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Abstract By employing the generalized Riccati transformation technique, we will establish some new
oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order
nonlinear neutral delay dynamic equation

[r(Dly(t) + POy (r(6)]°]% + () f(y(5(t)) =0,

on a time scale T. The results improve some oscillation results for neutral delay dynamic equations
and in the special case when T = R our results cover and improve the oscillation results for second-
order neutral delay differential equations established by Li and Liu [Canad. J. Math., 48 (1996),
871-886]. When T = N, our results cover and improve the oscillation results for second order neutral
delay difference equations established by Li and Yeh [Comp. Math. Appl., 36 (1998), 123-132]. When
T=hN, T={t:t=¢"keN g>1}, T=N={?:1te N, T=T, = {tn = > p_, ;, n € No},
T={*:te N, T={y/n:n¢cNy}and T={¥n:n c Ny} our results are essentially new. Some
examples illustrating our main results are given.

Keywords oscillation, neutral delay dynamic equation, generalized Riccati technique, time scales
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1 Introduction

The study of dynamic equations on time scales, which goes back to Stefan Hilger [1], is an area
of mathematics that has recently received a lot of attention. It has been created to unify the
study of differential and difference equations. Many results concerning differential equations
carry over quite easily to corresponding results for difference equations, while other results seem
to be completely different from their continuous counterparts. The study of dynamic equations
on time scales reveals such discrepancies, and helps avoid proving results twice — once for

differential equations and once again for difference equations. The general idea is to prove a

Received February 28, 2007, Accepted May 21, 2008



1410 Saker S. H., et al.

result for a dynamic equation where the domain of the unknown function is a nonempty closed
subset of the reals R which is called a time scale T. In this way results not only related to
the set of real numbers or set of integers but those pertaining to more general time scales are
obtained. Several authors have expounded on various aspects of this new theory, see the survey
paper by Agarwal, Bohner, O’Regan, and Peterson [2] and the references cited therein.

The three most popular examples of calculus on time scales are differential calculus, differ-
ence calculus and quantum calculus (see Kac and Cheung [3]), i.e, when T = R, T = N and
T = ¢ = {¢' : t € Ny}, where ¢ > 1. Dynamic equations on a time scale have an enormous
potential for applications such as in population dynamics. For example, it can model insect
populations that are continuous while in season, die out in say winter, while their eggs are incu-
bating or dormant, and then hatch in a new season, giving rise to a nonoverlapping population
(see [4]). There are applications of dynamic equations on time scales to quantum mechanics,
electrical engineering, neural networks, heat transfer, and combinatorics. A recent cover story
article in New Scientist [5] discusses several possible applications. The books on the subject of
time scales by Bohner and Peterson [4] summarizes and organizes much of time scale calculus
and some applications.

In recent years there has been much research activity concerning the oscillation and nonoscil-
lation of solutions of neutral delay dynamic equations on time scales, see for example [6-14].
Following this trend, in this paper we are concerned with the oscillation of the second-order

nonlinear neutral delay dynamic equation

[r(O)[y(1) +pO)y(r ()2 +a(6) f(y(8(1))) = 0, (L.1)

on a time scale T. Throughout this paper we assume that the delay functions 7(¢) < ¢t and
d(t) < tsatisfy 7(t): T — Tand 6(¢) : T — T for all ¢t € T and lim; . () = limy—,o0 7(t) = o0,
r(t), p(t) and ¢(t) are real-valued rd-continuous positive functions defined on T, and

(hy) 0 < p(t) < 1, f(u) : R — R is a continuous function such that uf(u) > 0 and
f(u)/u> K > 0 for all u # 0.

Since we are interested in the oscillatory and asymptotic behavior of solutions near infinity,
we assume that sup T = oo, and define the time scale interval [tg, 00)r by [to, 00)T := [tg, 00)NT.
Throughout this paper these assumptions will be supposed to hold. Let 7*(t) = min{7(¢), 6(¢)}
and let Ty = min{7*(¢) : t > 0} and 77,(t) = sup{s > 0 : 7*(s) < ¢} for ¢t > Tp. Clearly
75 (t) >t for t > Ty, 7F1(t) is nondecreasing and coincides with the inverse of 7*(¢) when the
latter exists.

By a solution of (1.1) we mean a nontrivial real-valued function y(¢) which has the proper-
ties [y(t) + p(y(r(1)] € CLyIr* (to), 00), and 7(t) [y(t) + (YD) € CLIr", (to), 50). Our
attention is restricted to those solutions of (1.1) which exist on some half line [t,, c0) and satisfy
sup{|y(t)| : t > t1} > 0 for any t; > t,. A solution y(¢) of (1.1) is said to be oscillatory if it is
neither eventually positive nor eventually negative. Otherwise it is called nonoscillatory. The
equation itself is called oscillatory if all its solutions are oscillatory.

In studying the oscillation of higher order differential or difference equations, there are

two techniques used to reduce the higher order equation to a first order Riccati equation or
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inequality. The first one is called the Riccati transformation technique. This technique has
been already extended and employed to different types of neutral delay dynamic equations, and
several sufficient conditions for oscillation have been obtained in [6-14].

In 2004 Agarwal et al. [6] considered the second-order nonlinear neutral delay dynamic
equation

[r(0)([y(t) + p(t)y(t — 1)) + f(t,y(t = 6)) =0, (1.2)

on a time scale T; here v > 0 is a quotient of odd positive integers, T and ¢ are positive constants
such that the delay functions 7(¢) := ¢t — 7 < ¢t and §(t) :=t — 0 < ¢ satisfy 7(¢) : T — T and
§(t): T — T forall t € T, r(t) and p(t) are real-valued rd-continuous positive functions defined
on T, and the following conditions are satisfied:

(A1) [2(, ()7 At =00, 0 <p(t) <1,

(A2) f(t,u):T xR — Ris a continuous function such that wf(t,u) > 0 for all u # 0, and
there exists a positive rd-continuous function ¢(t) defined on T such that |f(¢,u)| > q(t) |u7].

In [6] the authors considered the case when v > 0 is an odd positive integer and proved that
the oscillation of (1.2) is equivalent to the oscillation of a first order delay dynamic inequality and
established some sufficient conditions for oscillation. Also they considered the case when v > 1
and established some sufficient conditions for oscillation by employing the Riccati technique.
The results were applied only in discrete time scales, i.e., when the graininess function u(t) # 0.

In 2006 Saker [7] considered (1.2) where v > 1 is an odd positive integer, (A;)—(Az) hold
and established some new sufficient conditions for oscillation of (1.2) by employing the Riccati
transformation technique. However the results established in [6-7] can be applied only on the
time scales T=R, T =N, T = AN and T=¢" = {t : t = ¢*, k € N, ¢ > 1}, and cannot be
applied on the time scales T = N? = {t? : t € N}, To={y/n : n € No}, Ts={&/n : n € Ny}, and
T =T, ={t, : n € No} where {t,,} is the set of harmonic numbers. This follows from the fact
that when ¢ € T, the functions ¢t — 7 and ¢ — § may be not belong to the time scales T = N,
T =Ty, T=T3 and T =T,.

In 2006 Sahiner [7] considered the general equation

[ () ([y(8) +p(D)y(r(£)]2)1> + f(t.y(5(t)) =0, (1.3)
on a time scale T and followed the argument in [6-7] by reducing the oscillation of (1.3) to the
oscillation of a first order delay dynamic inequality and established some sufficient conditions
for oscillation, when the following conditions are satisfied:

(By) 6, T are positive rd-continuous functions, d, 7: T — T,

(B2) [°( b)) At =00, 4> 1, and 0 < p(t) < 1;

(B3) f(t,u): T xR — R is a continuous function with wf(¢,u) > 0 for all u # 0 and there
exists a positive rd-continuous function ¢(t) defined on T such that |f(¢,u)| > q(¢) |u”].

However one can easily see that the two examples that are given in [8] to illustrate the main
results are valid only when T = R and cannot be applied when T = N since the delay functions
that are considered in this paper are given by ¢/2, v/t and t/64 which are not in C,4(T, T) for
a general time scale T. Also the results cannot give a sharp sufficient condition for oscillation
of (1.3) when q(t) = v/t2.
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In 2006 Wu et al. [9] considered also (1.3) on a time scale T. They followed the argument in
[7] by umng the Riccati transformation technlque and the Chain rule (wov)?(t) = (wZ o)A,
where A is the delta derivative defined on T and v(t) is strictly increasing, and established
some sufficient conditions for oscillation of (1.3), when the following conditions are satisfied:

(C1) 0 :R — R is continuous ¢ : T — R is strictly increasing and T = o(T) C T is a time
scale;

(C2) (F00)(1) = (7 00)(0);

(Cs) ftoo(T(t)) TAt=o00,7>1,and 0 <p(t) < 1;

(Cq) f(t,u): T xR — R isa continuous function with wf(¢,u) > 0 for all u # 0 and there
exists a positive rd-continuous function ¢(t) defined on T such that |f(¢,u)| > q(¢) |u”].

We note that the results in [9], which are based on the Chain rule, can only be applied if TNI“
is a time scale and if 7(¢) < ¢t and 6(¢) > 7(d(¢)). The condition (C3) also can be a restrictive
condition, since on the time scale T=¢" by choosing 6(t) = ¢t — ¢"° one can easily see that
§(o(t)) = d(qt) = qt — g™ # o(5(t)) = q(t — ¢"°) = qt — g™, so the results in [9] cannot
be applied on the time scale T=¢" when 6() = ¢t — ¢"°. Also in the proof of the main results
in ([9], Lemma 2.5) the authors used the Chain rule (f(g(t)))" = f2(g(t))g”(t) which is not

A = (22 o 7)72 if §is a constant with

true on general time scales. Of course trivially (z o 7)
T(t)=t—0€TforteT.

Agarwal, O’'Regan and Saker [10] considered the general nonlinear neutral delay dynamic
equation (1.3) where v > 1 is an odd positive integer,

(Dy) 7(t) : T—-T,0(t) : T—=T, 7(¢t) < t, 6(t) < tforalteTand lim_. () =
limy_ o 7(t) = 005

o 1

(D2) Jio () At =00, 72(t) 20, 0 < p(t) < 1;

(Ds) f(t,u): T xR — R is a continuous function such that wf(¢,u) > 0 for all u # 0 and
there exists a positive rd-continuous function ¢(t) defined on T such that |f (¢, u)| > q(¢) [u?],
and employed the Riccati technique and established some new oscillation criteria which can be
applied on any time scale T and improved the results established in [6-9].

Recently Saker in [11-12] considered the linear version of (1.1) when r(¢) = 1 and employed
the Riccati transformation technique and established some new oscillation criteria of Hille and
Nehari types and also established some alternative oscillation criteria when the Hille and Nehari
types criteria fail to apply.

The other technique used in studying the oscillation of differential and difference equations
is called the generalized Riccati technique. This technique can introduce some new sufficient
conditions for oscillation and can be applied to different equations which cannot be covered by
the results established by the Riccati technique.

In 1995 Li [15] employed this technique on the second order linear differential equation

(r(t)2’) + p(t)z(t) = 0, (1.4)
and established some new sufficient conditions for oscillation and applied the results when
r(t) = 1/t and ¢(t) = 1/t> and showed that the results that had been established by the Riccati

technique cannot be applied in this case.
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In 1996 Li and Liu [16] considered the nonlinear neutral delay differential equation

[r(t)[y(t) + p(t)y(t — 7)) +q(t) f(y(t — 6)) =0, ¢ > to, (1.5)

where

(E1) 7 and § are nonnegative constants;

(E2) [ r(lt) dt =00, 0 < p(t) < 1;

(E3) f(u) : R — R is a continuous function such that uf(u) > 0 and f(u)/u > K > 0 for
all u # 0,
and employed the generalized Riccati technique and established some new sufficient conditions
for the oscillation of (1.5). Li and Liu utilized the class of functions as follows: Suppose there
exist continuous functions H, h : D = {(¢,s) : t > s > to} — R such that H(t,t) =0, t > to,
H(t,s) > 0,t>s > ty, and H has a continuous and nonpositive partial derivative on D with
respect to the second variable. Moreover, let i : D — R be a continuous function with

0H(t,s)
 0s

They then proved that if there exists a positive function g € C'[ty, 00), RT) such that

tlirgo sup H(tl, o) /to {H(t,s)z/}(s) _ris —f)a(s) h%(t,s)| ds = oo, (1.7)

= h(t,s)\/H(t,s) t, seD. (1.6)

where a(s) = exp{—2 [ g(w)du} and ¥(t) = a(t) K q(t) (L—p(t—0))+r(t—8)g2(t)—[r(t—8)g(t)]],
then every solution of (1.5) oscillates. Using the same approach they established alternative
oscillation criteria when (1.7) fails.

In 1998 Li and Yeh [17] considered the nonlinear neutral delay difference equation

Alr(n)Afy(n) +pn)y(n — 1)l +q(n)f(y(n = 6)) =0, n = no, (1.8)

where

(F1) 7 and ¢ are nonnegative integers;

(F2) >oin, T(ln) =00, 0<p(n) <L

(F3) f(u): R — Ris a continuous function such that wf(uw) > 0 and f(u)/u > K > 0 for
all u # 0,
and obtained the discrete analogue of the results established by Li and Liu [16]. Li and Yeh [17]
utilized the class of double sequences as follows. Suppose that there exist two double sequences

Hy, , and Ay, for m > n > 0 such that H,,,, = 0 for m > 0, H,,,, > Ofor m > n > 0,

AyHpyp = Hyyny1 — Hyp o and h(m,n) = — \?IZ){IZ:ZZ)
They then proved that if there exist two positive sequence a(n) and g(n) such that g(n) =
Aa(n
— 2a(n)) and
m—1
: 1 a*(n+1)r(n—0), ,
Jm sup o > [H(m, n)i(n) — sa(n) h?(m,n)| =00,  (1.9)
n=ngo

where ¥(n) = a(n)[Kq(n)(1 — p(n —98)) +r(n—38§)g*(n) — Alr(n — 1 — §)g(n — 1)]], then every
solution of the difference equation (1.8) oscillates. Also they established alternative oscillation

criteria when (1.9) fails.
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We note that the results established by Li and Liu [16] and Li and Yeh [17] can be applied
only when the delays are finite.

The following question arises. Can we obtain oscillation criteria on time scales which can
be applied in the case of finite delays as well as in infinite delays and from which we are able
to deduce the corresponding results for neutral delay differential and difference equations and
in the special case, cover the criteria established by Li [15] and Li and Liu [16] Li and Yeh [17]
and others?

The main aim of this paper is to give a positive answer to this question by extending the
generalized Riccati transformation technique in the time scales setting to obtain some new

oscillation criteria of Li-type for (1.1) when

/w ?f) -

The paper is organized as follows: In Section 2, we will employ the generalized Riccati
technique to establish the main oscillation criteria and study the asymptotic behavior of the
nonoscillatory solutions. In Section 3, we will apply the results in different types of time
scales and establish some sufficient conditions for oscillation of different types of differential
and difference equations. Section 4 contains some examples to illustrate the main results. Our
results in the special case when T = R extend and improve the results established by Li and
Liu [16] for neutral delay differential equations when |, :)o T‘f’;) = 00. In the case when T =N
our results extend and improve the results established by Li and Yeh [17] for neutral delay
difference equations when »7* T(lt) = oo. When p(t) = 0, and 6(¢) = t the results include
the results established by Li [15] for differential equations. The results improve the oscillation

results established for neutral delay dynamic equations established in [2, 6-10] when v = 1.

2 Main Results

In this Section, by using the generalized Riccati transformation technique, we will establish
some new oscillation criteria for (1.1) and establish the upper bounds of the nonoscillatory

solutions. In what follows and later, we assume that

r2(t) > 0 and h 0(s)q(s)[1 — p(d(s))]As = cc. (2.1)

to
We start with the following Lemma which will play an important role in the proof of the main
results.
Lemma 2.1  Suppose that (hy) (2.1), (ha) hold and ftio TA(tt) = 0.

Assume that (1.1) has a positive solution y(t) on [ty, co)r and define
z(t) = y(t) + p()y(r(t)). (2.2)
Then there exists a T € [tg,00)T, sufficiently large, so that
(1) 22(t) > 0, 2(t) > ta®(t) for t € [T, 00)T,
(i) (x(t)/t) is strictly decreasing on [T, 00)T.
Proof Assume that y(¢) is a positive solution of (1.1) on [ty, co)p. Pick t1 € [tg, oo)r such
that y(t) > 0, y(7(t)) > 0 and y(5(¢)) > 0 on [t1, co)r. Since y(¢) is a positive solution of (1.1),
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then x(t) is also positive and satisfies
(r(H)z () = —a(t) f(y(8(1))) <0, for te€ [t, co)r. (2.3)

Thus r(t)x(t) is strictly decreasing on [t;, oo)r. We claim that 7(t)z®(t) > 0 on [t1, o).

Assume not. Then there is a ty € [t1, co)t such that r(ta)x®(t2) =: ¢ < 0. Then from (2.3), we
have 7(t)z2(t) < r(ta)a®(ts) = ¢, for t € [ta, 0o)T, and therefore

c

r(t)

Integrating the last inequality from ¢5 to ¢, we find by (hs) that

x(t) = x(t2) + /t 2 (s)As < z(ty) + c/

ta t, 7(8)

which implies that z(¢) is eventually negative. This is a contradiction. Hence 7(t)z®(t) > 0 on

22 (t) < , for t € [ta, oco)r. (2.4)

t
— —o0 as t — 00, (2.5)

[t1, o)t and so 22 (t) > 0 on [t;,00)7. Therefore,
z(t) >0, z2(t) >0, (r(t)z>(t))> <0, for t > t;. (2.6)

This implies that

Thus for t > to = §1(¢1), we have

y(6(2)) = (1 = p(8(2)))z(4(t))- (2.8)
From (hq), (2.3), and (2.8), we have
(r(t)z®()® + Kq(t)(1 — p(s(t)))2(5(t)) < 0, for t > t. (2.9)
Since (r(t)z2(t))® < 0 on [t2, 00)T, we have
A4 A
2280 < 27T o 1y o0 (2.10)
ro(t)
Next let U(t) := x(t) —tz®(t). From (2.10), we have U2 (t) = —o(t)x®2(t) > 0 for t € [to,00)r,
and this implies that U (¢) is strictly increasing on [t2, 00). We claim that there is a t3 € [ta, 00)T
such that U(t) > 0 on [t3,00)p. Assume not. Then U(t) < 0 on [t2,00)7. Therefore,
a(t)\ S tzAt) —a(t) U
t N to(t) - to(t)
which implies that x(¢) /¢ is strictly increasing on [ta, 00)7. Pick t3 € [t2, 0o)T so that §(¢)> d(t2),
for t > t3. Then, since x(t)/t is strictly increasing, we have x(5(¢))/(t) > x(0(t2))/d(t2) =: d >
0, so that x(6(¢t)) > di(t) for t > t3. Now by integrating both sides of (2.9) from ¢3 to ¢, we have

>0, tE [ta,00)T,

r(t)z(t) = r(ts)z® (ts) + K/1t q(s)[1 = p(d(s))]x(d(s))As <0, (2.11)

where Q1(s) = Kq(s)[1 — p(d(s))]. From (2.11), since 7(t)z*(t) > 0, we have
r(ts) (z2(t3)) > K | q(s)[1 = p(8(s))](8(s)As > dK [ q(s)d(s)[1 — p(5(s))]As,

ts ts
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which contradicts (2.1). Hence there is a t3 € [t2, 00)7 such that U(t) > 0 on [t3, c0)r. Conse-

A
(x(t)> _ et —e(t) __U®) o, [t3, 00)1- (2.12)

t to(t) to(t)

quently,

Then we have x(t) > tz®(t), and (I(t)) is strictly decreasing on [t3, 00)r. The proof is complete.

Now, we state and prove the main oscillation results for equation (1.1). We say H € R
provided H : [tg,00)r X [to,00)T — R and satisfies:

(i) H(o(t),t) =0,t>tg, H(t,s) >0, o(t) > s > to,

(i) H?:(t,s) <0 fort > s > to, and for each fixed ¢, H(t,s) is an rd-continuous function
with respect to s.

Important examples of H when T = R are H(t,s) = (t — s)™ for m > 1. When T = Z,
H(t,s)=(t—s)*, ke N, where tF =t(t —1)---(t — k+1).
Theorem 2.1  Assume that (hy), (ha), (2.1) hold and H € R. Suppose that there are a function
a(t) and a positive, differentiable function «(t), such that for sufficiently large ty

t

H(t,s)a” (s) [1h(s) — ¢(t, 5)] As = oo, (2.13)

lim sup
t—oo H(o(t),t1) Jy,

where H(t,s) := H(o(t),o(s)),

2
ol ) ( ) o) DT o A= e T

a’(s )C H2:(0(t), s)
Alt,5) = a(s)1 A(t, 5)

Then every solution of (1.1) is oscillatory on [ty,c0)T.

Proof Suppose to the contrary that y(t) is a nonoscillatory solution of (1.1) and let t; > t
be such that y(t) # 0 for all ¢ > ¢;. Without loss of generality, we may assume that y(t) is an
eventually positive solution of (1.1) with y(t) > 0, y(7(¢)) > 0 and y(6(¢)) > 0 for all t > ¢; > tg
sufficiently large. Let z(t) be as defined by (2.2). Then from Lemma 2.1, we see that x(t) is
positive and there exists to > ¢; such that (2.6) holds for ¢ > t5. Define the function w(t) by

the generalized Riccati substitution

r J?A
w(t) == a(t){ (t:)g(t)“) +r(t)a(t)}, for t> t. (2.14)
Hence
T {EA I'A A
wh (t) = aA(t){ (t;(t)(t) +r(t)a(t)] +o/’[ (;(t)(t) —H"(t)a(t)}

_a®(t) . L[ret(1)7]°
= alt) w(t) + « (r(t)a(t))A—i—a [ u(t ]
AR o s [aOEORA () — () (22 (1)
= w0+ a” r0av)* + | e }
AP e s 0RO () (#2 (1)
- Oé(t) (t)+ ((t) (t)) + 7o l‘(t)ZCJ (215)
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Then from (2.9), (2.14) and (2.15), we have

oxo OcA xA 2
w? < —aaQ(t)f o 5(15) + a(g)w(t) +a’ (7"(t)a(t))A —ar(t) (ac(tgtx)‘z
e KQWEG®) 0t ) o s r(e() (220
< p gy ) + a7 ((Bale) S G ) . (2.16)

From the definition of w(t), we have

() = ity =e0] = [ineto] #0220t mn

Also from Lemma 2.1, since z(t)/t is strictly decreasing, we have
x(6(t))/x?(t) > 6(t)/o(t) and x(t)/z7 (t) > C(t). (2.18)
Substituting (2.17) and (2.18) into (2.16), we obtain

KQUIH 0t
w?(t) < —a (1) + a(t) w(t) + o (ra)>(t)
. () altyu(r)
—arr00 [ oty ] +er0 -2
K@) et Camu()
T o a0 e
— ot ()O3 (E) + 2° i%“(t)w(t)
ey O[22 1 Clar
o0+ 0 | ratocw|w - S w)

Thus
a’Cy(t) a’C(t)

at) " gz O

Evaluating both sides of (2.19) at s, multiplying by H(o(¢),o(s)) and integrating, we get

w? () < —a (H)h(t) + (2.19)

t H(o(t),o(s))a’(s)i(s)As < — t H(o(t),0(s))w™(s)As
[ OHEO T 5,
7 Y C(s)H(o t),a(s))oz"(s)w2 SAs
/t2 r(s)oﬁ(s) (s)As. (2.20)

/ H(o(t),o(s)w?(s)As = —H (o (t), ta)w(ts) — [ H?*(o(t),s)w(s)As.
Substituting this into (2.20), we obtain
/ H(o (s)(s)As

(1), t2)w(ts) —/t H(a(t),J(s))g((s))z;(s)wQ(s)As

H(o(t),o(s))A(t, s)w(s)As. (2.21)

to
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This implies, after completing the square, that
A%(t,

/ H{(t, s)a (s)1(s)As < H(o(t), ta)w(ts) / H(t (()) (g) ) As. (2.22)

However, then
1 b 1/ a(s) \2r(s)A2(t, s)
H(t,s)a? - T As < wl(t
ot f, 1090 = 1 (2700) ity Vs vt

which contradicts (2.13). Therefore every solution of (1.1) oscillates on [tg, o0)r. The proof is
complete.
From Theorem 2.1 by choosing the function H(¢,s), appropriately, we can obtain different
sufficient conditions for oscillation of (1.1). For instance, if we define a function h(t, s) by
H%(a(t),s)

hlt.s) = = \/H(J(t) o(s

(2.23)

we have the following oscillation result.

Corollary 2.1 Assume that (hy), (h,), (2.1) hold and H € R. Suppose that there is a
differentiable function a(t) such that for sufficiently large t;

lim sup / H(t,s)a%(s) [{(s) — é(t,s)] As = oo, (2.24)
t—oo H(o(t),t1)
where H(t,s),(s), C(s)and ¢(t, s)are as in Theorem 2.1, and A(t, s)simplifies to
Alt,5) = @ B)Cs) _ Al s) (2.25)
o(s) VH(ts)
Then every solution of (1.1) is oscillatory on [ty,c0)T.

From Theorem 2.1 and Corollary 2.1, we can establish different sufficient conditions for
the oscillation of (1.1) by using different choices of «(t) and a(t). For instance, if we consider
a(t) = t, a(t) = | and define H(t,s) for tg < s < o(t) by H(o(t),t) = 0 and H(t,s) = 1
otherwise, then we get the following oscillation result.

Corollary 2.2 Assume that (h;), (h,) and (2.1) hold, and for sufficiently large t;
A
1i£nsup /t [KQ(5)5(5) —o(s) <T(:)> — 52(5)] As = o0. (2.26)
—oo Ji

Then every solution of (1.1) is oscillatory on [ty,c0)T.
If in Theorem 2.1, we choose a(t) and «(t) such that

(2.27)

we have C4(t) = 0 and from Corollary 2.1 we have the following oscillation result for (1.1).
Corollary 2.3  Assume that (hy), (ha), (2.1) hold and H € R such that (2.23) holds. Suppose

there exists a positive differentiable function a(t) such that for t1 sufficiently large

1 b o a(s)a?(s)r(s)h?(t, s) B
hﬂilip Ho(t).t )/t1 {H(t,s)a (s)uv(s) — 4507 (s) As = o0. (2.28)

Then every solution of (1.1) is oscillatory on [ty,c0)T.



Oscillation of Neutral Delay Dynamic Equations 1419

If we define H(t,s) for tg < s < o(t) by H(o(t),t) =0 and H(t,s) = 1 otherwise and a(t)
and a(t) such that (2.24) holds, we have C(t) = 0, h(t,s) = 0 and from Corollary 2.3 we have

the following oscillation result for (1.1).

Corollary 2.4  Assume that (hy), (hg), (2.1) and (2.27) hold. Furthermore assume that for
sufficiently large tq

tlg(r)lo sup/t a? (s)(s)As = o0, (2.29)
where 1(s)reduces to
$)0(s sr(s)a®(s
wls) = KOO ropagen® 4 T (2.30

o(s)
Then every solution of (1.1) is oscillatory on [ty,o0)T.

From Corollary 2.4, we can also establish different sufficient conditions for the oscillation of (1.1)

by using different choices of a(t). For instance, if a(t) = ¢ then a(t) = — ), and if a(t) = t?,
then a(t) = — gg((f)) , and from Corollary 2.4 we have the following oscillation results.

Corollary 2.5  Assume that (hy), (he) and (2.1) hold. If, for sufficiently large t,

Hmsup/ a(s)(s)As = oo, (2.31)

t—o0 t1

where in this case,

A
KQ(s)d(s) 1(?‘(8)) +47“(5) (2.32)

then every solution of (1.1) is oscillatory on [ty,o0)T.

Corollary 2.6  Assume that (hy), (ha) and (2.1) hold. If, for sufficiently large t1,

limsup/ o?(s)Y(s)As = oo, (2.33)

t—o0 t1

where, in this case,

A 2
(s+a(s))7‘(8)> L r(8)(s+o(s) (2.34)

Pls) = + ( 250 (s)
then every solution of (1.1) is oscillatory on [ty,o0)T.

The following two results provide alternative oscillation criteria when (2.13) fails. The
results are essentially new for oscillation of neutral delay dynamic equations. The notations of
Theorem 2.2 and its proof will be used.

We say H € R provided H : [to, o0)T X [to, 00)T — R and satisfies:

(Hy) H(o(t),t) =0,t>tg, H(t,s) >0, o(t) > s > o,

(Hy) HA<(t,s) <0 fort > s> tg, and for each fixed ¢, H(t,s) is an rd-continuous function
with respect to s,

(H3) h(t,s) = —H009) Ghere h(t, s) is define on [to, 00)r X [fo, 00)T,

VH(t,s)

(Hs) 0 <infes¢, [liminf, oo g(f((f))ji,))] < 0.
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Theorem 2.2  Assume that (hy), (hs), (2.1) hold and H € R. Suppose that there exists a

positive differentiable function o such that

. 1 “r(s) (a(s))? a?(s)Ci(s) /5 ?
tll>nolo sup H(o (), to) /to C(s)a(s) <h(t, s) — o(s) \/H(t, 5)> As < 0. (2.35)
Let ¢ € Crq([to, 00)T, RT) such that, for t > to,

lim sup /t Cls)a(s) (¢G)ZAS = o0. (2.36)

t—oo Ji,  T(5)a*(s)
If, for any T € [to, 00)T,
| U T @03 1
g s b [ [0 00 - 000 B B | sz e, e
where
h(t,s)  a”(s)Ci(s)
VH(L, s) a(s)

then every solution of (1.1) is oscillatory on [t c0)T.

B3(t,s) =

Proof Suppose to the contrary that y(t) is a nonoscillatory solution of (1.1) and let t; > ¢
be such that y(t) # 0 for all ¢ > ¢;. Without loss of generality, we may assume that y(¢) is an
eventually positive solution of (1.1) with y(t) > 0, y(7(¢)) > 0 and y(6(¢)) > 0 for all t > t1 > tg
sufficiently large. Let x(¢) be as defined by (2.2). Then from Lemma 2.1, we see that x(t) is
positive and there exists T' > t; such that (2.6) and the results Lemma 2.1 hold for ¢ > T.
Define again the function w(t) by the generalized Riccati substitution (2.14) and proceed as in
the proof of Theorem 2.1 to obtain (2.21) with ¢y = T". Therefore,

/T H(t,s)a”(s)y(s)As
< H(o(t), ta)w(ts) — /T ﬁ(us)f((s))ao(;)wQ(s)As—i— /T (L, s)A(t, $)w(s)As. (2.38)
From (Hs) we see that A(t, s) becomes
At,s) = - t:)s . (2.39)

Substituting (2.39) into (2.38), we get

/Hts ) (s)As < H(o( /hts t,s)w(s)As
TR L >w2 AL
+/T H(t,s) o(s) s)As / H{t, (s)a2(s) (s)As. (2.40)

<H(0(t),T)w(T)—/TD(t,s)w(s)As—/TH(t,s)f(s)aa(s)(w(s))QAs, (2.41)

(s)a?(s)

where

D(t,s) = [h(t,s)\/H(t,s) - H(t’s)zc(f;;)cl(s)] .
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Therefore,

t/mmm%qu
T

A £ C6)a(s) D(t, s) 25
<ot [[[|on e s, o0 T
. r(s)a?(s) = a?(s)Ci(s)]?
+AH@@M@M@hmw¢MWy-Cw)}A& (2.42)
It follows that
1 -
H(o(t),T) /T H(t,s)a(s)(s)As
(T — 1 ¢ (s s C(s)a"(s) D(t, s) 2 .
< w(T) H@ﬁ%Tﬁé{¢H“’) (s) 2¢HtscF£%§]A
1 " T(S)az(s) h(t,s)  a”(s)Ci(s)
+H(a(t),T)/TH(t’S) {\/ﬁ o(s) } As. (2.43)
Therefore,
r(s)a?(s)
hmsup /Hts { “AC(s)a ()B (t,s)}As
w _ lim i 1 ¢ Hit, S)C(s)ag(s)w . D(t, s) 2 .
< w(T) tl—><x> fH(a(t),T)/T {\/ r(s)a?(s) (s) + ) H(t:&%g)(j)"( )} B
By (2.37), we have
(T) > ¢(T) + lim inf (U(lt) T)
¢ H@@cgmq@ D(t,s) 2
* /T |:\/ T(S)QQ(S) 2\/H(trs)8§0(é;(a"(s :| As.
Thus
w(T) > ¢(T) for all T > to, (2.44)
and
. 1 i/ cwmq@ D(t, s) 2
0< lim me(a(t),to) /to {\/H(t,S) (s) 2\/H g(s));;(ss } As

< w(to) — B(to) <
Therefore, for all ¢t > ty, we obtain

[ O()a%(s)
ﬁ$memmﬁimmﬁuwuw“)

+¢H@@<Mt Ol ¢Hts> ]As<m (2.45)
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Define F' and G by

o 1 b U(s)
FO= fow),10) J, TP a2(s)

G(t) == H(a(lt),to)/t:\/ﬁ(t’s) (h(t,s) - a”(;)(i}')l(s) \/ﬁ(t,s)) wAs,

where Ul(s) := C(ST)

w?(s)As,

(O;;(s). It follows from (2.45) that

litm inf[F(t) + G(t)] < oo. (2.46)
Now, we claim that
U(s)
/to oﬂ(s)w (s)As < 0. (2.47)
Suppose to the contrary that
/00 Uls) w?(s)As = oco. (2.48)
to ()

By (H,), we see that there exists a positive constant ¢ such that

inf { lim inf H(a(t), s)

inf |lminf oo > (. (2.49)

Let X be any arbitrary positive number. Then by (2.48) there exists to > t; such that

L U(s)

2 )\
S)AS >
to (s)w ( )

C?

t > to.

Now since 52((55)) w?(s) is the derivative of

[T

we have after integration by parts, for ¢ > to, that

_ 'y CU@ur) 17
F(t) - H(O’(t),to) “ H(tﬂ8)|: 2(’(1,) AU:| As

_ ! " H(o(t).,0(5)) U Uw)w?(u) Aurm

H(o(t), to) J,, 2w
- H(a(lt),to) /t:[—HA (o(t),s)}[ /t : U(Z?(”;(“) A }As
= H(a(lt),to) /t :[ HAS(U(t),s)}[ /t U(Zlg)(“) Au} As
- /C\H(o(lt),to) /t:[—HA"w(t),s)}As
= Chto. 1 a0
By (2.49), there exists t3 > to, such that
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This implies that F'(t) > A for all ¢ > t3. As A is arbitrary, we have

lim F(t) = oo. (2.51)

t—o0

Next, consider the sequence {t,,} in the interval [to, 00) with lim,,_, ¢, = oo such that

lim [F(t,) + G(t,)] = litm inf[F'(t) + G(1)]. (2.52)
In view of (2.46), there exists a constant v such that
F(tn) + G(tn) <, n=12....

In view of (2.51), we conclude that

lim F(t,) = oo, (2.53)
and hence (2.52) gives that
lim G(t,) = —o0. (2.54)
By (2.52), (2.53), given € € (0,1) for n large enough, we have
G(tn) v
1 < .
TR T R
Then Glt)
-1 . 2.
F(t,) <e <0 (2.55)
In view of (2.54), we see that
lim G(t")G(tn) = 0. (2.56)

On the other hand, by employing Schwarz’s inequality (cf. [4

[ vowora] <[ [ 'AfH/ woF &,

we have
@0 = [y, o000 (0= 00 ) ]
= Lt V"0 w0
(- )
< ot Ly ]
ot L, ) (e = 0 e 0) &4
= ot L, b (1o = 00 Vi) g
Hence
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It follows from (2.56) that

L P (R RN S G} IESEED

Hence

o 1 fa?(s) 7)) S o) As — o
B v (=" 0) Bs = 250

which contradicts (2.35). Therefore we have proved that (2.48) fails, so the inequality (2.47)
holds. Furthermore from (2.44), we have

SUE) (@) [T UGs)
/t ( —/to =

) a?(s) a?(s)

which contradicts (2.36). The proof is complete.

In the following, we give an estimation on the upper bounds of the nonoscillatory solutions
of (1.1). The results will be established by using the extension of Gronwall’s inequality that
has been given in [18]. We note here that by using different extensions of this inequality we
can obtain different results. We denote the set of all f : T — R which are rd-continuous and

regressive by Z. If p € %, then we can define the exponential function (see [2, 4]) by

en(t) = e ([ oot

for t € T, s € T*, where &,(z) is the cylinder transformation, which is given by

log(1 + hz)
) h Oa

&n(z) = h ’
z, h=0.

Alternately, for p € Z one can define the exponential function e, (-, %), to be the unique solution
of the IVP
™ =p(t)z, x(ty) = 1.

Theorem 2.3 Assume that (hy), (ha), (2.1) hold. Let y(t) be a positive solution of (1.1) and
let z(t) be as defined by (2.2). Then x(t) satisfies
a(t b(t) [*

()-i- ()/ a(s)Q1(s)epq, (t,0(s))As, (2.58)

TO' /r(T to
where a(t) = Ca(t)b(t), b(t) = r7(r" — u(t)r>(t)) =1,
1
Qus) =, [ (5)+Q(s)o ()], Qls) = Ka(s)(1 = p(3(s))),

and C = (rx)?(ta) + (r(t2)x®(t2)) is a positive constant.

Proof Without loss of generality, we may assume that y(t) is an eventually positive solution
of (1.1) with y(¢t) > 0, y(7(¢)) > 0 and y((¢)) > 0 for all t > t; > ¢, sufficiently large. From
Lemma 2.1, we see that x(t) is positive and there exists ¢t > t; such that (2.6) and (2.9) hold
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for t > to. Integrating (2.9) from ¢y to s, we obtain

where M = (r(t2)x®(t2)). Thus, we have
A s
(r(s)z(s))™ < M + g 58) (rz)” + Q(:) (ra)? Au. (2.59)
r b T
Integrating (2.59) again from t5 to o(t), and using Lemma 3 in [19], we have

70 18 (s)

(r2)” < (ro)7 () + M(o(t) — t2) + / ) () s

to r
o(t) ps
+/ / @) (ra)? Auls
to to r?

o(t) ’I"A s t
Co(t) —i—/t ( )(rx)”As +/t (a(t) —o(s))

o
5 T

t o(t)
= Co(t) Jr/ TATSS) (rx)"Aer/ ri((fs) (rax)?As

Qr(:) (ra)?As

IN

+/t (a(t)—a(s))Q(j) (rz)° As.

r

Using the formula (cf. [5])

we have
(rz)” < Co(t) + u(t)"

Thus "
(ra)? < a(t) + b(t) t Q1(s)(rz)? As.

Putting z(t) = (rz)?, we get
+(t) < alt) + b(t) /t " 01(9)2(5)As.
Now, by applying the extension of the Gronwall’:inequality ([18] Theorem 3.1]), we have
z(t) < a(t) + b(t) /tt a(s)Q1(s)epq, (t,0(s)As.
5

This implies that
t
7 < + / a(s)Q1(s)evq, (t,0(s))As.
to

The proof is complete.
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3 Applications
In this Section, we apply the oscillation results to different types of time scales. In the case
when T = R, we have o(t) = t, u(t) = 0, y>(t) = v/(t) and (1.1) becomes the second-order
neutral delay differential equation
[r(@)(y(t) + p(®)y(7(1))] + a(t) f(y(6(t))) = 0. (3.1)
When T = N, we have o(t) =t + 1, u(t) = 1, y*(t) = Ay(t) = y(t +1) — y(t) and (1.1) becomes
the second-order neutral delay difference equation
Alr®)Ay() +p@)y(r(t)))] + a(t) f(y(6(t)) = 0. (3.2)
When T =hN, h > 0, we have o(t) =t + h, pu(t) = h,
t+h)—y(t
y2(0) = Ayl = VT VO
and (1.1) becomes the generalized second-order neutral delay difference equation
Ap [r()An(y(t) + p()y(T(1))] + a(t) f(y(6(2))) = 0. (3.3)
When T={t:t=¢q", n €N, ¢ > 1}, we have o(t) = ¢t, u(t) = (¢ — 1)t,

_ ~ylgt) —y(t)
yA(t) = Aqy(t) = (q B l)t s

and (1.1) becomes the second-order g-neutral delay difference equation
Aq [r(t)Aq(y(t) + p()y(T ()] + a(t) f(y(5(1))) = 0. (3-4)
When T = N? = {t? : t € N}, we have o(t) = (vt + 1)? and u(t) = 1+ 2V/1,

B Cy(VE+1)?) —y(t)
y2(t) = Any(t) = Lo

and (1.1) becomes the second-order neutral delay difference equation

An [r(t)An(y(t) +p@)y(T(1)] + qt) f(y(6(2))) = 0. (3.5)
When T =T,, = {t,, : n € N} where t,, are the so-called harmonic numbers defined by

)

n
1
to =0, tnzzka n € Ny,
k=1

we have o(t,) = tnr1, p(tn) = n—1i-17 y2(t) = Ay, y(tn) = (n+ 1)Ay(t,) and (1.1) becomes the

second-order neutral delay difference equation

A, [r(tn)Ar, (Y(tn) + pEn)y(T(En)))] + q(tn) f(y(5(tn))) = 0. (3.6)

When T = To={\/n : n € No}, we have o(t) = Vvt2+1 and u(t) = V12 +1 —t,2%(t) =
Aoz (t) = (z(Vt2 +1)—x(t))/V/t2 + 1—t, and (1.1) becomes the second-order difference equation
A [r(t)A2 (y(t) + p@)y(r(0))] + a(t) f(y(3(2))) = 0. (3.7)

When T = T3={n : n € Ng}, we have o(t) = /3 +1 and pu(t) = V13 +1 —t,z2(t) =
Asx(t) = (z(Vt3 + 1) —x(t))/ V13 + 1 —t, and (1.1) becomes the second-order perturbed delay

difference equation

Az(r(t)(As [y(t) +p@)y(T(0)]) + q(t) f(y(5(t))) = 0. (3.8)
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We start with the case when T = R, then we have from Theorem 2.1 the following oscilla-
tion results for the neutral delay differential equation (3.1). Note that when T = R, we have
H(o(t),0(s)) = H(t,s).

Theorem 3.1  Assume that (hy) holds, and

() >0, /too T(Zi) = 00, /too 0(s)Q(s)ds = oo. (3.9)

0
Furthermore, assume that there exists a differentiable function a(t)and a positive differentiable

Junction a(t)such that for sufficiently large tq

li?lsololp H(tl, 1) /t1 H(t,s)a(s) [1/)(5) - ir(s)AQ(t, s)|ds = oo, (3.10)
where DH(ts) (s
A(t,s) = Cy(s) + H(at 5 Cy(s) = ols) + 2a(s),
and
0s) = KO (asyr(s)) + ris)a(s).

Then every solution of (3.1) is oscillatory.
From Theorem 3.1 by choosing h(t,s) so that aasH(t,s) = —h(t,s)\/H(t,s), and taking
a(t) = — ;;((?), we get the following result.

Corollary 3.1 Assume that (hy) and (3.9) hold and let H € R and define h(t, s) by 88 H(t,s)=

—h(t,s)\/H(t,s). Assume there is a differentiable function a(t) such that for sufficiently large
tq

i [T 9a(6)506) — el om(eo)|as = 311
lmSUPH(t,tl) 5 ss)als)y(s) —  als)r(s ,8)|ds = oo, .

t—o0

o) = KA 1 (r(ié';s))’ (2 )

where

Then every solution of (3.1) oscillates.
If we let 0(t) = 7(t) = t and p(t) = 0 in Corollary 3.1 we get a result of Li [15].
Letting H(t,s) = 1 for tg < s < t and H(t,t) = 0 in Corollary 3.1 we get the following

result.

Corollary 3.2 Assume that (hy) and (3.9) hold and there exists a differentiable function a.(t)
such that for sufficiently large tq

T O R e e
Then every solution of the delay differential equation (3.1) is oscillatory.

Letting «(t) =t in Corollary 3.2 we get the following result.
Corollary 3.3  Assume that (hy) and (3.9) hold. If for sufficiently large t;

lim sup /: {KQ(S)&(S) + ;(’”fj))/ + ”iﬂds =0, (3.12)
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then every solution of (3.1) is oscillatory.

Letting a(t) = t? in Corollary 3.2 we get the following result.
Corollary 3.4  Assume that (hy) and (3.9)hold. If for sufficiently large t;
¢ /
. 2(7(s)
lim sup KsQ(s)o(s)+ s +7r(s)|ds = o0, (3.13)
t—o0 t1 S
then every solution of (3.1) is oscillatory.

Now, we apply our results in the time scale T = N and establish some oscillation criteria for
the delay difference equation (3.2). From Theorem 2.1 we get the following result. Note that
when T = N, we have H(o(t),0(s)) = H(t + 1,5+ 1).

Theorem 3.2 Assume that (hy) holds and

Ar(t) >0, > T(lt) =00, Y (H)Q(t) = 0. (3.14)

t=to t=to

Furthermore, assume that there exist a sequence a(t)and a positive sequence a(t) such that for

sufficiently large integers t1

t—1
lim sup Ht+10) ; H(t+1,54 Da(s 4+ 1) [)(s) — é(t, s)] = oo, (3.15)
where
K ) 2 1 2(s)A2%(t,
0(6) = KON alsprion + T, i) = CH IO,
and
Ca(s+1)Ci(s)  H(t+1,s+1)—H(t+1,s) ~ Aa(s) sa(s)
Alt,s) = a(s) H(t+1,5s+1) ’ Cl(s)_a(s—i—l) 23—!—1'
Then every solution of (3.2) is oscillatory.
From Theorem 3.2 by choosing h(t, s) so that
AH(t+1,5) = —h(t,s)VH({E+ 1,5+ 1), (3.16)

we have the following result.

Corollary 3.5  Assume that (hy) and (3.14) hold and let H € R such that (3.16) holds. If
there exist a sequence a(t) and a positive sequence §(t) such that for sufficiently large integers
t1, (3.15) holds where 1, ¢, and Ciare as in Theorem 3.2, where

_6(s+1)Ci(s) h(t,s)
Alt, s) = 5(s) VHt+1,5+1)

then every solution of (3.2) is oscillatory.

From Theorem 3.2 and Corollary 3.5, we can establish different sufficient conditions for the
oscillation of (1.1) by using different choices of H(t,s), a(t) and a(t). For instance, if we let
at) =t, a(t) = | and H(t,s) =1for t > s > to, and H(t + 1,t) = 0 in Theorem 3.2, we get
the following oscillation result.
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Corollary 3.6  Assume that (hy) and (3.14) hold. Furthermore, assume that, for sufficiently
large integer ty,

t—1

limsup Y {KQ(S)(S(S) —(s+ 1A (T(S)) _? T(S)] = . (3.17)

t—o0 s—=t,

Then every solution is oscillatory.

If we choose a(t) and «(t) such that

a(t) = —

we have C1(t) = 0 and we obtain the following result from Corollary 3.5.

Corollary 3.7  Assume that (hy), (3.14) and (3.18) hold and let H € R such that (3.16) holds.
If, for ty sufficiently large,

(t+1)Aa(t)

2a(t+1) 7 (3.18)

t—1
limsup Hit+1.0) ; H(t+1,5+1)6(s + 1) [o(s) — ¢(t, 5)] = o0,

where

L a(s) O\ (s Dr(s)h3(t, s)
ot s) =, (5(s+1)) sH(t+1,s+1) "’

then every solution of (3.2) is oscillatory.

From Corollary 3.7 we have, taking H(t,s) = 1 for ty < s < t and H(t + 1,t) = 0, the

following oscillation result for the delay difference equation (3.2).

Corollary 3.8  Assume that (hy) and (3.14) hold and there are a sequence a(t) and a positive
sequence a(t) such that (3.18) holds. If, for sufficiently large integers ty,

t—1
. KQ(s)d(s) sr(s)a?(s)
1 S 1 — A =
s 3 oo 41 [ S s o + T o
then every solution of (3.2) is oscillatory.
Letting a(t) =t and a(t) = —,, in Corollary 3.8, we get the following result.

Corollary 3.9  Assume that (hy) and (3.14) hold. Furthermore assume that, for sufficiently
large integers tq,

t—1

. s+1 r(s) r(s)
1 K ) A = 0. 3.19
lﬁgps;{ Qs)d(s) + ( ) >+ 4 | = (3.19)
Then every solution of (3.2) is oscillatory.
Letting a(t) = t? and a(t) = —23(2':11) in Corollary 3.8, we get the following result.

Corollary 3.10  Assume that (hy) and (3.14) hold. Furthermore assume that, for sufficiently

large integers t1,

= Kp(s)d(s 25+ 1)r(s r(s)(2s + 1)?
T SR LN o ) B ot IR

Then every solution (1.3) is oscillatory.



1430 Saker S. H., et al.

Next we give an oscillation result for the neutral delay g¢-difference equation (3.3). This

result follows easily by applying Theorem 2.1 for the time scale T = [¢", 00) 0, ¢ > 1.
Theorem 3.3  Assume that (hy) holds and

oo

Agr(t) >0, Y p(g")

k}:no

1

rgh) =% 2 mae)Qd) = oo (3.21)

Furthermore, assume that there exists a positive sequence a(t) such that, for sufficiently large

integers ny,

fsup H(anrl17 ) k; ¢ H (g™, ¢ al(d™) [v(d") - o(q", ¢")] = o, (3.22)
where
o(t,5) = QT(S)Zagi)qf) (t,s)
_ algs)Ci(s) | H™ (gt s) _a®(s) a(s)
Alt,s) = a(s) + H(t. g5) , Ch(s) o(as) 2 .
and
¥(s) = KQ(;)‘S(S) Ay (r(s)a(s)) + T(qs)aQ(s)

Then every solution of (3.3) is oscillatory.

4 Examples
In this Section, we give some examples to illustrate the main results.

Example 4.1 Consider the following second-order neutral delay dynamic equation

1 AA 3
y(t) + 571(t)y(7(t)) + tg(t)y(é(t)) =0, tE€ [tyg,0)r, to >0, (4.1)
such that
8> kli?ls(gp g((z)), where k> i

Here r(t) = 1, ¢(t) = tf(t), and 7(t) and §(t) are delay functions satisfying 7(t) = T — T,
§(t): T— Tforallt €T, and lim; o 7(¢) = lims 0 6(t) = 00, 7(t) < t,0(t) < tand f(u) = u,
so that K = 1. It is clear that (h1), (h2) and (2.1) hold. To apply Corollary 2.5, it remains to

prove that the condition (2.31) holds. In this case (2.31) reads

o / 7(s) Laﬁ@ f,(()) (1 - 1) *y (1)A N 4a<s>s]AS
zlimsup/tta(s)[ g o) 11 B 5(8))1%5

t—oo

—
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trp
> lim sup / { 7
t—o0o t1

= limsu /t {BO((S
= p
t—o0o to

provided that § > klimsup,_, . Z((tt)), where k >

[to,00)r. In particular, if T = R, ¢y > 0, and the delay is the constant delay 6(t) = t — «,
where a > 0, then if g > 4117 equation (4.1) is oscillatory; if T = Z, to = 1, and the delay is the

1, equation (4.1) is oscillatory;

and finally if T = ¢% U {0}, to = 1, and the delay function is §(t) = p"(t) = qt where n is a

ny

4117 and hence equation (4.1) is oscillatory on

constant delay () = t — n, n a positive integer, then if 3 >

positive integer, then if § > iq”“, equation (4.1) is oscillatory.
Example 4.2 Consider the following second-order neutral delay dynamic equation

571t -1 A% g
R

where (3 is a positive constant, and 7(¢) < ¢ and §(¢) < t are the delay functions defined on T.
In (4.2), r(t) =1, p(t) = 5;1,(1’5()51, q(t) = tf(t) and f(u) = u(1 +u?) > u. It is easy to see that
the assumptions (h;) and (hg) hold with K =1 and ¢(t)(1 — p(d(¢))) = 56)(}5). We will apply
Corollary 2.5. Note, for ty > 0,

e [ o200y D2 (0) * i)
:mm[ﬂﬂﬁl—lfgll]m

y(t) + y(0()) (1 +32(8(t)) =0, t € [tg,00)T, to >0, (4.2)

t—o0 so(s) o(s) 4o(s)s
trp_ 1
zlimsup/ {ﬂ 4 —61] As = oo,
t—o00 to S S S

provided that 8 > | since ftzo L As < oo for v > 1 (cf. [4]). Hence every solution of (4.2)
oscillates if § > }l.

Remark 4.1 We note that the results established by Agarwal et al. [5], Wu et al. [9] Li
and Liu [16] and Li and Yeh [17], Sahiner [8] and Saker [7] cannot be applied to equations
(4.1)—(4.2) in their general form with infinite delays. Thus our results are new and improve the

results in the above mentioned papers.
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