)p(dy) +/ J(Yu,y)ﬂ(dy)>du]
0 B(z,1)\B(z,s) F\B(Y.,1/2)
|: TB(z,r)/\('Y(b(r)) 1 ( )
< cE* / (/ w(dy +c>du]
0 Bz \B(x,s) V (p(7,9))0(p(x,y))

TB(x,m NYP(T))
< cE* [/ ( )du]
0 ?(s)

1 gb r)
< aB” 7@ A (19 <c
tE [rten) A OS] g < 22 55)
Thus we have o(r)

PED(Y, ¢ B(x,s)) <eca o). 3.4
(¥, ¢ Bla.s) < el (3.9
The remainder part of the proof is an easy modification of the corresponding one in [4,
Theorem 4.14], so we omit the details. O

The above theorem in particular implies that Y admits a jointly continuous transition
density function p(t,z,y) on (0,00) x F' x F. So from now on, we can take the properly

exceptional set A of Y for p(t, z,y) in Section 2 to be empty.

4 Necessary Condition for PHI(¢)
The following fact and its proof are adaptations of [3, Proposition 4.7] and its proof.

Proposition 4.1 Suppose Y satisfies PHI(¢)<pr. Suppose also J(-,-) is continuous off the
diagonal on F' x F. Then UJS<pr holds.

Proof Let r < p(g’y) A R and B := B(z,r). Recall that R, is the constant in Theorem 2.4.

Denote o(R)
a:= ¢(R*)\/2 and b:=af(a—1)>1.
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For t € (0,1), h,e € (0,r/4) and T = ¢(r), define
up(t, ) =P*(Y,, € B(y,e),t —T/b<1p <t+h—T/b).

Then, by the Lévy system formula in (1.9), for every z € B,

{/ /y (t—=T/bt+h—T/b) (8 )J(Ys,u)u(du)ds}

t+h—T/b
:/ / E? [110,r5)(8)J (Ys, u)] pu(du)ds.
B(ye)

t—T/b

By the continuity of J(-,-), for every z € B,

un(T/b,2) = // (o) (Veswl(uyds = [ e wpuldn), (41

as h — 0. Next, since uy, is non—negatwe bounded and parabolic on (0,00) x B, applying
PHI(¢)<pg to up, in (0,T) x B, we obtain

up(T/b,x) < Crup(T, ). (4.2)
Now by (2.10),

/BpB T/a,x,z)up(T/b, z)pu(dz) < Vi) /]guh(T/b,z)u(dz).
Thus, by (4.1) and (4.2), we have

/B . J(z, u)p(du) < Vcr / / . J(z,u)p(du) p(dz).

Dividing both sides by p(B(y,)) and using the continuity of J(-,-), we obtain UJS<g. O

5 Proof of PHI(¢)

Recall that Z, = (V4,Ys) is the space-time process of Y, with Vi = V5 — s. Note that for a
space-time ball @ := [a,b] X B,

To=7170(2)=inf{s >0:Z; ¢ Q} =m3(Y) N (V) — a)+1{vogb}-
The following is a standard fact that is proved in [4, Lemma 4.13].

Lemma 5.1 (Lemma 4.13 in [4]) For any bounded Borel measurable function q(t,z) that is
parabolic in an open subset D of Ry x F, s +— q(Zsnrp) = @(Zsnrp(v)) is Tight continuous
Pt _a.s. for every (t,x) € D.

Our aim in this section is to prove the following.

Theorem 5.2 Assume (1.6) and UJS<p, for some Ry > 0. Then PHI(¢)<pr, holds for
every Ry > 0.

In order to prove Theorem 5.2, we will need to prove that the following lemma corresponds
to [1, Lemmas 6.1] (also [4, Lemma 4.9]). The statement is changed (in the sense that the size
of two space-time balls are different and the initial points are also different) and, due to the
very general nature of J(x,y) for p(z,y) > & in (1.6), the proof requires major changes from the
original one for [1, Lemmas 6.1]. A simpler version of Lemma 5.3 with ¢(r) = r® and F = R¢

appears in [2] as Lemma 4.2.
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Recall that R, is the constant in Theorem 2.4.

Lemma 5.3 Let R < R.,§ >0 and 0 < a < 1/3; Q1 = [to, to + 40¢(R)] x B(xo,3aR/2),
Q2 = [to, to + 40¢(R)] x B(zg,2aR) and define

Q_ = [to + 0¢(R), to + 206(R)] x B(xo,aR), Qi = [to + 36(R), to + 406(R)] x B(zo, aR).

Let h : [tg, 00) X F' — Ry be bounded and supported in [ty, 00) x B(xg,3aR)¢. Then there exists
Cy = C1(6,a) > 0 such that the following holds:

EC Y R(Zy,, )] < CLEY)[1(Z,, )] for (t1,11) € Q- and (t2,32) € Q4.
Proof Without loss of generality, assume that to = 0. Denote B.r = B(zo,cR). Using the
Lévy system formula in (1.9),
E(t2:2) [h(Zy,,)] (5.1)
= E(t2%2) [h(tz — (TB2U,R Ata), YTB2aR/\t2)}

to
= E(t27y2) |:/ 1{tSTBQQR}/ h(tQ - t,’U) (}/fm )dt/.l/(d’l))
0 - JBj§

3aR

ta
= [l —t0) [ B L, I 0] ()
0 c

2
-/ Msw/’ ) [y, er, 3T (Vi s, )] pld0)ds

3aR

/ / /BM PPty — s,y2, 2)J (2, v)u(dz)p(dv)ds (5.2)
/tl/gm 5V /BMPB“R( 2 — 5,Y2, 2)J (2,0) p(dz) u(dv)ds.
- / / hls,v) /BM/Z PR (s = 5,2, 2)J (2, v)p(d2)p(dv)ds.— (5.3)

Since

45¢(R) >to—8 >ty —1t1 > 5¢(R) for s € [0, tl],

by (2.12), we have that the right hand side of (5.3) is greater than or equal to

VE%) /Ot1 /gaR h(s,v) /BMR/2 J(z,v)u(dz)p(dv)ds.

So, the proof is complete, once we obtain

B [h(Ze, )] < |, / / C (s,v /B SQR/zJ(z,v)u(dz)u(dv)ds. (5.4)

Analogously to (5.2), we have by using the Lévy system in (1.9),

Etv)[p Zrg,) / / (s,v) dv)/ pPrens2(ty — 5,1, 2)J (2,0) pu(dz)ds.
s Bsur/2



On Heat Kernel Estimates and Parabolic Harnack Inequality 1081

Notice that

/ pBsarz(t) — 5 4, 2) / J(z,v)h(s,v)p(dv)p(dz)
B3zur/2

c

3aR

- / PR (ty — 5,41, 2) / J(z,0)h(s,v)p(dv)u(dz)
BSaR/4 3

3aR

+/ pB3"'R/2(t1 — S,yl,Z)/ J(z,v)h(s,v)y(dv)u(dz)
B3ar/2\Bsar/4

c
B3aR

= Il + _[2.
When 2z € Bsor)2 \ Bsar/a, we have aR/4 < p(y1,2) < 5aRR/2, so by (2.10),

t1 . 20¢(R) . 1
V(p(y1,2))0(p(y1,2)) = V(aR/4)¢(aR/4) = " V(R)
for some constants c3,cs > 0 and fotl I5 ds is less than or equal to the right hand side of (5.4).
For z € Bsqr/a by UJS<p,,

pBSa,R/2 (tl - S5, U1, Z) <cs3

A

Cs
| scomeouan < 0 | o / T oGl

c c
3aR aR

<yl [ swonts o)

3aR

since B(z,aR/6) C Bs,p/2. Note that the right hand side of the above inequality does not
depend on z anymore. Multifplying both sides by pPser/2(t; —s,y;,2) and integrating over
z € B(5R/4) (and further integrating over fotl ds), we obtain f(fl I1ds is less than or equal to
the right hand side of (5.4). This proves the lemma. O

Proof of Theorem 5.2 Recall that R, is the constant in Theorem 2.4 and without loss of
generality we assume that R, < R;. We first consider the case where u is non-negative and
bounded on [0,00) x F. Recall that v > 0 is the constant in (2.15). It suffices to establish the
result for § < ~. Once this is done, we can extend it to all § < 1 by simply using the results for
d <~ at most [1/v] + 1 times. We divide the proof into three steps.
Step 1 PHI(#)<(r./2)a10-1 holds for every non-negative and bounded parabolic function h
on [0,00) x F.

Let R € (0, R./2 A 1/10], and for simplicity assume that ¢ty = 0,29 = 0, and denote B(0,r)
by B,. Let Q2 := [to + dp(R)/3, to + 40¢(R)] X B(xo,2R). Note that for every € € (0,1), by
the Lévy system formula in (1.9) and (2.12)

inf h(t,y)= inf ECY[n(Z,)]

(ty)eQ+ (t,y)EQ+
= inf E®YI[pt-— A(t—66(R)/3)), X, _
ot [M(t = (TBan A (t = 00(R)/3)), Xy, n(t-50(R)/3))]
) t—0¢(R)/3
> inf E®Y [/ | F / h(t — s,v)J(Xs, v)u(dv)dt
g, : tosman} [ ( )J( )u(dv)

3R

t—8¢(R)/3 -
= inf h(t —s,v E®Y 1, J(Xs,0 do)ds
(t,y)eQ+/0 ( )/B [1s< ot ( )] p(dv)

c
3R
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t

= inf h(s,v / E®v) 1 s J(Xy o0 do)ds

(t,y)€Q+ /5¢(R)/3 ( ) B, [ {t—s<7Byp} ( t )],u( )

(3—e)do(R) .

> inf / h(s,v inf / 2R (4 — 5y, 2) T (2, 0) p(d2) p(dv)ds
B ( )35¢(R)§t§46¢(R) Bmp ( Yy, 2)J (2, v)pu(dz) p(dv)

~ YEBR Js4(R)/3 Sn
(3—¢)09(R)

2/ / h(s,v)/ cesV(R) " (2, v)pu(dz)p(dv)ds. (5.5)
56(R)/3 Bi\Bsr Br

Since J(z,v) > 0 when p(z,v) <1 (due to (1.6) with x = 1), if inf(, e, h(t,y) = 0, then for
every € € (0,1), h(s,v) =0 for a.e. on [0¢(R)/3, (3 —¢e)dp(R)] x (B1\ Bsr) and so

h(s,v) =0 for a.e. (s,v) € [0¢(R)/3, 3d¢(R)] x (B1 \ Bsg)-

Let (t,v) € [8d6(R)/3, 30¢(R)] x (Bi—gr \ B4r), so that h(t,v) = 0. Define Q = [6¢(R)/3,
3d¢(R)] x B(v,2R). Then by a similar argument to that leading (5.5), we have

0= h(t,v) = E") [h(Z,,)]
>E") [W(Zy,); Yr, € B(v,1)\ B(v,3R)]

¢
:/ / h(s,w)/ pPOR (1 — s v, 2)J (2, w)p(dz)p(dw)ds.
§¢(R)/3 J B(v,1)\B(v,3R) B(v,2R)

This implies that h(s,w) = 0 a.e. on (6¢(R)/3,t) x (B(v,1)\ B(v,3R)). In particular, we have
h(s,w) =0 a.e. on Q_ = [0¢(R), 20¢(R)] x B(0, R) and so Theorem 5.2 holds. Hence without
loss of generality, assume that inf; ,)cq, h(t,y) > 0.

The rest of the proof in this Step 1 is the same as that for Theorem 4.12 in [1]. For reader’s
convenience, we spell out the details. Taking a constant multiple of A if needed, we may assume

that

inf  A(t,y) =1/2.
(ty)eQ+ ) /

Let (ts,y«) € Q4 be such that h(t.,y.) < 1. It is enough to show that h(t,z) is bounded from
above in (Q_ by a constant that is independent of the function h.

Recall that Q' (t, 8, z,7) = [t—5¢(r),t] x B(z,r). By Lemma 2.6 (i), there exists ¢; € (0,1/2)
such that if r < R/2 and D C Q(t, 8, x,7) with m ® u(D)/m @ u(Q(t,§,z,r)) > 2/3, then

P(t’x) (JD < TQl(t,é,m,r)) >cy. (56)

Let Cy = C41(6) be the constant Cy in Lemma 5.3 with a = 1/2. Define

C1
3

We claim that there is a universal constant K = K (9) to be determined later, which is indepen-

n= and &= ; A (Cfln). (5.7)

dent of R and function A, such that b < K on Q_. We are going to prove this by contradiction.
Suppose this is not true. Then there is some point (t1,71) € Q_ such that h(ty,z1) > K.
We will show that there is a constant 3 > 0 and there is a sequence of points {(t,zx)} in
Q(0,0,R) := [0,46¢(R)] x B(0,2R) so that h(tx, ) > (1 + B)* LK, which contradicts the
assumption that h is bounded on @(0, 0,R).
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Let ¢ > 0 be a constant satisfying u(B(z,r)) > 'V (r) for every x € F,r > 0, so that
m @ u(Q4(ty,0,x1,7)) > ' dp(r)V (r). (5.8)

Let ¢* a constant satisfying

V(r)o(r) N
> c* f 0 5.9
V (u)é(u) >c (u) , forevery 0 <r <wu< oo (5.9)
and choose the smallest ¢, > 0 satisfying
3 2
" L) > , , 1
V(c)o(cy) > max <C*C/602£ C*ng) (5.10)

where Cy and Cj are the constants in Lemma 2.6 (i) and (ii) respectively. Choose K to be

sufficiently large, so that

c c. 1/(d+p2)
r:=~R (V( *[)f( )) <4 and ¢(r) < iqﬁ(R). (5.11)
With such r, by (5.8)—(5.10), we have
m @ u(Q(ty,0,x1,7)) 3 V(r)p(r) 2
vimer) S ok M vmew) T oer O

Take t = t; +2d¢(r) and define U = {t} x B(xy,7). With function h > ¢K on U, we would
have by Lemma 2.6 (ii) that

CsV (r)o(r)

1> h(ty,ys) = B9 [W(Zgynrg)] = EK P (0 < 1) > EK VR 2
where Q := [t. — 30¢(R), t.] x B(0,2R). This contradiction yields that
there is some y; € B(xy,7) such that h(t,y;) < (K. (5.13)
We next claim that
E¢e) [h(Z,,) - Yy, ¢ B(x1,3r/2)] < 1K, (5.14)

where 7, 1= Tgu (4, 6,2,,r)- 1f not, then by Lemma 5.3, we would have

h(t,yr) > BE9 [h(ZT[tl—a¢<r>,t1+sa¢<r>1xs<zl,5r/4>) Yo satir4asecxter.sra & B 3r/2)]
> CTUE® ) [W(Z,,) 1 Vs, ¢ Blo1,3r/2)]
> Cr'nK > ¢K,
a contradiction to (5.13), so (5.14) holds.
Let A be any compact subset of

A:={(s,y) € Q' (t1,6,21,7) : h(s,y) > EK}.

By Lemma 2.6 (i),

Com ® pu(A)
1> h(ty,y.) > EEGYI[R(Z,,): > (KPtys) >¢K 2 :

so by (5.12),
e n(4) V(RO(R) !

m & uw(Q(ty,8,z1,7)) = ColK -m @ p(QH(ty, 6, x1,7)) = 3 (5.15)
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Since (5.15) holds for every compact subset A of ﬁ, it holds for A in place of A.
Let D = Q! (t1,0,21,7) \ A and M = SUD(5,4)€Q! (t1,6,21,3r/2) 11(8,Y). We write
h(t1, 1) = E(7) (M Zopar,)]
=EQ*IW(Z,,) op <]+ ECTIN(Z. ) : 7, < op, Y ¢ B(x1,3r/2)]
+EOI0(Z,,) 70 < 0p, Yy, € B(x1,3r/2)].
The first term on the right is bounded by ¢K P(**1) (5 < 7,) in view of Lemma 5.1 the

second term is bounded by nK according to (5.14), and the third term is clearly bounded by
MP=1) (7, < op). Recall that h(t;,2;) > K. Therefore,

K < ¢KPU™) (op < 7,.) +nK + M PO (o > 7).
It follows from (5.15) and (5.6)—(5.7) that

1—n—¢Ptom)(op <7) _1—n—¢ l—n—¢€cr _ 1—(2¢1)/3
M/K > > = > =1
/ - P(thwl)(gD ZTT) - 11— +e 1—c o 1—¢ +5,
where 5 = ;@ . In other words, M > (14 B)K. As M = Sup(, ,)cq!(t,.6.2,.3r/2) P(5: 1),

there exists a point (to, 72) € Qt(ty,8,21,2r) C @(O, 0, R) such that h(to, z2) > (1+08)K =: K.

We now iterate the above procedure to obtain a sequence of points {(tx, zx)} in the following
way. Using the above argument (with (¢2,22) and K in place of (t1,21) and K), there exists
(t3,23) € Q*(t2, 6, z2,2r9) such that

o = C/RK;U(dJr’BZ) =C'(1+ ﬁ)—l/(d‘f‘ﬁz)K—l/(d-‘r[h) R

and h(t3,z3) > (1+8)Ks = (1+3)2K =: K3. We continue this procedure to obtain a sequence
of points {(tx,x)} such that with

(tha1, Tra1) € QY(tr, 6, 2, 2ry) and h(tpy1, 2rs1) = (1+ B)FK = Kjiq. As 0 <tp — tpyq <
do(2ry) and p(xp41, k) < 21y, by (5.12), we can take K large enough (independent of R and h)
so that (t,zx) € Q(0,0, R) for all k. This is a contradiction because h(ty,zy) > (1+ B)F 1K
goes to infinity as k — oo while A is bounded on @(0, 0, R). We conclude that h is bounded by
K in Q_, which completes the proof of PHI($)< (g, /2)n10-1 for the case where u is non-negative
and bounded on [0, 00) x F.

Step 2 PHI(¢)<g, holds for every non-negative and bounded parabolic function u on [0, 00) x
F.

For notational convenience, denote (R,/2) A 107! by r.. Suppose R € (7., Ra] and let
(t1,21) € Q— and (t9,z2) € Q4. Without loss of generality, we also assume xg = 0 and tg = 0.
We further assume that p(z1,22) < r./4. If not, we just repeat the argument below at most
8[Ra /7] times:

Set B! := B(x1,r.) and B? := B(x1,7./2). Define

Q1= (t1 +56(r.), t1+ ¥ ¢(r.)) x (B'\ B?) and Q= [0,ts] x B2
Since u is parabolic, by PHI(#)< (g, /2)r10-1 With

[t = §6(r), 61+ §6(r)] x B and [t + §0(r), t1+ ()] x B!
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in place of @Q_ and @, respective, we have
u(to, zy) = E(t222) [u(ZTQ2 )]
> E(t2:22) [u(ZTQz) t Zrq, € Ql] > cru(ty,x) p(t2,22) (Z1g, € Q1).

Since p(y, z) < 2r. < R, for every (y, z) € B% x B!, we have by the Lévy system formula for
X (see (1.9)) that

PU=72) (7, € Q) =P (X, , € BI\B* ty —t; — 3 ¢(r.) < mp2 < ta —t; — 50(r.))

1)
ta—t1— 5 ¢(rs) B2
S A I R O B P
tz—tl— 4 (25(7‘*) B2 31\32

tz*tlfgcb(h) B2
> c3/ a5 / P (s, w2, y)u(dy)ds
to—t1— 4 ¢(T*) B2

for some positive constants co and ¢z = c3(R.). Note that
0(r) Sto —ti = (1) <o —t1 — 56(ri) < 306(Rz) < 30e.o(r),
where ¢, depends on R, and Ry. Applying (2.12) to pB2(s, X2,Yy), we have

to—ty— g o(ry)

1
P(tQ’m2) (ZTQZ S Ql) > 04/ M(dy)ds

to—t1— 345 o(ry) /B(ml,r* /8) V(¢71 (S))

oL er)V(r)
= 4V (¢~ (30¢(Rs)))

This proves that wu(te,z2) > cgu(t1, 1) for some positive constant c¢g = cg(Ry, Re,0); that is,

> 0.

PHI(¢)<r, holds for every non-negative and bounded parabolic function u on [0, 00) x F.
Step 3 PHI(¢)<p, holds for any non-negative parabolic function u (not necessarily bounded)
on [0,00) x F.

Let U = (to + é&é(R),to + 49¢(R)] x B(x0,3R). For any n € N, define u,(t,z) =
E®®) [(u A n)(Zy,)]. Then u, is non-negative and bounded on [0,00) x F, parabolic on U
and limy, oo un(t,2) = u(t,x) for x € [0,00) x F. From the above arguments, we see that
PHI(¢)<pg, holds for u, with the constant ¢ independent of n. Letting n — oo, we obtain
PHI(¢)<r, for u. O

Let v be an increasing function on [0, 00) with ¢(r) =1 for 0 <7 <1 and

1M < ah(r) < cge?” for every 1 <r < oo

for some c¢1,c5 > 0 and 75 > 1 > 0. We assume that there exist c3, ¢4, c5 > 0 such that, for
every (z,y) € F x F\ d,
1 C3
< J(z,y) < .
3 V(p(z,y))o(p(x, y))Y(cap(z, y)) Vip(z,y))(p(z,y))¥(csp(z, y))
As mentioned in Remark 1.3 (ii), some additional condition on v is needed for the validity of
Theorem 1.2 in [1] for the case of v2 > 1 > 0. Using Theorem 5.2 (instead of [1, Theorem 4.12])

and Section 4.9 of [1], we get the following corrected form of [1, Theorem 1.2] with an additional

(5.16)

condition UJS<p imposed.
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Theorem 5.4  Suppose that the measure p and the jumping kernel J satisfy conditions (1.1)—
(1.5), (5.16) and UJS<p for some R > 0. Then Y has joint continuous transition density

function p(t,x,y) on (0,00) X F x F with respect to j1 and there are positive constants cg, ¢y
and C > 1 such that

o L t )
Ve (t))  V(p(z,y)o(p(x,y))¢(cep(x,y))

1 t
<pltz,y)<C (V(¢1(t)) V(o 9)o(p(w, ) (ern(a, y))> 7

for every t € (0,1] and z,y € F.

Note that [1, Theorem 4.12] (or our Theorem 5.2) is not needed in [1] to get the upper

bound of the heat kernel.
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