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1 Introduction and Setup

The purpose of this paper is to investigate the relationships among the scale-invariant finite
range parabolic Harnack inequality, short time heat kernel estimates and conditions on jump-
ing kernels for a class of symmetric jump-type Markov processes. It can be regarded as a
complement to two recent papers [1–2].

A now well-known fundamental result on diffusions is that a scale-invariant parabolic Har-
nack inequality is equivalent to Gaussian upper and lower bounds on the heat kernel. But unlike
the case of diffusion processes, such equivalent relation is not true for general jump-type Markov
process. Very recently in [3], the above types of relations have been discussed for the random
walk case. This paper is motivated by [3] and [2]. In [2], we established sharp two-sided heat
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kernel estimate for finite range α-stable-like processes and derived a scale-invariant parabolic
Harnack principle for them. Unlike in [3] and [4], a finite range (i.e. truncated) α-stable-like
process does not have the polynomial bounds on the heat kernel for large t. It has the polyno-
mial bounds on the heat kernel only for small t and small |x− y|. Therefore a natural question
arises.

Question 1.1 Suppose Y is a pure jump symmetric Markov process. What is the necessary
and sufficient conditions on jumping kernel J(x, y) for Y to have a scale-invariant parabolic
Harnack inequality in finite range (that is, for x, y with bounded distance)?

In this paper, we would like to answer the above question for a class of jump-type Markov
processes on metric measure spaces.

The approach of this paper is adapted from those of [4, 1]. However, due to the mild
assumption on jumping kernel J(x, y) for x, y with large distance, a quite large amount of
refinement is required and there are also new challenges to overcome. We hope our paper will
motivate more research in this direction.

In the following, if f and g are two functions defined on a set D, f � g means that there
exists c > 0 such that c−1f(x) ≤ g(x) ≤ c f(x) for all x ∈ D.

Let (F, ρ, μ) be a locally compact separable metric space with metric ρ and a Radon measure
μ having full support on F . We assume μ(F ) = ∞ throughout this paper. Assume further that
there is a metric space G ⊃ F , and ρ(·, ·) can be extended to be a metric on G with dilation for
F , i.e. there is a constant c1 ≥ 1 such that for every x, y ∈ F and δ > 0, δ−1x, δ−1y ∈ G with

c−1
1 δ−1ρ(x, y) ≤ ρ(δ−1x, δ−1y) ≤ c1 δ

−1ρ(x, y). (1.1)

Clearly the above condition is satisfied if F ⊂ R
n as we can take G to be R

n. See [5] for a
non-Euclidean example of F satisfying the above condition.

We assume that there exists a strictly increasing function V : R+ → R+ such that V (0) = 0
and there exist constants c2 > c1 > 0 and d ≥ d0 > 0 such that

c1

(
R

r

)d0

≤ V (R)
V (r)

≤ c2

(
R

r

)d

for every 0 < r < R <∞ (1.2)

and

c1 V (r) ≤ μ(B(x, r)) ≤ c2 V (r) for every x ∈ F and r > 0. (1.3)

Let φ be a strictly increasing continuous function φ : R+ → R+ with φ(0) = 0, φ(1) = 1
and satisfy the following: There exist constants c2 > c1 > 0, c3 > 0, and β2 ≥ β1 > 0 such that

c1

(
R

r

)β1

≤ φ(R)
φ(r)

≤ c2

(
R

r

)β2

for every 0 < r < R <∞, (1.4)
∫ r

0

s

φ(s)
ds ≤ c3

r2

φ(r)
for every r > 0. (1.5)

Remark 1.1 Note that conditions (1.2)–(1.4) are equivalent to the existence of constants
c4, c5 > 1 and L0 > 1 such that, for every r > 0,

c4φ(r) ≤ φ(L0r) ≤ c5 φ(r) and c4V (r) ≤ V (L0r) ≤ c5 V (r).
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Denote the diagonal set {(x, x); x ∈ F} by d. Let κ > 0 and J be a symmetric measurable
function on F ×F \ d such that J(x, y)1{(x,y):ρ(x,y)>κ} is bounded and for all (x, y) ∈ F ×F \ d

J(x, y) � 1
V (ρ(x, y))φ(ρ(x, y))

for ρ(x, y) ≤ κ and sup
x∈F

∫
{y∈F :ρ(y,x)>κ}

J(x, y)μ(dy) <∞.

(1.6)
The constant κ in (1.6) plays no special role, so for convenience we will simply take κ = 1 in
the rest of this paper.

For u ∈ L2(F, μ), define

E (u) := E (u, u) :=
∫

F×F

(u(x) − u(y))2J(x, y)μ(dx)μ(dy) (1.7)

and for β > 0,

Eβ(u) := Eβ(u, u) := E (u, u) + β

∫
F

u(x)2μ(dx).

Let Cc(F ) denote the space of continuous functions with compact support in F , equipped with
the uniform topology. Define

D(E ) := {f ∈ Cc(F ) : E (f) <∞}. (1.8)

Using [1, Lemma 2.1 (1)] and our (1.6), one can follow the proof of [1, Proposition 2.2] and
check that (E ,F ) is a regular Dirichlet form on L2(F, μ), where F := D(E )

E1 . So there
is a Hunt process Y associated with it on F , starting from quasi-every point in F (see [6]).
Function J(x, y) is the jumping intensity kernel for Y and it determines a Lévy system of Y ,
which describes the jumps of the process Y : for any non-negative measurable function f on
R+ × F × F , x ∈ F and stopping time T (with respect to the filtration of Y ),

Ex

⎡
⎣∑

s≤T

f(s, Ys−, Ys)

⎤
⎦ = Ex

[∫ T

0

(∫
F

f(s, Ys, y)J(Ys, y)μ(dy)
)
ds

]
. (1.9)

When J(x, y) ≡ 0 for ρ(x, y) > 1, we call Y a finite range jump process.

Theorem 1.2 The process Y is conservative; that is, Y has infinite lifetime Px-a.s. for q.e.
x ∈ F .

Proof Note that under condition (1.6), supx∈F

∫
F

(1 ∧ ρ(x, y)2)J(x, y)μ(dy) < ∞. For every
λ > 0, using Fubini’s theorem and assumptions (1.2)–(1.3), we have∫

F

e−λρ(x,x0)μ(dx) =
∫ ∞

0

e−λrd(μ(B(x0, r)) = λ

∫ ∞

0

μ(B(x0, r)) e−λr dr

≤ c λ

(
1 +

∫ ∞

1

rd e−λrdr

)
<∞.

It now follows from [7, Theorem 3.1] that Y is conservative. �
Remark 1.3 (i) In [1], the following condition is assumed as condition (1.1) there. For x ∈ F

and r > 0, let B(x, r) denote the open ball centered at x with radius r. We assume that there
exist a point x0 ∈ F , a constant κ ∈ (0, 1], and an increasing sequence rn → ∞ so that for
every n ≥ 1, 0 < r < 1, and x ∈ B(x0, rn),

there is some ball B(y, κr) ⊂ B(x, r) ∩B(x0, rn). (1.10)
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This condition is only used in [1] for the proof of conservativeness of Y in [1, Theorem 4.7]. So
in view of the above Theorem 1.2, condition [1, (1.1)] can be dropped from [1].

(ii) There is a gap in the proof of [1, Lemma 6.1] for the case of γ2 ≥ γ1 > 0. An extra
condition on J is needed to ensure the comparability on line 17 of [1, p.312] to be valid. Clearly,
in the notion of [1] where

1
c V (ρ(x, y))φ1(ρ(x, y))ψ(C1ρ(x, y))

≤ J(x, y) ≤ c

V (ρ(x, y))φ1(ρ(x, y))ψ(C2ρ(x, y))

for ρ(x, y) > 1 and some positive constants c, C1, C2 with φ1 satisfying the conditions (1.2)–(1.4)
for φ, if we assume

C1 = C2 and ψ(r + 1) ≤ cψ(r) for every r > 1, (1.11)

then comparability and hence Lemma 6.1 of [1] hold true. Obviously the second condition
in (1.11) is satisfied if ψ ≡ 1 or ψ(r) = eγr for some constant γ > 0. A condition such as (1.11)
should have been imposed on the jumping kernel for the main results in [1] for the case of
γ2 ≥ γ1 > 0 such as heat kernel estimates [1, Theorem 1.2] and the scale-invariant parabolic
Harnack inequality [1, Theorem 4.12]. The jumping kernel of any relativistic α-stable process
on R

d satisfies the condition (1.11) (see [1, Example 2.4]) so all the results in [1] are applicable
to relativistic α-stable processes on R

d. This paper is motivated by finding the most general
condition of J(x, y) for ρ(x, y) > 1 (that is, on ψ in setting of [1]) under which the scale-
invariant parabolic Harnack inequality in finite range and the short time heat kernel estimates
established in [1] remain true.

In Section 3 we will show the Hölder continuity of transition density function of Y so that
the process can be refined to start from every point in F . We say UJS holds (see [3]) if for a.e.
x, y ∈ F ,

J(x, y) ≤ c

V (r)

∫
B(x,r)

J(z, y)μ(dz) whenever r ≤ 1
2ρ(x, y). (UJS)

For R > 0, we say UJS≤R holds if the above holds for a.e. x, y ∈ F and r ≤ ρ(x,y)
2 ∧R, where

the constant c may depend on R. It is easy to check that finite range jump process satisfies
UJS≤1. Clearly, under condition (1.11), the jumping kernel J(x, y) of [1, (1.9) and (1.12)]
satisfies UJS. We would like to emphasize that UJS is a quite weak condition, especially in
R

n. For example, if a jumping kernel J(x, y) � j(|x− y|) for some decreasing function j, then
by an elementary geometry, one can see easily that for r ≤ 1

2 |x− y|,∫
B(x,r)

j(|z − y|)dz ≥
∫

B(x,r)∩{|z−y|≤|x−y|}
j(|z − y|)dz ≥ crnj(|x− y|),

for some positive constant c independent of r. Thus UJS holds for such case. Under some mild
geometric condition on the state space, the above argument works for metric measure spaces.

Let Zs := (Vs, Ys) be a space-time process where Vs = V0−s. The filtration generated by Z
satisfying the usual condition will be denoted as {F̃s; s ≥ 0}. The law of the space-time process
s 
→ Zs starting from (t, x) will be denoted as P

(t,x). For every open subset D of [0,∞) × F ,
define τD = inf{s > 0 : Zs /∈ D}.
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We say that a non-negative Borel measurable function u(t, x) on [0,∞) × F is parabolic
(or caloric) on D = (a, b] × B(x0, r) for Y if there is a properly exceptional set Nu of Y
so that for every relatively compact open subset D1 of D, u(t, x) = E

(t,x)[u(ZτD1
)] for every

(t, x) ∈ D1 ∩ ([0,∞) × F \ Nu). Here a set N ⊂ F is called properly exceptional with respect
to the process Y if μ(N ) = 0 and

P
x ({Yt, Yt−} ⊂ F \ N for every t > 0) = 1 for x ∈ F \ N .

It is well-known (see [6]) that every exceptional set is E -polar and every E -polar set is contained
in a properly exceptional set. Later we will show in Theorem 3.1 below that every bounded
parabolic function is (locally) Hölder continuous and so the properly exceptional set N can be
dropped.

We say the (scale-invariant) parabolic Harnack inequality PHI(φ)≤R1 holds for Y if the
following is true: For every δ ∈ (0, 1), there exists c = c(φ, δ,R1) > 0 such that for every
x0 ∈ F , t0 ≥ 0, R ≤ R1 and every non-negative function u on [0,∞) × F that is parabolic on
(t0, t0 + 4δφ(R)] ×B(x0, 4R),

sup
(t1,y1)∈Q−

u(t1, y1) ≤ c inf
(t2,y2)∈Q+

u(t2, y2), (PHI(φ)≤R1)

where Q− = [t0+δφ(R), t0+2δφ(R)]×B(x0, R) and Q+ = [t0+3δφ(R), t0+4δφ(R)]×B(x0, R).
Note that we do not assume a priori that the parabolic function u ≥ 0 is bounded on

(t0, t0 + 4δφ(R)] ×B(z, 4R).
The purpose of this paper is to give the necessary and sufficient condition for PHI(φ)≤R1

to hold.

Theorem 1.4 Suppose that the jumping kernel is continuous and satisfies (1.6). Then
PHI(φ)≤R1 is equivalent to UJS≤R1 .

Remark 1.5 If J(x, y) � 1
V (ρ(x,y))φ(ρ(x,y)) on F ×F , it is shown in [1, Theorem 4.12] (the case

of γ1 = γ2 = 0) that a global version of scale-invariant parabolic Harnack inequality PHI(φ)

holds in the sense that PHI(φ)≤R1 holds for every R1 > 0 with constant c = c(φ, δ) > 0
independent of R1 > 0.

In Section 4, we show that if J(x, y) is continuous on F × F \ d, then condition UJS≤R is
necessary for PHI(φ)≤R to hold. In Section 5, we show PHI(φ)≤R holds for every R > 0 if
UJS≤R1 is satisfied for some R1 > 0. We also show that if the jumping kernel satisfies (1.6)
then bounded parabolic functions are (locally) Hölder continuous. An interesting fact is that
UJS≤R1 is not needed for the Hölder continuity of bounded parabolic functions of X (see
Theorem 3.1).

Notations Throughout this paper, for a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}.
A statement that is said to be hold quasi-everywhere (q.e. in abbreviation) on a set A ⊂ F

if there is an E -polar set N such that the statement holds for every point in A \ N . For a
process {Yt}t≥0 on F and A ⊂ F (resp. on [0,∞) × F and A ⊂ [0,∞) × F ), let

τA = τA(Y ) := inf {t > 0 : Yt /∈ A} , σA = σA(Y ) := inf{t > 0 : Yt ∈ A}.
Given a jumping intensity kernel J(x, y), define JJ (x) :=

∫
F
J(x, y)1{ρ(x,y)>1}μ(dy).
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2 A Priori Estimates on Heat Kernels and Exit Times

We first recall the following inequalities from [1, Lemma 2.1].

Lemma 2.1 There exists positive constant c such that for all r > 0,

sup
η∈F

∫
B(η,r)c

1
V (ρ(η, ξ))φ(ρ(η, ξ))

μ(dξ) <
c

φ(r)
.

We need two auxiliary symmetric jump-type processes X and Z; their associated Dirichlet
forms are all of the type (1.7) but with jumping kernels JX and JZ , respectively. These jumping
kernels are defined as follows:

JX(x, y) := J(x, y)1{ρ(x,y)≤1} (2.1)

and

JZ(x, y) :=

⎧⎨
⎩
J(x, y) for ρ(x, y) ≤ 1;

1
V (ρ(x, y))φ(ρ(x, y))

for ρ(x, y) > 1.
(2.2)

Let E X and E Z denote the Dirichlet forms of X and Z on L2(F ;μ), respectively. Process Z
is studied in [1]. By Theorem 1.2 and [1, Theorem 1.2] (for the case of γ1 = γ2 = 0), Z is a
conservative process, has jointly continuous transition density function p0(t, x, y) and so it can
be refined to start from every point in F . Since X can be constructed from Z by removing
jumps of size larger than 1, X can be refined to start from every point in F and has infinite
lifetime (see Remark 3.5 of [8]). On the other hand, Y can be constructed from X by adding
jumps of size larger than 1 according to J(x, y)1{ρ(x,y)>1}, which can occur at most finite many
times in any finite time interval in view of the second condition in (1.6) (see Remark 3.4 of [8]).
Consequently, Y can be refined to start from every point in F and has infinite lifetime.

It is easy to see that there is a constant c > 1 such that for every u ∈ F ,

c−1E Z
1 (u, u) ≤ E1(u, u) ≤ c E Z

1 (u, u) and c−1E Z
1 (u, u) ≤ E X

1 (u, u) ≤ c E Z
1 (u, u).

This implies in particular that they share the same class of capacity zero sets and the same
quasi notions such as quasi-continuity (cf. [6]). Moreover, by Theorem 3.1 of [1], there is a
constant c1 > 0 such that

θ(‖u‖2
2) ≤ c1 min

{
E X

1 (u, u), E1(u, u)
}

for every u ∈ F ,

where θ(r) = r
φ(V −1(1/r)) and V −1 is the inverse function of r 
→ V (r). Observe that (E1,F )

and (E X
1 ,F ) are the Dirichlet forms of the 1-subprocesses of Y and X, respectively. We have

by [8, Theorem 3.1] in the same way as that for [1, Theorem 3.2] that there are properly
exceptional sets NX of X and N of Y with NX ⊂ N , positive symmetric kernels pX(t, x, y)
defined on (0,∞)× (F \NX)× (F \NX) and p(t, x, y) on (0,∞)× (F \N )× (F \N ) such that
pX(t, x, y) and p(t, x, y) are the transition density functions of X (starting from x ∈ F \ NX)
and Y (starting from x ∈ F \ N ), respectively, with respect to the measure μ on F , for each
y ∈ F \ NX and t > 0, x 
→ pX(t, x, y) is E X -quasi-continuous, and for each y ∈ F \ N and
t > 0, x 
→ p(t, x, y) is E -quasi-continuous. Moreover,

pX(t, x, y) ≤ c2 et

V (φ−1(t))
for every x, y ∈ F \ NX and t > 0
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and

p(t, x, y) ≤ c2 et

V (φ−1(t))
for every x, y ∈ F \ N and t > 0.

Here φ−1(r) denotes the inverse function of r 
→ φ(r). It is easy to see by the Chapman–
Kolmogrov equation and the above upper bound estimate on p(t, x, y) that for each y ∈ F \N ,
(t, x) 
→ p(t, x, y) is a parabolic function of Y on (0,∞) × F .

Proposition 2.2 (i) For each T > 0, there exists c1 = c1(T ) > 0 such that

pX(t, x, y) ≤ c1

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)

for all t ∈ (0, T ] and x, y ∈ F \ NX .

(ii) There exist 0 < R1 < 1 and c2 > 0 such that

c2

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)
≤ pX(t, x, y)

for all t ∈ (0, T1] and x, y ∈ F \ NX with ρ(x, y) ∈ [0, R1] where T1 := φ(R1).

Proof Let p0(t, x, y) be the transition density function of the symmetric jump-type Markov
process Z on F . Since X can be constructed from Z by removing jumps of size larger than 1
via Meyer’s construction, by [8, Lemma 3.6] and [9, Lemma 3.1(c)] we have for every t > 0 and
x, y ∈ F \ NX ,

pX(t, x, y) ≤ et‖JJ‖∞p0(t, x, y) and p0(t, x, y) ≤ pX(t, x, y) + t‖J1‖∞,

where

J1(x, y) :=
1

V (ρ(x, y))φ(ρ(x, y))
1{ρ(x,y)>1} and JJ1(x) :=

∫
F

J1(x, y)μ(dy).

Applying the estimates on p0(t, x, y) in [1, Theorem 1.2] (for the case γ1 = γ2 = 0) to the above
two inequalities, we have

pX(t, x, y) ≤ c1et‖JJ1‖∞

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)
(2.3)

and
1
c1

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)
− t‖J1‖∞ ≤ pX(t, x, y). (2.4)

Now (i) follows immediately from (2.3). Since V and φ are strictly increasing functions, there
exists 0 < R1 < 1 such that

1
2c1

1
V (φ−1(t))

≤ 1
c1

1
V (φ−1(t))

− t‖J1‖∞ if t ≤ φ(R1)

and
1

2c1
t

V (ρ(x, y))φ(ρ(x, y))
≤ 1
c1

t

V (ρ(x, y))φ(ρ(x, y))
− t‖J1‖∞ if ρ(x, y) ≤ R1.

Thus we get (ii) from (2.4) and the above two inequalities. �
For every open subset D ⊂ F , we denote by XD the subprocess of X killed upon leaving D.

Recall that NX is the properly exceptional set ofX in the paragraph proceeding Proposition 2.2.
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Then XD has a transition density function pD
X(t, x, y) defined on (0,∞)× (F \NX)× (F \NX);

in fact by Dynkin–Hunt formula, which is a consequence of the strong Markov property of X,

pD
X(t, x, y) = pX(t, x, y) − E

x[1{τD(X)≤t}p(t− τD(X), XτD(X), y)]. (2.5)

Proposition 2.3 For every c1 ∈ (0, 1), 0 < c2 < c3 <∞, there is a constant c4 > 0 such that
for every x0 ∈ F and r ≤ R1,

p
B(x0,r)
X (t, x, y) ≥ c4

1
V (φ−1(t))

for x, y ∈ B(x0, c1r) \ NX and t ∈ [c2φ(r), c3φ(r)]. (2.6)

Proof Let κ := c2/(2c3) andBr := B(x0, r). We first show that there is a constant c5 ∈ (0, 1) so
that (2.6) holds for every r ≤ R∗, x, y ∈ B(x0, c1r) \NX and t ∈ [κ c5φ(r), c5φ(r)]. For r ≤ R∗
and t ∈ [κ c5φ(r), c5φ(r)], and x, y ∈ B(x0, c1r), we have ρ(x, y) ≤ 2c1r ≤ 2c1φ−1((κc5)−1t).
So, by (1.2)–(1.4),

V (2c1φ−1((κc5)−1t))φ(2c1φ−1((κc5)−1t)) ≤ C(κc5)−1tV (φ−1((κc5)−1t)),

where C = C(c1) is independent of c5. Thus by (2.5) and Proposition 2.2, we have for x, y ∈
B(x0, c1r) \ NX ,

pBr

X (t, x, y)

≥ κc5c6
V (φ−1((κc5)−1t))

−c7E
x

[
1{τBr (X)≤t}

(
1

V (φ−1(t− τBr
(X)))

∧ t− τBr
(X)

V (ρ(XτBr (X), y))φ(ρ(XτBr (X), y))

)]
, (2.7)

where constants c6, c7 are independent of c5 ∈ (0, 1]. Observe that

ρ(XτBr (X), y) ≥ (1 − c1)r, t− τBr
(X) ≤ t ≤ c5φ(r)

and so
t− τBr

(X)
V (ρ(XτBr (X), y))φ(ρ(XτBr (X), y))

≤ t

V ((1 − c1)r)φ((1− c1)r)

≤ t

V ((1 − c1)φ−1((c5)−1t))φ((1 − c1)φ−1((c5)−1t))
.

By (1.2)–(1.4), from the above inequality we get

t− τBr
(X)

V (ρ(XτBr (X), y))φ(ρ(XτBr (X), y))
≤ C0

c5
V (φ−1((c5)−1t))

. (2.8)

where C0 = C0(c1) is independent of c5. Note that by Proposition 2.2 (i) and Lemma 2.1,

Px (Xt /∈ B(x, (1 − c1)r/2))

=
∫

B(x,(1−c1)r/2)c

p(t, x, y)μ(dy)

≤ c7

∫
B(x,(1−c1)r/2)c

t

V (ρ(x, y))φ(ρ(x, y))
μ(dz) ≤ c8

t

φ(r)
.

Here the conservativeness of X is used in the first equality. Thus, for t ≤ c5φ(r) we have

Px (Xt /∈ B(x, (1 − c1)r/2)) ≤ c8c5,
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where c8 is independent of c5.
Now applying [8, Lemma 3.8], we have

Px

(
τB(x,(1−c1)r)(X) ≤ t

) ≤ 2c8c5. (2.9)

Consequently, we have from (2.7), (2.8) and (2.9)

pBr

X (t, x, y) ≥ κc5c6
V (φ−1((κc5)−1t))

− c5c7C0

V (φ−1((c5)−1t))
Px (τBr

(X) ≤ t)

≥ c5

(
κc6 − c5c7c8C0

V (φ−1((κc5)−1t))
V (φ−1((c5)−1t))

)
1

V (φ−1((κc5)−1t))
.

By (1.4), there exists c∗ > 0 independent of c5 such that

V (φ−1((κc5)−1t))
V (φ−1((c5)−1t))

≤ c∗.

Now we choose c5 small and apply (1.2)–(1.4) so that pBr

X (t, x, y) ≥ c9
1

V (φ−1(t)) . This estab-
lishes (2.6) for any x0 ∈ F , r ≤ R1 and t ∈ [κ c5φ(r), c5φ(r)].

Now for r ≤ R1 and t ∈ [c2φ(r), c3φ(r)], define k0 = [c3/c5] + 1. Here for a ≥ 1, [a] denotes
the largest integer that does not exceed a. As the previous argument works when c5 is small,
without loss of generality we may assume that c5 ≤ c3, so t/k0 ∈ [κ c5φ(r), c5φ(r)]. Using
semigroup k0 times, we conclude that for x, y ∈ B(x0, c1r) \ NX and t ∈ [c2φ(r), c3φ(r)],

p
B(x0,r)
X (t, x, y)

=
∫

B(x0,r)

· · ·
∫

B(x0,r)

p
B(x0,r)
X (t/k0, x, w1) · · · pB(x0,r)

X (t/k0, wk0−1, y)μ(dw1) · · ·μ(dwk0−1)

≥
∫

B(x0,φ−1(t/(c5k0)))

· · ·
∫

B(x0,φ−1(t/(c5k0)))

p
B(x0,r)
X (t/k0, x, w1) · · ·

· · · pB(x0,r)
X (t/k0, wk0−1, y)μ(dw1) · · ·μ(dwk0−1)

≥ ck0
9

(
V (φ−1(t/(c5k0)))

V (φ−1(t))

)k0−1 1
V (φ−1(t))

≥ c10
1

V (φ−1(t))
,

where in the last inequality we have used (1.2)–(1.4). The proof of (2.6) is now completed. �
For every open subset D ⊂ F , we denote by Y D the subprocess of Y killed upon leaving D.

Recall that N is the properly exceptional set of Y in the paragraph proceeding Proposition 2.2.
Similarly to the case of XD, Y D has a transition density function pD(t, x, y) defined on (0,∞)×
(F \ N ) × (F \ N ).

Theorem 2.4 (i) There are constants R∗ ∈ (0, 1) and c > 1 such that for every t ≤ φ(R∗)
and x, y ∈ F \ N with ρ(x, y) ≤ R∗

p(t, x, y) ≤ c

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)
(2.10)

and
p(t, x, y) ≥ c−1

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)
. (2.11)

(ii) Moreover, for every c1 ∈ (0, 1), c2, c3 > 0, there is a constant c4 > 0 such that for every
x0 ∈ F and r ≤ R∗,

pB(x0,r)(t, x, y) ≥ c4
1

V (φ−1(t))
for x, y ∈ B(x0, c1r) \ N and t ∈ [c2φ(r), c3φ(r)]. (2.12)
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Proof Recall that pX(t, x, y) is the transition density function of finite range process X on
F . Since X can be constructed from Y by removing jumps of size larger than 1 via Meyer’s
construction, as in the proof of Proposition 2.2, we have for x, y ∈ F \ N ,

e−t‖JJ2‖∞pX(t, x, y) ≤ p(t, x, y) and p(t, x, y) ≤ pX(t, x, y) + t‖J2‖∞,
where

J2(x, y) := J(x, y)1{ρ(x,y)>1} and JJ2(x) :=
∫

F

J2(x, y)μ(dy).

Applying Proposition 2.2 to the above two inequalities, we have

p(t, x, y) ≤ c1

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)
+ t‖J2‖∞ for all t ≤ 1, x, y ∈ F \ N

(2.13)
and

p(t, x, y) ≥ 1
c1

e−t‖JJ2‖∞

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))

)
(2.14)

for every t ≤ φ(R1) and x, y ∈ F \ N with ρ(x, y) ≤ R1. Now (2.11) follows immediately
from (2.14). Since V and φ are strictly increasing functions, there exists 0 < R∗ < 1 such that

c1
1

V (φ−1(t))
+ t‖J2‖∞ ≤ 2c1

1
V (φ−1(t))

if t ≤ φ(R∗)

and

c1
t

V (ρ(x, y))φ(ρ(x, y))
+ t‖J2‖∞ ≤ 2c1

t

V (ρ(x, y))φ(ρ(x, y))
if ρ(x, y) ≤ R∗,

we get (2.10) from (2.13).
(ii) follows from our Proposition 2.3 and [8, (3.18) in Lemma 3.6]. In fact, for x, y ∈

B(x0, c1r) \ N and t ∈ [c2φ(r), c3φ(r)],

pB(x0,r)(t, x, y) ≥ e−t‖JJ2‖∞p
B(x0,r)
X (t, x, y) ≥ e−c2φ(R∗)‖JJ2‖∞p

B(x0,r)
X (t, x, y) ≥ c3

1
V (φ−1(t))

.

�
Using Proposition 2.2 (i) and [8, (3.18) in Lemma 3.6], we have the following exit time

estimate.

Lemma 2.5 There exists γ ∈ (0, 1) such that for every x ∈ F \ N and 0 < r ≤ 1,

P
x(τB(x,r/2)(Y ) < γφ(r)) ≤ 1 − 1

2
e−‖JJ‖∞ . (2.15)

Proof Recall that X is finite range process on F and that pX(t, x, y) is its transition density
function. As in (2.9), there exists γ ∈ (0, 1) such that for every x ∈ F \ N and 0 < r ≤ 1.
P

x(τB(x,r/2)(X) ≥ γφ(r)) > 1/2. Applying [8, (3.18) in Lemma 3.6], we have that for every
x ∈ F \ N and 0 < r ≤ 1,

P
x(τB(x,r/2)(Y ) ≥ γφ(r)) ≥ e−γφ(r)‖JJ‖∞P

x(τB(x,r/2)(X) ≥ γφ(r)) >
1
2
e−‖JJ‖∞ . �

Recall that Zs = (Vs, Ys) is a space-time process where Vs = V0 − s. Let

Q↓(t, δ, x, r) := [t− δφ(r), t] ×B(x, r).
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Also, for each A ⊂ [0,∞) × F , denote As := {y ∈ F : (s, y) ∈ A}.
Define U(t, x, r) = {t} × B(x, r). We can prove the following lemma in a similar way to

those for [1, Lemmas 6.2 and Corollary 6.3].

Lemma 2.6 (i) There exists C2 > 0 such that for every x ∈ F \ N , r ∈ (0, 1], δ ∈ (0, γ],
t ≥ δφ(r), and any compact subset A ⊂ Q↓(t, δ, x, r),

P
(t,x)(σA < τr) ≥ C2

m⊗ μ(A)
V (r)φ(r)

,

where τr = τQ↓(t,δ,x,r) and m⊗ μ is a product of the Lebesgue measure m on R+ and μ on F .

(ii) For every 0 < δ ≤ γ, there exists C3 > 0 such that for every R ∈ (0, R∗/2], r ∈ (0, R/2],
x0 ∈ F and (t′, x), (t, z) ∈ [t− 3δφ(R), t] ×B(x0, R) with t′ ≤ t− δφ(R)/2 and z /∈ N ,

P
(t,z)

(
σU(t′,x,r) < τ[t−3δφ(R),t]×B(x0,2R)

) ≥ C3
V (r)φ(r)
V (R)φ(R)

. (2.16)

Proof Using Lemma 2.5, the proof of (i) is the same as that of [1, Lemmas 6.2].
For (ii), we can prove in the same way as that of [1, Corollary 6.3], but here we give an

alternative proof. Note that B(x, r) ⊂ B(z, 3R/2). The left hand side of (2.16) is equal to

P
z
(
X

B(x0,2R)
t−t′ ∈ B(x, r)

)
=
∫

B(x,r)

pB(x0,2R)(t− t′, z, y)dy,

which, by (2.12) and Remark 1.1, is greater than or equal to

c1μ(B(x, r))
1

V (φ−1(t− t′))
≥ c2

V (r)
V (φ−1(δφ(R)/2))

≥ c3
V (r)
V (R)

≥ c3
V (r)φ(r)
V (R)φ(R)

,

where c3 depends on δ. �

3 Hölder Continuity of Parabolic Functions

In this section, using heat kernel estimates established in the previous section, we show that
bounded parabolic functions are Hölder continuous. Recall that R∗ is the constant in Theo-
rem 2.4.

Theorem 3.1 Suppose the jumping kernel J satisfies (1.6). Then there are constants c =
c(R∗) > 0 and κ = κ(R∗) > 0 such that for every 0 < R ≤ R∗ and for every function h that is
bounded and parabolic in (0, φ(2R)) ×B(x0, 2R),

|h(s, x) − h(t, y)| ≤ c ‖h‖∞,R R
−κ
(
φ−1(|t− s|) + ρ(x, y)

)κ
(3.1)

holds for (s, x), (t, y) ∈ (0, φ(R)) × (B(x0, R) \ Nh), where

‖h‖∞, R := sup
(t,y)∈[0, φ(2R)]×F

|h(t, y)|

and Nh is the properly exceptional set of Y in the definition of the parabolic function h. In
particular, for the transition density function p(t, x, y) of Y and any t0 ∈ (0, φ(R∗)), there are
constants c = c(t0) > 0 and κ > 0 such that for any t, s ∈ [t0, 1] and (xi, yi) ∈ (F \N )×(F \N )
with i = 1, 2,

|p(s, x1, y1) − p(t, x2, y2)| ≤ c

V (φ−1(t0))φ−1(t0)κ

(
φ−1(|t− s|) + ρ(x1, x2) + ρ(y1, y2)

)κ
. (3.2)
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Proof By enlarging Nu if needed, we may and do assume that Nu ⊃ N , where N is the
properly exceptional set of Y in the paragraph proceeding Proposition 2.2. As before, let
Zs = (Vs, Ys) be the space-time process of Y , where Vs = V0 − s. Without loss of generality,
assume that 0 ≤ h(z) ≤ ‖h‖∞,R = 1 for z ∈ [0, φ(2R)] × F . Let

Q(t, x, r) := [t− γφ(r), t] ×B(x, r).

By Lemma 2.6 (i) there is a constant 0 < c1 < 1 such that if x ∈ F \ N , 0 < r < 1, t ≥ γφ(r)
and A ⊂ Q(t, x, r) with m⊗μ(A)

m⊗μ(Q(t,x,r)) ≥ 1/3, then

P
(t,x)(σA < τr) ≥ c1, (3.3)

where τr := τQ(t,x,r). By Lévy system formula (1.9) with f(s, y, z) = 1B(x,r)(y)1F\B(x,s)(z)
and T = τr, there is a constant c2 > 0 such that if s ≥ 2r,

P
(t,x)(Yτr

/∈ B(x, s)) = E
(t,x)

[ ∫ τr

0

∫
F\B(x,s)

J(Yv, y)μ(dy) dv
]
.

Observe that for 0 < 2r < s ≤ 1/2, by condition (1.6) and Lemma 2.1,

E
x

[ ∫ τB(x,r)∧(γφ(r))

0

∫
F\B(x,s)

J(Yu, y)μ(dy)du
]

≤ E
x

[ ∫ τB(x,r)∧(γφ(r))

0

(∫
B(x,1)\B(x,s)

J(Yu, y)μ(dy) +
∫

F\B(Yu,1/2)

J(Yu, y)μ(dy)
)
du

]

≤ cEx

[ ∫ τB(x,r)∧(γφ(r))

0

(∫
B(x,1)\B(x,s)

1
V (ρ(x, y))φ(ρ(x, y))

μ(dy) + c

)
du

]

≤ cEx

[ ∫ τB(x,r)∧(γφ(r))

0

(
1

φ(s)
+ c

)
du

]

≤ c1E
x
[
τB(x,r) ∧ (γφ(r))

] 1
φ(s)

≤ c2
φ(r)
φ(s)

.

Thus we have
P

(t,x)(Yτr
/∈ B(x, s)) ≤ c2

φ(r)
φ(s)

. (3.4)

The remainder part of the proof is an easy modification of the corresponding one in [4,
Theorem 4.14], so we omit the details. �

The above theorem in particular implies that Y admits a jointly continuous transition
density function p(t, x, y) on (0,∞) × F × F . So from now on, we can take the properly
exceptional set N of Y for p(t, x, y) in Section 2 to be empty.

4 Necessary Condition for PHI(φ)

The following fact and its proof are adaptations of [3, Proposition 4.7] and its proof.

Proposition 4.1 Suppose Y satisfies PHI(φ)≤R. Suppose also J(·, ·) is continuous off the
diagonal on F × F . Then UJS≤R holds.

Proof Let r ≤ ρ(x,y)
2 ∧ R and B := B(x, r). Recall that R∗ is the constant in Theorem 2.4.

Denote
a :=

φ(R)
φ(R∗)

∨ 2 and b := a/(a− 1) > 1.



On Heat Kernel Estimates and Parabolic Harnack Inequality 1079

For t ∈ (0, 1), h, ε ∈ (0, r/4) and T = φ(r), define

uh(t, x) = P
x(YτB

∈ B(y, ε), t− T/b < τB < t+ h− T/b).

Then, by the Lévy system formula in (1.9), for every z ∈ B,

uh(t, z) = E
z

[ ∫ τB

0

∫
B(y,ε)

1(t−T/b,t+h−T/b)(s)J(Ys, u)μ(du)ds
]

=
∫ t+h−T/b

t−T/b

∫
B(y,ε)

E
z
[
1[0,τB ](s)J(Ys, u)

]
μ(du)ds.

By the continuity of J(·, ·), for every z ∈ B,

1
h
uh(T/b, z) =

1
h

∫ h

0

∫
B(y,ε)

E
z[1[0,τB ](s)J(Ys, u)]μ(du)ds→

∫
B(y,ε)

J(z, u)μ(du), (4.1)

as h → 0. Next, since uh is non-negative bounded and parabolic on (0,∞) × B, applying
PHI(φ)≤R to uh in (0, T ) ×B, we obtain

uh(T/b, x) ≤ C1uh(T, x). (4.2)

Now by (2.10),

uh(T, x) =
∫

B

pB(T/a, x, z)uh(T/b, z)μ(dz) ≤ c

V (r)

∫
B

uh(T/b, z)μ(dz).

Thus, by (4.1) and (4.2), we have∫
B(y,ε)

J(x, u)μ(du) ≤ c

V (r)

∫
B

∫
B(y,ε)

J(z, u)μ(du)μ(dz).

Dividing both sides by μ(B(y, ε)) and using the continuity of J(·, ·), we obtain UJS≤R. �

5 Proof of PHI(φ)

Recall that Zs = (Vs, Ys) is the space-time process of Y , with Vs = V0 − s. Note that for a
space-time ball Q := [a, b] ×B,

τQ = τQ(Z) = inf{s ≥ 0 : Zs /∈ Q} = τB(Y ) ∧ (V0 − a)+1{V0≤b}.

The following is a standard fact that is proved in [4, Lemma 4.13].

Lemma 5.1 (Lemma 4.13 in [4]) For any bounded Borel measurable function q(t, x) that is
parabolic in an open subset D of R+ × F , s 
→ q(Zs∧τD

) = q(Zs∧τD(Y )) is right continuous
P

(t,x)-a.s. for every (t, x) ∈ D.
Our aim in this section is to prove the following.

Theorem 5.2 Assume (1.6) and UJS≤R1 for some R1 > 0. Then PHI(φ)≤R2 holds for
every R2 > 0.

In order to prove Theorem 5.2, we will need to prove that the following lemma corresponds
to [1, Lemmas 6.1] (also [4, Lemma 4.9]). The statement is changed (in the sense that the size
of two space-time balls are different and the initial points are also different) and, due to the
very general nature of J(x, y) for ρ(x, y) > κ in (1.6), the proof requires major changes from the
original one for [1, Lemmas 6.1]. A simpler version of Lemma 5.3 with φ(r) = rα and F = R

d

appears in [2] as Lemma 4.2.
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Recall that R∗ is the constant in Theorem 2.4.

Lemma 5.3 Let R ≤ R∗, δ > 0 and 0 < a < 1/3; Q1 = [t0, t0 + 4δφ(R)] × B(x0, 3aR/2),
Q2 = [t0, t0 + 4δφ(R)] ×B(x0, 2aR) and define

Q− = [t0 + δφ(R), t0 + 2δφ(R)] ×B(x0, aR), Q+ = [t0 + 3δφ(R), t0 + 4δφ(R)] ×B(x0, aR).

Let h : [t0, ∞)×F → R+ be bounded and supported in [t0, ∞)×B(x0, 3aR)c. Then there exists
C1 = C1(δ, a) > 0 such that the following holds :

E
(t1,y1)[h(ZτQ1

)] ≤ C1E
(t2,y2)[h(ZτQ2

)] for (t1, y1) ∈ Q− and (t2, y2) ∈ Q+.

Proof Without loss of generality, assume that t0 = 0. Denote BcR = B(x0, cR). Using the

Lévy system formula in (1.9),

E
(t2,y2)

[
h(ZτQ2

)
]

(5.1)

= E
(t2,y2)

[
h(t2 − (τB2aR

∧ t2), YτB2aR
∧t2)

]

= E
(t2,y2)

[ ∫ t2

0

1{t≤τB2aR
}

∫
Bc

3aR

h(t2 − t, v)J(Yt, v)dtμ(dv)
]

=
∫ t2

0

h(t2 − t, v)
∫

Bc
3aR

E
(t2,y2)

[
1{t≤τB2aR

}J(Yt, v)
]
μ(dv)dt

=
∫ t2

0

h(s, v)
∫

Bc
3aR

E
(t2,y2)

[
1{t2−s≤τB2aR

}J(Yt2−s, v)
]
μ(dv)ds

=
∫ t2

0

∫
Bc

3aR

h(s, v)
∫

B2aR

pB2aR(t2 − s, y2, z)J(z, v)μ(dz)μ(dv)ds (5.2)

≥
∫ t1

0

∫
Bc

3aR

h(s, v)
∫

B2aR

pB2aR(t2 − s, y2, z)J(z, v)μ(dz)μ(dv)ds.

≥
∫ t1

0

∫
Bc

3aR

h(s, v)
∫

B3aR/2

pB2aR(t2 − s, y2, z)J(z, v)μ(dz)μ(dv)ds. (5.3)

Since

4δφ(R) ≥ t2 − s ≥ t2 − t1 ≥ δφ(R) for s ∈ [0, t1],

by (2.12), we have that the right hand side of (5.3) is greater than or equal to

c1
V (R)

∫ t1

0

∫
Bc

3aR

h(s, v)
∫

B3aR/2

J(z, v)μ(dz)μ(dv)ds.

So, the proof is complete, once we obtain

E
(t1,y1)[h(ZτQ1

)] ≤ c2
V (R)

∫ t1

0

∫
Bc

3aR

h(s, v)
∫

B3aR/2

J(z, v)μ(dz)μ(dv)ds. (5.4)

Analogously to (5.2), we have by using the Lévy system in (1.9),

E
(t1,y1)[h(ZτQ1

)] =
∫ t1

0

∫
Bc

3aR

h(s, v)μ(dv)
∫

B3aR/2

pB3aR/2(t1 − s, y1, z)J(z, v)μ(dz)ds.
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Notice that∫
B3aR/2

pB3aR/2(t1 − s, y1, z)
∫

Bc
3aR

J(z, v)h(s, v)μ(dv)μ(dz)

=
∫

B5aR/4

pB3aR/2(t1 − s, y1, z)
∫

Bc
3aR

J(z, v)h(s, v)μ(dv)μ(dz)

+
∫

B3aR/2\B5aR/4

pB3aR/2(t1 − s, y1, z)
∫

Bc
3aR

J(z, v)h(s, v)μ(dv)μ(dz)

=: I1 + I2.

When z ∈ B3aR/2 \B5aR/4, we have aR/4 ≤ ρ(y1, z) ≤ 5aR/2, so by (2.10),

pB3aR/2(t1 − s, y1, z) ≤ c3
t1

V (ρ(y1, z))φ(ρ(y1, z))
≤ c3

2δφ(R)
V (aR/4)φ(aR/4)

≤ c4
1

V (R)

for some constants c3, c4 > 0 and
∫ t1
0
I2 ds is less than or equal to the right hand side of (5.4).

For z ∈ B5aR/4 by UJS≤R1 ,∫
Bc

3aR

J(z, v)h(s, v)μ(dv) ≤ c5
V (R)

∫
B(z,aR/6)

∫
Bc

3aR

J(w, v)h(s, v)μ(dv)μ(dw)

≤ c5
V (R)

∫
B3aR/2

∫
Bc

3aR

J(w, v)h(s, v)μ(dv)μ(dw)

since B(z, aR/6) ⊂ B3aR/2. Note that the right hand side of the above inequality does not
depend on z anymore. Multifplying both sides by pB3aR/2(t1 − s, y1, z) and integrating over
z ∈ B(5R/4) (and further integrating over

∫ t1
0
ds), we obtain

∫ t1
0
I1ds is less than or equal to

the right hand side of (5.4). This proves the lemma. �

Proof of Theorem 5.2 Recall that R∗ is the constant in Theorem 2.4 and without loss of
generality we assume that R∗ ≤ R1. We first consider the case where u is non-negative and
bounded on [0,∞) × F . Recall that γ > 0 is the constant in (2.15). It suffices to establish the
result for δ ≤ γ. Once this is done, we can extend it to all δ < 1 by simply using the results for
δ ≤ γ at most [1/γ] + 1 times. We divide the proof into three steps.

Step 1 PHI(φ)≤(R∗/2)∧10−1 holds for every non-negative and bounded parabolic function h

on [0,∞) × F .

Let R ∈ (0, R∗/2 ∧ 1/10], and for simplicity assume that t0 = 0, x0 = 0, and denote B(0, r)
by Br. Let Q2 := [t0 + δφ(R)/3, t0 + 4δφ(R)] × B(x0, 2R). Note that for every ε ∈ (0, 1), by
the Lévy system formula in (1.9) and (2.12)

inf
(t,y)∈Q+

h(t, y) = inf
(t,y)∈Q+

E
(t,y)

[
h(ZτQ2

)
]

= inf
(t,y)∈Q+

E
(t,y)

[
h(t− (τB2R

∧ (t− δφ(R)/3)), XτB2R
∧(t−δφ(R)/3))

]

≥ inf
(t,y)∈Q+

E
(t,y)

[ ∫ t−δφ(R)/3

0

1{s≤τB2R
}

∫
Bc

3R

h(t− s, v)J(Xs, v)μ(dv)dt
]

= inf
(t,y)∈Q+

∫ t−δφ(R)/3

0

h(t− s, v)
∫

Bc
3R

E
(t,y)

[
1{s≤τB2R

}J(Xs, v)
]
μ(dv)ds
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= inf
(t,y)∈Q+

∫ t

δφ(R)/3

h(s, v)
∫

Bc
3R

E
(t,y)

[
1{t−s≤τB2R

}J(Xt−s, v)
]
μ(dv)ds

≥ inf
y∈BR

∫ (3−ε)δφ(R)

δφ(R)/3

∫
Bc

3R

h(s, v) inf
3δφ(R)≤t≤4δφ(R)

∫
B2R

pB2R(t− s, y, z)J(z, v)μ(dz)μ(dv)ds

≥
∫ (3−ε)δφ(R)

δφ(R)/3

∫
B1\B3R

h(s, v)
∫

BR

cε,δV (R)−1J(z, v)μ(dz)μ(dv)ds. (5.5)

Since J(z, v) > 0 when ρ(z, v) ≤ 1 (due to (1.6) with κ = 1), if inf(t,y)∈Q+ h(t, y) = 0, then for
every ε ∈ (0, 1), h(s, v) = 0 for a.e. on [δφ(R)/3, (3 − ε)δφ(R)] × (B1 \B3R) and so

h(s, v) = 0 for a.e. (s, v) ∈ [δφ(R)/3, 3δφ(R)] × (B1 \B3R).

Let (t, v) ∈ [8δφ(R)/3, 3δφ(R)] × (B1−R \B4R), so that h(t, v) = 0. Define Q = [δφ(R)/3,
3δφ(R)] × B(v, 2R). Then by a similar argument to that leading (5.5), we have

0 = h(t, v) = E
(t,v)

[
h(ZτQ

)
]

≥ E
(t,v)

[
h(ZτQ

); YτQ
∈ B(v, 1) \B(v, 3R)

]

=
∫ t

δφ(R)/3

∫
B(v,1)\B(v,3R)

h(s, w)
∫

B(v,2R)

pB(v,2R)(t− s, v, z)J(z, w)μ(dz)μ(dw)ds.

This implies that h(s, w) = 0 a.e. on (δφ(R)/3, t)× (B(v, 1) \B(v, 3R)). In particular, we have
h(s, w) = 0 a.e. on Q− = [δφ(R), 2δφ(R)]×B(0, R) and so Theorem 5.2 holds. Hence without
loss of generality, assume that inf(t,y)∈Q+ h(t, y) > 0.

The rest of the proof in this Step 1 is the same as that for Theorem 4.12 in [1]. For reader’s
convenience, we spell out the details. Taking a constant multiple of h if needed, we may assume
that

inf
(t,y)∈Q+

h(t, y) = 1/2.

Let (t∗, y∗) ∈ Q+ be such that h(t∗, y∗) ≤ 1. It is enough to show that h(t, x) is bounded from
above in Q− by a constant that is independent of the function h.

Recall that Q↓(t, δ, x, r) = [t−δφ(r), t]×B(x, r). By Lemma 2.6 (i), there exists c1 ∈ (0, 1/2)
such that if r ≤ R/2 and D ⊂ Q↓(t, δ, x, r) with m⊗ μ(D)/m⊗ μ(Q↓(t, δ, x, r)) ≥ 2/3, then

P
(t,x)(σD < τQ↓(t,δ,x,r)) ≥ c1. (5.6)

Let C1 = C1(δ) be the constant C1 in Lemma 5.3 with a = 1/2. Define

η =
c1
3

and ξ =
1
3
∧ (C−1

1 η). (5.7)

We claim that there is a universal constant K = K(δ) to be determined later, which is indepen-
dent of R and function h, such that h ≤ K on Q−. We are going to prove this by contradiction.
Suppose this is not true. Then there is some point (t1, x1) ∈ Q− such that h(t1, x1) > K.
We will show that there is a constant β > 0 and there is a sequence of points {(tk, xk)} in
Q̂(0, 0, R) := [0, 4δφ(R)] × B(0, 2R) so that h(tk, xk) ≥ (1 + β)k−1K, which contradicts the
assumption that h is bounded on Q̂(0, 0, R).
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Let c′ > 0 be a constant satisfying μ(B(x, r)) ≥ c′V (r) for every x ∈ F, r > 0, so that

m⊗ μ(Q↓(t1, δ, x1, r)) ≥ c′δφ(r)V (r). (5.8)

Let c∗ a constant satisfying

V (r)φ(r)
V (u)φ(u)

≥ c∗
( r
u

)d+β2

, for every 0 < r < u <∞ (5.9)

and choose the smallest c∗ > 0 satisfying

V (c∗)φ(c∗) ≥ max
(

3
c∗c′δC2ξ

,
2

c∗C3ξ

)
, (5.10)

where C2 and C3 are the constants in Lemma 2.6 (i) and (ii) respectively. Choose K to be
sufficiently large, so that

r := R

(
V (c∗)φ(c∗)

K

)1/(d+β2)

<
R

4
and φ(r) <

1
4
φ(R). (5.11)

With such r, by (5.8)–(5.10), we have

m⊗ μ(Q↓(t1, δ, x1, r))
V (R)φ(R)

≥ 3
C2 ξK

and
V (r)φ(r)
V (R)φ(R)

≥ 2
C3 ξK

. (5.12)

Take t̃ = t1 + 2δφ(r) and define U = {t̃}×B(x1, r). With function h ≥ ξK on U , we would
have by Lemma 2.6 (ii) that

1 ≥ h(t∗, y∗) = E
(t∗,y∗)

[
h(ZσU∧τQ

)
] ≥ ξK P

(t∗,y∗) (σU < τQ) ≥ ξK
C3V (r)φ(r)
V (R)φ(R)

≥ 2,

where Q := [t∗ − 3δφ(R), t∗] ×B(0, 2R). This contradiction yields that

there is some y1 ∈ B(x1, r) such that h(t̃, y1) < ξK. (5.13)

We next claim that

E
(t1,x1) [h(Zτr

) : Yτr
/∈ B(x1, 3r/2)] ≤ ηK, (5.14)

where τr := τQ↓(t1,δ,x1,r). If not, then by Lemma 5.3, we would have

h(t̃, y1) ≥ E
(t̃,y1)

[
h(Zτ[t1−δφ(r),t1+3δφ(r)]×B(x1,5r/4)) : Yτ[t1−δφ(r),t1+3δφ(r)]×B(x1,5r/4) /∈ B(x1, 3r/2)

]
≥ C−1

1 E
(t1,x1) [h(Zτr

) : Yτr
/∈ B(x1, 3r/2)]

≥ C−1
1 ηK ≥ ξK,

a contradiction to (5.13), so (5.14) holds.
Let A be any compact subset of

Ã := {(s, y) ∈ Q↓(t1, δ, x1, r) : h(s, y) ≥ ξK}.
By Lemma 2.6 (i),

1 ≥ h(t∗, y∗) ≥ E
(t∗,y∗)[h(ZσA

) : σA < τQ] ≥ ξKP
(t∗,y∗)(σA < τQ) ≥ ξK

C2m⊗ μ(A)
V (R)φ(R)

;

so by (5.12),

m⊗ μ(A)
m⊗ μ(Q↓(t1, δ, x1, r))

≤ V (R)φ(R)
C2ξK ·m⊗ μ(Q↓(t1, δ, x1, r))

≤ 1
3
. (5.15)
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Since (5.15) holds for every compact subset A of Ã, it holds for Ã in place of A.
Let D = Q↓(t1, δ, x1, r) \ Ã and M = sup(s,y)∈Q↓(t1,δ,x1,3r/2) h(s, y). We write

h(t1, x1) = E
(t1,x1) [h(ZσD∧τr

)]

= E
(t1,x1)[h(ZσD

) : σD < τr] + E
(t1,x1)[h(Zτr

) : τr ≤ σD, Yτr
/∈ B(x1, 3r/2)]

+ E
(t1,x1)[h(Zτr

) : τr ≤ σD, Yτr
∈ B(x1, 3r/2)].

The first term on the right is bounded by ξK P
(t1,x1)(σD < τr) in view of Lemma 5.1 the

second term is bounded by ηK according to (5.14), and the third term is clearly bounded by
MP

(t1,x1)(τr ≤ σD). Recall that h(t1, x1) > K. Therefore,

K ≤ ξK P
(t1,x1)(σD < τr) + ηK +M P

(t1,x1)(σD ≥ τr).

It follows from (5.15) and (5.6)–(5.7) that

M/K ≥ 1 − η − ξ P
(t1,x1)(σD < τr)

P(t1,x1)(σD ≥ τr)
≥ 1 − η − ξ

1 − c1
+ ξ =

1 − η − ξ c1
1 − c1

≥ 1 − (2c1)/3
1 − c1

:= 1 + β,

where β = c1
3(1−c1)

. In other words, M ≥ (1 + β)K. As M = sup(s,y)∈Q↓(t1,δ,x1,3r/2) h(s, y),
there exists a point (t2, x2) ∈ Q↓(t1, δ, x1, 2r) ⊂ Q̂(0, 0, R) such that h(t2, x2) ≥ (1+β)K =: K2.

We now iterate the above procedure to obtain a sequence of points {(tk, xk)} in the following
way. Using the above argument (with (t2, x2) and K2 in place of (t1, x1) and K), there exists
(t3, x3) ∈ Q↓(t2, δ, x2, 2r2) such that

r2 = C ′RK−1/(d+β2)
2 = C ′(1 + β)−1/(d+β2)K−1/(d+β2)R

and h(t3, x3) ≥ (1+β)K2 = (1+β)2K =: K3. We continue this procedure to obtain a sequence
of points {(tk, xk)} such that with

rk := C ′RK−1/(d+β2)
k = C ′(1 + β)−(k−1)/(d+β2)K−1/(d+β2)R,

(tk+1, xk+1) ∈ Q↓(tk, δ, xk, 2rk) and h(tk+1, xk+1) ≥ (1 + β)kK =: Kk+1. As 0 ≤ tk − tk+1 ≤
δφ(2rk) and ρ(xk+1, xk) ≤ 2rk, by (5.12), we can take K large enough (independent of R and h)
so that (tk, xk) ∈ Q̂(0, 0, R) for all k. This is a contradiction because h(tk, xk) ≥ (1 + β)k−1K

goes to infinity as k → ∞ while h is bounded on Q̂(0, 0, R). We conclude that h is bounded by
K in Q−, which completes the proof of PHI(φ)≤(R∗/2)∧10−1 for the case where u is non-negative
and bounded on [0,∞) × F .
Step 2 PHI(φ)≤R2 holds for every non-negative and bounded parabolic function u on [0,∞)×
F .

For notational convenience, denote (R∗/2) ∧ 10−1 by r∗. Suppose R ∈ (r∗, R2] and let
(t1, x1) ∈ Q− and (t2, x2) ∈ Q+. Without loss of generality, we also assume x0 = 0 and t0 = 0.
We further assume that ρ(x1, x2) ≤ r∗/4. If not, we just repeat the argument below at most
8[R2/r∗] times:

Set B1 := B(x1, r∗) and B2 := B(x1, r∗/2). Define

Q1 =
(
t1 + δ

2φ(r∗), t1 + 3δ
4 φ(r∗)

)× (B1 \B2
)

and Q2 = [0, t2] ×B2.

Since u is parabolic, by PHI(φ)≤(R∗/2)∧10−1 with[
t1 − δ

4φ(r∗), t1 + δ
4φ(r∗)

]×B1 and
[
t1 + δ

2φ(r∗), t1 + 3δ
4 φ(r∗)

]×B1
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in place of Q− and Q+ respective, we have

u(t2, x2) = E
(t2,x2)

[
u(ZτQ2

)
]

≥ E
(t2,x2)

[
u(ZτQ2

) : ZτQ2
∈ Q1

] ≥ c1 u(t1, x1) P
(t2,x2) (ZτQ2 ∈ Q1) .

Since ρ(y, z) < 2r∗ ≤ R∗ for every (y, z) ∈ B2 × B1, we have by the Lévy system formula for
X (see (1.9)) that

P
(t2,x2)

(
ZτQ2

∈ Q1

)
= P

x2
(
XτB2 ∈ B1 \B2, t2 − t1 − 3δ

4 φ(r∗) < τB2 < t2 − t1 − δ
2φ(r∗)

)

≥ c2

∫ t2−t1− δ
2φ(r∗)

t2−t1− 3δ
4 φ(r∗)

∫
B2

(∫
B1\B2

pB2
(s, x2, y)J(y, z)μ(dz)

)
μ(dy)ds

≥ c3

∫ t2−t1− δ
2φ(r∗)

t2−t1− 3δ
4 φ(r∗)

∫
B2
pB2

(s, x2, y)μ(dy)ds

for some positive constants c2 and c3 = c3(R∗). Note that

δ
4φ(r∗) ≤ t2 − t1 − 3δ

4 φ(r∗) ≤ t2 − t1 − δ
2φ(r∗) ≤ 3δφ(R2) ≤ 3δc∗φ(r∗),

where c∗ depends on R∗ and R2. Applying (2.12) to pB2
(s, x2, y), we have

P
(t2,x2)

(
ZτQ2

∈ Q1

) ≥ c4

∫ t2−t1− δ
2φ(r∗)

t2−t1− 3δ
4 φ(r∗)

∫
B(x1,r∗/8)

1
V (φ−1(s))

μ(dy)ds

≥ c5
δφ(r∗)V (r∗)

4V (φ−1(3δφ(R2)))
> 0.

This proves that u(t2, x2) ≥ c6u(t1, x1) for some positive constant c6 = c6(R∗, R2, δ); that is,
PHI(φ)≤R2 holds for every non-negative and bounded parabolic function u on [0,∞) × F .
Step 3 PHI(φ)≤R2 holds for any non-negative parabolic function u (not necessarily bounded)
on [0,∞) × F .

Let U := (t0 + 1
2δφ(R), t0 + 4δφ(R)] × B(x0, 3R). For any n ∈ N, define un(t, x) =

E
(t,x)[(u ∧ n)(ZτU

)]. Then un is non-negative and bounded on [0,∞) × F , parabolic on U

and limn→∞ un(t, x) = u(t, x) for x ∈ [0,∞) × F . From the above arguments, we see that
PHI(φ)≤R2 holds for un with the constant c independent of n. Letting n → ∞, we obtain
PHI(φ)≤R2 for u. �

Let ψ be an increasing function on [0,∞) with ψ(r) = 1 for 0 < r ≤ 1 and

c1eγ1r ≤ ψ(r) ≤ c2eγ2r for every 1 < r <∞
for some c1, c2 > 0 and γ2 ≥ γ1 > 0. We assume that there exist c3, c4, c5 > 0 such that, for
every (x, y) ∈ F × F \ d,

1
c3 V (ρ(x, y))φ(ρ(x, y))ψ(c4ρ(x, y))

≤ J(x, y) ≤ c3
V (ρ(x, y))φ(ρ(x, y))ψ(c5ρ(x, y))

. (5.16)

As mentioned in Remark 1.3 (ii), some additional condition on ψ is needed for the validity of
Theorem 1.2 in [1] for the case of γ2 ≥ γ1 > 0. Using Theorem 5.2 (instead of [1, Theorem 4.12])
and Section 4.9 of [1], we get the following corrected form of [1, Theorem 1.2] with an additional
condition UJS≤R imposed.
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Theorem 5.4 Suppose that the measure μ and the jumping kernel J satisfy conditions (1.1)–
(1.5), (5.16) and UJS≤R for some R > 0. Then Y has joint continuous transition density
function p(t, x, y) on (0,∞) × F × F with respect to μ and there are positive constants c6, c7
and C ≥ 1 such that

C−1

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))ψ(c6ρ(x, y))

)

≤ p(t, x, y) ≤ C

(
1

V (φ−1(t))
∧ t

V (ρ(x, y))φ(ρ(x, y))ψ(c7ρ(x, y))

)
,

for every t ∈ (0, 1] and x, y ∈ F .
Note that [1, Theorem 4.12] (or our Theorem 5.2) is not needed in [1] to get the upper

bound of the heat kernel.
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