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1 Introduction and Main Results

The nowadays well-known two scales of space

As
pq(R

n), where s ∈ R, 0 < p < ∞, 0 < q < ∞, (1.1)

with A = B and A = F cover as special cases (classical and fractional) Sobolev spaces, classical
Besov spaces and (inhomogeneous) Hardy spaces. Recall that D(Rn) is dense in all these spaces
(excluding p = ∞ and/or q = ∞). For 0 < d < n, we furnish compact d-sets Γ in R

n with
the restriction of the Hausdorff measure H d in R

n to Γ, denoted by H d
Γ . One may ask the

following two mutually exclusive questions:

1 In which of the above spaces As
pq(R

n) is D(Rn\Γ) dense?

2 For which of the above spaces As
pq(R

n) does there exist a linear and bounded trace
operator

trμ : As
pq(R

n) ↪→ Lp(Γ, μ),

where μ = H d
Γ ?

It comes out that the above spaces divide sharply in these two contrasting classes (di-
chotomy). The well-known inclusion properties of these spaces suggest the following formula-
tion. Let DΓ = D(Rn\Γ) be as usual the collection of all (complex-valued) C∞ functions in R

n

with compact support in in R
n\Γ.

Definition 1 Let 0 < p < ∞ and let

Ap(Rn) =
{
As

pq(R
n) : 0 < q < ∞, s ∈ R

}
, (1.2)
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where As
pq(R

n) are the above spaces with A = B or A = F . Let 0 < d < n and let Γ = supp μ

be a compact d-set in R
n with μ = H d

Γ . Let σ ∈ R. Then

D(Ap(Rn), Lp(Γ, μ)) = (σ, u) with 0 < u < ∞
is called the dichotomy of {Ap(Rn), Lp(Γ, μ)} if

trμ exists for
{

s > σ, 0 < q < ∞,

s = σ, 0 < q ≤ u,
(1.3)

and

DΓ is dense in As
pq(R

n) for
{

s = σ, u < q < ∞,

s < σ, 0 < q < ∞.
(1.4)

Furthermore,

D(Ap(Rn), Lp(Γ, μ)) = (σ, 0)

means that {
trμ exists for s > σ, 0 < q < ∞,

DΓ is dense in As
pq(R

n) for s ≤ σ, 0 < q < ∞;

and

D(Ap(Rn), Lp(Γ, μ)) = (σ,∞)

means that {
trμ exists for s ≥ σ, 0 < q < ∞,

DΓ is dense in As
pq(R

n) for s < σ, 0 < q < ∞.

Remark 2 It is the main aim of this paper to prove the existence of such sharp breaking
points (σ, u) and to calculate them with the following outcome.

Theorem 3 Let 0 < d < n and 0 < p < ∞. Let Γ be a compact d-set in R
n and μ = H d

Γ .
Then

D

(
Bp(Rn), Lp(Γ, μ)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
n − d

p
, 1

)
, if p > 1,(

n − d

p
, p

)
, if p ≤ 1,

(1.5)

and

D

(
Fp(Rn), Lp(Γ, μ)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
n − d

p
, 0

)
, if p > 1,(

n − d

p
,∞

)
, if p ≤ 1.

(1.6)

Remark 4 It is convenient but not really necessary to assume that the above d-set is compact.
But instead of discussing what happens at infinity we complement the above assertions by the
most distinguished closed but not compact d-set,

Γ = R
d, n > d ∈ N,

interpreted as a d-dimensional hyper-plane in R
n. Then μ = H d

Γ is the d-dimensional Lebesgue
measure and we write Lp(Rd) instead of Lp(Γ, μ). Although the outcome is rather obvious it
is worth being formulated, also for historical reasons.
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Corollary 5 Let n > d ∈ N. Then

D(Bp(Rn), Lp(Rd)) =

⎧⎪⎪⎨
⎪⎪⎩

(
n − d

p
, 1

)
, if p > 1,(

n − d

p
, p

)
, if p ≤ 1,

and

D(Fp(Rn), Lp(Rd)) =

⎧⎪⎪⎨
⎪⎪⎩

(
n − d

p
, 0

)
, if p > 1,(

n − d

p
,∞

)
, if p ≤ 1.

Remark 6 Density and trace assertions for the classical Besov spaces

Bs
pq(R

n), s > 0, 1 < p < ∞, 1 ≤ q < ∞, (1.7)

and the (fractional) Sobolev spaces (or Bessel-potential spaces)

Hs
p(Rn) = F s

p,2(R
n), 1 < p < ∞, s > 0, (1.8)

as covered by Corollary 5 have been known since the late 1960s and the early 1970s. Corre-
sponding formulations and detailed references may be found in [1, Section 2.9.4, pp. 223–226]
with [2] as our own contribution at this time. In Section 2.3 we collect further known results
related to Theorem 3 and Corollary 5 on which we rely afterwards.

In connection with Theorem 3 one can ask several questions. Any 0 < s < n
p may serve as

a breaking point s = n−d
p . What about the spaces with s ≤ 0? The following observation sheds

some light on the corresponding situation.

Proposition 7 Let Γ be a compact set in R
n with Lebesgue measure |Γ| = 0. Then DΓ is

dense in all spaces
As

pq(R
n), s < 0, 0 < p < ∞, 0 < q < ∞. (1.9)

Secondly we put forward the somewhat mysterious claim that traces in Lp(Γ, H d
Γ ) or Lp(Rd)

make sense even for the spaces

As
pq(R

n), 0 < p < 1, 0 < q < ∞,
n − d

p
< s < n

(
1
p
− 1

)
, (1.10)

containing singular distributions as elements; for example the δ-distribution belongs to all these
spaces. Then trμδ ∈ Lp(Γ, H d

Γ ) makes sense and one gets

trμδ = 0 in Lp(Γ, H d
Γ ). (1.11)

One can replace Lp(Γ, H d
Γ ) by Lp(Rd) where even d = n may be admitted. All these require

some explanations which will be given below.
The plan of the paper is the following. In Section 2, we introduce the spaces according to

(1.1) and collect a few useful properties. Furthermore we discuss in detail what is meant by
traces of spaces on sets. Finally we deal with some curiosities connected with (1.10), (1.11).
In Section 3, we prove Theorem 3, Corollary 5, Proposition 7 and some other complementary
assertions formulated in Section 2. The proofs are mainly based on atomic decompositions of
the spaces in (1.1). Furthermore we need the remarkable interplay between the porosity of sets
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in R
n and the spaces F s

pq(R
n). For the convenience of the reader we list these ingredients in an

Appendix (Section A).

2 Preliminaries and Further Assertions

2.1 Definitions and Density Properties

We assume that the reader is familiar with the theory of the spaces Bs
pq(R

n) and F s
pq(R

n) as it
may be found in [3–5]. We restrict ourselves to the bare minimum. Let N be the collection of all
natural numbers and N0 = N ∪ {0}. Let R

n be Euclidean n-space, where n ∈ N. Put R = R
1,

whereas C is the complex plane. Let S(Rn) be the Schwartz space of all complex-valued rapidly
decreasing, infinitely differentiable functions on R

n. By S′(Rn) we denote its topological dual,
the space of all tempered distributions on R

n. Let D(Rn) be the collection of all complex-
valued C∞ functions in R

n with compact support. Furthermore, Lp(Rn) with 0 < p < ∞ is
the standard quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

‖f |Lp(Rn)‖ =
(∫

Rn

|f(x)|p dx

)1/p

.

The Fourier transform ϕ̂ = Fϕ and its inverse ϕ∨ = F−1ϕ have the usual canonical meaning
on S(Rn) and on S′(Rn). Let ϕ0 ∈ D(Rn) with

ϕ0(x) = 1 if |x| ≤ 1 and ϕ0(y) = 0 if |y| ≥ 3/2, (2.1)

and let
ϕk(x) = ϕ0(2

−kx) − ϕ0(2
−k+1x), x ∈ R

n, k ∈ N.

Since 1 =
∑∞

j=0 ϕj(x) for x ∈ R
n the ϕj form a dyadic resolution of unity. Recall that (ϕj f̂)∨(x)

makes sense for any f ∈ S′(Rn) since (ϕj f̂)∨ is an entire analytic function in R
n.

Definition 8 Let 0 < p < ∞, 0 < q < ∞, s ∈ R, and let ϕ = {ϕj}∞j=0 be the above resolution
of unity. Let

‖f |Bs
pq(R

n)‖ϕ =
( ∞∑

j=0

2jsq‖(ϕj f̂)∨|Lp(Rn)‖q

)1/q

(2.2)

and

‖f |F s
pq(R

n)‖ϕ =
∥∥∥∥
( ∞∑

j=0

2jsq|(ϕj f̂)∨(·)|q
)1/q

|Lp(Rn)
∥∥∥∥. (2.3)

Then
As

pq(R
n) =

{
f ∈ S′(Rn) : ‖f |As

pq(R
n)‖ϕ < ∞}

, (2.4)

where either A = B or A = F .

Remark 9 These quasi-Banach spaces (Banach spaces if p ≥ 1, q ≥ 1) are independent of
ϕ (equivalent quasi-norms) which will be omitted on the left-hand sides of (2.2), (2.3) and in
(2.4) in what follows. The possible extensions of these definitions to p = ∞ and/or q = ∞ will
not be considered in connection with dichotomy. Special cases have been mentioned in (1.7)
and (1.8) with the classical Sobolev spaces

Wm
p (Rn) = Hm

p (Rn), m ∈ N, 1 < p < ∞
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as sub-cases. The following assertion is well known.

Proposition 10 Both D(Rn) and S(Rn) are dense in As
pq(R

n) with 0 < p < ∞, 0 < q < ∞,
s ∈ R.

Remark 11 For our later considerations about traces it is useful to outline an explicit
approximation procedure for f ∈ As

pq(R
n). With ϕ0 as in (2.1) one gets

fj = (ϕ0(2
−j ·)f̂)∨ → f in As

pq(R
n) if j → ∞

as a consequence of Fourier multiplier assertions and (in case of the F -spaces) Lebesgue’s
dominated convergence theorem, [6, p. 37]. Recall that fj is an entire analytic function. Let
ψ ∈ S(Rn) with ψ(0) = 1 such that ψ̂ has a compact support. Then

f l
j = ψ(2−l·)fj ∈ S(Rn) and supp f̂ l

j ⊂ {y ∈ R
n : |y| ≤ c 2j}

for some c > 0 (all j ∈ N) and all l ∈ N where f l
j ∈ S(Rn) follows from the Paley–Wiener–

Schwartz theorem. One gets

f l
j → fj in As

pq(R
n) if l → ∞

as a consequence of

‖f l
j − fj |As

pq(R
n)‖ ≤ cj ‖(1 − ψ(2−l·) fj |Lp(Rn)‖ → 0

using again Lebesgue’s dominated convergence theorem. Hence choosing l = l(j) suitably one
obtains that

f j = f
l(j)
j ∈ S(Rn) and f j → f in As

pq(R
n). (2.5)

As for the density of D(Rn) one has to multiply afterwards with an appropriate sequence of C∞

cut-off functions. As said the explicit construction of f j in (2.5) will be of some use for us later
on. This is the only reason for inserting the above arguments for this otherwise well-known
basic observation. As for further details one may consult [3, Theorem pp. 48/49, Theorem,
p. 22] and the related proofs.

2.2 Measures and Traces

We assume that the reader is familiar with basic measure and integration theory, especially in
connection with fractal geometry and fractal analysis. Short descriptions may be found in [7,
pp. 7–13], [8, pp. 1–6] and [9, pp. 1–2]. Let μ be a non-trivial finite compactly supported Radon
measure in R

n. Hence

0 < μ(Rn) < ∞, Γ = supp μ compact, (2.6)

where supp μ must be understood as the uniquely determined identification of μ as an element
of S′(Rn). One may consult [5, Section 1.12.2, pp. 80/81] about this point. Otherwise Lr(Γ, μ)
with 0 < r < ∞ is the usual complex-valued quasi-Banach space, quasi-normed by

‖g |Lr(Γ, μ)‖ =
(∫

Rn

|g(γ)|r μ(dγ)
)1/r

=
(∫

Γ

|g(γ)|r μ(dγ)
)1/r

. (2.7)
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Recall that a compact set Γ in R
n is called a d-set, where 0 < d < n, if one finds a Radon

measure μ according to (2.6) and two numbers c1 > 0, c2 > 0 such that

c1 �d ≤ (B(γ, �)) ≤ c2 �d, γ ∈ Γ, 0 < � < 1, (2.8)

where B(γ, �) is the ball in R
n centred at γ and of radius �. Any two Radon measures with (2.6),

(2.8) are equivalent to each other and, hence, one may choose μ = H d
Γ = H d|Γ, the restriciton

of the Hausdorff measure H d in R
n to Γ. Details may be found in [9, p. 5]. Otherwise d-sets

(especially self-similar d-sets) are a favourable subject of fractal geometry and fractal analysis,
[8, 7, 10]. Their relations to function spaces have been studied in detail in [9, 11, 5]. This will
be continued later on in this paper. But first we adopt a more general point of view.

Definition 12 Let μ be a Radon measure in R
n with (2.6) and let 0 < r < ∞. Let As

pq(R
n)

be a space according to Definition 8 and let for some c > 0,

‖ϕ |Lr(Γ, μ)‖ ≤ c ‖ϕ |As
pq(R

n)‖ for all ϕ ∈ S(Rn). (2.9)

Then the trace operator trμ,
trμ : As

pq(R
n) ↪→ Lr(Γ, μ), (2.10)

is the completion of the pointwise trace (trμϕ)(γ) = ϕ(γ) with ϕ ∈ S(Rn) and γ ∈ Γ.

Remark 13 It follows from Proposition 10 and standard arguments that this definition
makes sense and that the outcome

trμf ∈ Lr(Γ, μ), f ∈ As
pq(R

n),

is independent of the chosen approximating sequence

ϕj → f in As
pq(R

n), ϕj ∈ S(Rn),

on the source side. On the target side one has

trμϕj → trμf in Lr(Γ, μ). (2.11)

By standard arguments of measure theory, [6, Theorem 5.2.7, p. 23 and Lemma 9.3.1, p. 51],
it follows that there is a subsequence of {ϕj} which converges μ-a.e. to trμf . Identifying this
subsequence with {ϕj} we may assume in addition to (2.11) that

(trμϕj)(γ) → (trμf)(γ) μ-a.e. on Γ.

One gets that trμf is μ-a.e. independent of r as long as one has (2.9). This applies in particular
to 0 < r̃ ≤ r with (2.9) as a consequence of μ(Γ) < ∞ and Hölder’s inequality. There is a
similar situation on the source side assuming that one has (2.9) for As1

p1q1
(Rn) and As2

p2q2
(Rn)

on the right-hand side and that

f ∈ As1
p1q1

(Rn) ∩ As2
p2q2

(Rn). (2.12)

Then one can rely on the distinguished approximating sequences according to (2.5) where one
may assume that they apply to both spaces in (2.12). Hence one has a common approximating
sequence and trμf is μ-a.e. the same in both cases. If (2.9) holds both for Lr1(Γ1, μ1) and
Lr2(Γ2, μ2) then it is also valid for Lr(Γ, μ) with μ = μ1 +μ2 and r = min(r1, r2). By the above
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considerations trμ1 and trμ2 are restrictions of trμ. In other words for individual elements f

the traces are independent of the source spaces and of the target spaces as long as one has (2.9)
and whenever comparison makes sense.

Remark 14 If f ∈ As
pq(R

n) is a regular distribution, hence locally Lebesgue-integrable in
R

n, then there is an alternative method to define traces on, say, compact sets Γ in R
n based on

the Lebesgue points of f in R
n related to the As

pq(R
n)-capacity of Γ. This approach has some

history. The most elaborated treatments may be found in [12–13]. In [11, pp. 260/261], we
compared these two methods with the expected outcome that they coincide at least for d-sets
and some spaces As

pq(R
n). However the necessary restriction

As
pq(R

n) ↪→ Lloc
1 (Rn), hence s ≥ n

(
1

min(1, p)
− 1

)
does not fit in our concept.

2.3 The Dichotomy Problem and Traces on d-sets

As above DΓ = D(Rn\Γ) is the collection of all complex-valued C∞ functions in R
n with

compact support in R
n\Γ where Γ is a compact set (or a hyper-plane) in R

n. We always give
preference of (Radon) measures μ to sets taking (2.6) as the starting point. Let Ap(Rn) be
as in (1.2) and let Lr(Γ, μ) be the spaces introduced in Section 2.2 based on (2.6), (2.7). In
generalisation of Definition 1 the dichotomy problem related to Ap(Rn) and Lr(Γ, μ) is the
search for a couple

D(Ap(Rn), Lr(Γ, μ)) = (σ, u), σ ∈ R, 0 ≤ u ≤ ∞, (2.13)

with (1.3), now based on Definition 12, and (1.4) (with the indicated interpretations if u = 0
or u = ∞). The question makes sense since one has for fixed A = B or A = F and 0 < p < ∞
the continuous embeddings,

As1
pq1

(Rn) ↪→ As2
pq2

(Rn) for s2 < s1 and 0 < q1, q2 < ∞ (2.14)

and
As

pq1
(Rn) ↪→ As

pq2
(Rn) for 0 < q1 ≤ q2 < ∞, (2.15)

together with Proposition 10, Definition 12 and the following simple observation.

Proposition 15 Let Lr(Γ, μ) be as in Definition 12 and let DΓ be dense in As
pq(R

n). Then
there is no c > 0 with (2.9).

Proof We assume that there is a constant c > 0 with (2.9). Then one gets a contradiction if one
approximates a function ϕ ∈ S(Rn) which is identically 1 near Γ in As

pq(R
n) by DΓ-functions.

Remark 16 Hence, the question makes sense, but in general a sharp breaking point as in
(2.13) cannot be expected. Let, for example, μ1 be the Lebesgue measure on a d-dimensional
hyper-plane R

d (or a compact ball in R
d to be consistent with the above set-up), n > d ∈ N,

and let μ2 be an atomic measure, say, μ2({0}) = 1 and μ2(Rn\{0}) = 0. Then the existence of
a trace for μ = μ1 + μ2 requires

As
pq(R

n) ↪→ C(Rn), hence s ≥ n/p,
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whereas one needs s ≤ n−d
p for the density assertion. This follows from Remark 6 and the

references given there. Hence there is a gap. But this makes also clear that the above dichotomy
is a global question and that related measures must respect that the spaces As

pq(R
n) are isotropic

and translation-invariant. This results naturally in isotropic measures μ with (2.6) and

c1 h(�) ≤ μ(B(γ, �)) ≤ c2 h(�), γ ∈ Γ, 0 < � < 1,

for some c1 > 0, c2 > 0, in generalisation of (2.8). These are the so-called h-sets, where h is
a continuous strictly increasing function on the interval [0, 1], say with h(0) = 0 and h(1) = 1.
The tricky problem which functions h generate such a measure had been solved in [14–16] and
may also be found in [5, Theorem 1.555, p. 97]. In the present paper we restrict ourselves to
the most prominent examples which are the d-sets according to (2.8) where h(�) = �d.

Proposition 17 Let Γ be a compact d-set in R
n with 0 < d < n furnished with the Radon

measure μ = H d
Γ = H d|Γ as introduced at the beginning of Section 2.2. Then

trμB
n−d

p
pq (Rn) = Lp(Γ, μ), if 0 < p < ∞ and 0 < q ≤ min(1, p) (2.16)

and
trμF

n−d
p

pq (Rn) = Lp(Γ, μ), if 0 < p ≤ 1 and 0 < q < ∞. (2.17)

Remark 18 Of course, (2.16) with (2.17) means that the linear and bounded trace operator
trμ according to (2.10) exists and that it is a map onto Lp(Γ, μ). The above assertion has a
substantial history. First we remark that Γ can be replaced by R

d with n > d ∈ N and the
d-dimensional Lebesgue measure, interpreted as an d-dimensional hyperplane in R

n. Hence, in
an obvious notation,

tr B
n−d

p
pq (Rn) = Lp(Rd), if 0 < p < ∞ and 0 < q ≤ min(1, p), (2.18)

and
tr F

n−d
p

pq (Rn) = Lp(Rd), if 0 < p ≤ 1 and 0 < q < ∞. (2.19)

The first proof of (2.18) for 1 ≤ p < ∞ (and d = n − 1) goes back to [17–19] in the late
1970s. This had been extended to all 0 < p < ∞ in [20]. The F -counterpart, hence (2.19) (with
d = n−1) is due to [21–22]. Further details may be found in [4, Section 4.4.3, pp. 220/221]. The
step from R

d to d-sets requires new technical instruments, especially atomic decompositions.
Proposition 17 coincides with [5, Proposition 1.172]. But it goes back to [9, Corollary 18.12,
p. 142] and the later observation that any d-set is porous (called ball condition in [9]) according
to Proposition 27 below with a reference to [11, Remark 9.19, pp. 140/141] (what we overlooked
in [9]). However we wish to mention that one finds some assertions of this type also in an earlier
paper by Netrusov [23, Corollary, p. 193].

2.4 Curiosities

As mentioned above with a reference to [5, Section 1.12.2, pp. 80/81] any Radon measure μ

according to (2.6) can be identified with the tempered distribution generated by μ, also written
as μ ∈ S′(Rn). This applies also to

g ∈ Lp(Γ, μ) ⊂ L1(Γ, μ), 1 ≤ p < ∞,
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since g can be interpreted as a complex Radon measure. If p < 1 then the situation is totally
different and the spaces S′(Rn) and Lp(Γ, μ) have nothing in common. On the other hand,
Definition 12 makes sense and we have Proposition 17. But the situation has some curious
consequences. Nevertheless one may ask for traces

trμ : As
pq(R

n) ↪→ Lp(Γ, μ), 0 < p < 1, 0 < s < n

(
1
p
− 1

)
, (2.20)

on compact d-sets Γ with 0 < d < n and μ = H d
Γ and also for traces

tr : As
pq(R

n) ↪→ Lp(Rm), 0 < p < 1, 0 < s < n

(
1
p
− 1

)
, (2.21)

on hyper-planes R
m ⊂ R

n with n ≥ m ∈ N, admitting m = n, where (2.18), (2.19) might be
considered as limiting cases. Recall that

H d′
Γ ∈ B

(n−d′)( 1
p−1)

p∞ (Rn), |Γ| = 0, 0 < p < ∞, (2.22)

for compact d′-sets in R
n with 0 ≤ d′ < n (admitting d′ = 0 for the δ-distribution μ = δ

with Γ = {0}). Here the spaces Bs
p∞(Rn) are defined according to (2.2), (2.4) extended to

q = ∞. As for (2.22) we refer to [5, pp. 96/97, Proposition 7.32 and its proof, pp. 315/316].
In particular one finds in all spaces As

pq(R
n) according to (2.20), (2.21) singular distributions

f with |supp f | = 0.

Proposition 19 (i) If s > 0, 0 < p < ∞, 0 < q < ∞, then

tr : As
pq(R

n) ↪→ Lp(Rn) (2.23)

exists. If, in addition, 0 < p < 1, 0 < s ≤ n( 1
p − 1) then

tr f = 0 in Lp(Rn) for any f ∈ As
pq(R

n) with |supp f | = 0. (2.24)

(ii) Let 0 < p < 1. Let Γ be a compact d-set, μ = H d
Γ and Γ′ be a compact d′-set, μ′ = H d′

Γ′

with
0 ≤ d′ < d < n, d − d′ > (n − d′)p. (2.25)

Then μ′ ∈ B
n−d

p
pp (Rn),

trμμ′ ∈ Lp(Γ, μ) exists and trμμ′ = 0

in Lp(Γ, μ).

Remark 20 One gets tr δ = 0 as a special case of (2.24). We shift the proof of this proposition
to Section 3.2. We only mention that one gets by (2.22), (2.25) and

(n − d′)
(

1
p
− 1

)
>

n − d

p

that
μ′ ∈ B

(n−d′)( 1
p−1)

p∞ (Rn) ↪→ B
n−d

p
pp (Rn).

Then (2.25) ensures that trμμ′ ∈ Lp(Γ, μ) makes sense.
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3 Proofs

We have to prove Theorem 3 (our main result), Corollary 5 and the Propositions 7, 19. We
rely on atomic decompositions and the remarkable interplay between F -spaces and porous sets
in R

n. For the convenience of the reader we collect what we need in an Appendix (Section A
below).

3.1 Proof of Theorem 3 and Corollary 5

Step 1 We prove Theorem 3. By the discussions at the beginning of Section 2.3, especially
in connection with (2.13)–(2.15) and Proposition 15 we have to show that the breaking points
(σ, u) exist and that they coincide with the right-hand sides of (1.5), (1.6). By (2.16) it remains
to prove that

DΓ is dense in B
n−d

p
pq (Rn) if 0 < p < ∞, q > min(p, 1), (3.1)

in case of the B-spaces, hence (1.5). If p ≤ 1 then we have (2.17). On the other hand, it follows
from

B
n−d

p

pq̃ (Rn) ↪→ F
n−d

p −ε
pq (Rn), p ≤ 1, (3.2)

for ε > 0, 0 < q < ∞, q̃ > p, the density of D(Rn) in both spaces in (3.2), and (3.1) (with
q̃) that DΓ is dense in all spaces on the right-hand side of (3.2). This proves the lower line of
(1.6), hence p ≤ 1. As for the upper line, hence 1 < p < ∞, we first remark that for any ε > 0,
0 < q < ∞,

F
n−d

p +ε
pq (Rn) ↪→ B

n−d
p

p,1 (Rn), p > 1. (3.3)

By (2.16) all spaces on the left-hand side of (3.3) have traces. It remains to prove in case of
the F -spaces that

DΓ is dense in F
n−d

p
pq (Rn) if 1 < p < ∞, 0 < q < ∞. (3.4)

Step 2 We begin with a preparation by constructing a sequence {ϕJ}∞J=1 ⊂ D(Rn) with

ϕJ (x) = 1 in an open neighbourhood of Γ

(depending on J), and

ϕJ → 0 in B
n−d

p
pq (Rn) if J → ∞, p ≥ 1, q > 1. (3.5)

For given j ∈ N we cover a neighbourhood of Γ with balls Bj,m centred at Γ and of radius 2−j ,
where m = 1, . . . , Mj and Mj ∼ 2jd such that there is a resolution of unity,

Mj∑
m=1

ϕj,m(x) = 1 near Γ, 0 ≤ ϕj,m ∈ D(Bj,m), (3.6)

with the usual properties,

|Dγϕj,m(x)| ≤ cγ 2j|γ|, γ ∈ N
n
0 . (3.7)

For 2 ≤ J ∈ N, let J ′ ∈ N such that
J′+1∑
j=J

rj = 1 with rj = j−1 if J ≤ j ≤ J ′ and 0 < rJ′+1 ≤ (J ′ + 1)−1.
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Then

ϕJ(x) =
J′+1∑
j=J

rj 2−
jd
p

Mj∑
m=1

2
jd
p ϕj,m(x), x ∈ R

n, (3.8)

is an atomic decomposition in Bs
pq(R

n) according to Proposition 23(i) below for s = n−d
p , p ≥ 1,

q > 1, with L = 0 (no moment conditions). We used s − n
p = −d

p . By (A.6), one gets

‖ϕJ |B
n−d

p
pq (Rn)‖q ≤ c

J′+1∑
j=J

rq
j 2−j dq

p

( Mj∑
m=1

1
)q/p

≤ c′
∞∑

j=J

j−q ∼ J1−q.

(3.9)

This proves (3.5).

Step 3 We prove (3.1) for p > 1, q > 1. It is sufficient to approximate f ∈ D(Rn) in Bs
pq(R

n),
s = n−d

p , by functions fJ ∈ DΓ. Let ϕJ be the above functions and

f = fJ + fJ with fJ = ϕJf and fJ = (1 − ϕJ )f ∈ DΓ.

By the pointwise multiplier theorem in [4, Corollary, p. 205], one has for � > n−d
p , some c > 0,

all f ∈ D(Rn) and all ϕJ that∥∥fJ |Bs
pq(R

n)
∥∥ ≤ c ‖f |C �(Rn)‖ · ∥∥ϕJ |Bs

pq(R
n)

∥∥ → 0

if J → ∞, where we used (3.5). This proves (3.1) for p > 1, q > 1.

Step 4 We prove (3.4). By Proposition 27 in Appendix, Γ is porous. Then one can apply
the arguments from [11, pp. 142/143] (one may also consult [5, pp. 393/394, (9.90)]) with the
outcome that at least for p > 1, q ≥ 1,

‖ϕJ |F
n−d

p
pq (Rn)‖ ∼ ‖ϕJ |B

n−d
p

pp (Rn)‖ → 0 if J → ∞, (3.10)

where we used (3.5) and that we can choose L = 0 in (A.7) (hence no moment conditions in
Proposition 23(ii) are needed). If 0 < q < 1 then it may happen that (3.8) is no longer an atomic
decomposition in F s

pq(R
n) since some moment conditions in (A.7), (A.3) are required. However

since Γ is porous one can complement ϕj,m outside of Γ in an appropriate way such that one
gets the needed moment conditions. Details may be found in [9, p. 143] with a reference to
[24]. After this modification one obtains (3.10) now for all 1 < p < ∞ and 0 < q < ∞. Then
one gets (3.4) by the same arguments as in Step 3.

Step 5 We prove (3.1) for p < q. This covers in particular the remaining cases with p ≤ 1.
We begin with a preparation, covering Γ, say with μ(Γ) = 1, for given L ∈ N by d-sets Γl such
that

Γ =
L′⋃

l=L

Γl, μ(Γl) ∼ l−1,

L′∑
l=L

μ(Γl) ∼ μ(Γ) = 1,

where L′ ∈ N with L′ > L is appropriately chosen. This can be done as follows. For given l ∈ N

and appropriately chosen large k ∈ N (in dependence of l) one finds ∼ l−1 2kd balls centred at
Γ, of radius ∼ 2−k and having pairwise distance of at least ∼ 2−k, such that the intersection
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of Γ with the union of these balls is a sub-d-set Γl of Γ with μ(Γl) ∼ l−1. Now one can start
for the given L ∈ N with ΓL = ΓL and applies afterwards the above procedure to Γ\ΓL and
l = L+1. Iteration gives the desired decomposition. This can be done in such a way that there
are functions ψl ∈ D(Rn), ψl ≥ 0,

L′∑
l=L

ψl(γ) = 1 if γ ∈ Γ, Γl ⊂ supp ψl ⊂ {y ∈ R
n : dist (y, Γl) < εl}

for some εl > 0. Let for given l ∈ N (between L and L′) and appropriately chosen j(l) ∈ N,

Mj(l)∑
m=1

ϕj(l),m(x) = 1 near Γ, 0 ≤ ϕj(l),m ∈ D
(
Bj(l),m

)
as in (3.6) with the counterpart of (3.7) and Mj(l) ∼ 2j(l)d. With

j(L) < · · · < j(l) < j(l + 1) < · · · < j(L′),

we put in analogy to (3.8)

ϕL(x) =
L′∑

l=L

ψl(x) 2−
j(l)d

p

Mj(l)∑
m=1

2
j(l)d

p ϕj(l),m(x), x ∈ R
n. (3.11)

First, we assume that we do not need moment conditions in Proposition 23(i) (hence n−d
p =

s > σp). Then (3.11) with large j(l) is an atomic decomposition which can be written as

ϕL(x) =
L′∑

l=L

2−
j(l)d

p

M ′
j(l)∑

m=1

ϕ̃j(l),m(x), x ∈ R
n,

with
M ′

j(l) ∼ μ(Γl) 2j(l)d ∼ l−1 2j(l)d

counting only non-vanishing terms, where the equivalence constants are independent of l. We
have ϕL(x) = 1 near Γ. Then one gets by Proposition 23(i) for q > p,

‖ϕL |B
n−d

p
pq (Rn)‖q ≤ c

L′∑
l=L

2−j(l) dq
p

( M ′
j(l)∑

m=1

1
)q/p

≤ c′
∞∑

l=L

l−q/p ∼ L1− q
p .

This is the counterpart of (3.9). Now we can argue in the same way as in Step 3. This proves
(3.1) for p ≤ 1 and q > p provided that one does not need moment conditions in Proposition
23(i). But otherwise one can rely on the same arguments and references as in Step 4. This
proves (3.1) also in the remaining cases and completes the proof of Theorem 3.

Step 6 Corollary 5 is a by-product of the above arguments. On the one hand one has
(2.18), (2.19) as the direct (and easier) counterpart of Proposition 17 (and the starting point of
these considerations). On the other hand the approximation of f ∈ D(Rn) by functions from
DΓ = D(Rn\Γ) with Γ = R

d is a local matter covered by the above arguments.
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3.2 Proof of Propositions 7 and 19

Step 1 We prove Proposition 7. Obviously, DΓ is dense in Lp(Rn) with 1 < p < ∞. Then it
follows from Proposition 10 and

Lp(Rn) ↪→ As
pq(R

n), s < 0, 1 < p < ∞, 0 < q < ∞, (3.12)

that DΓ is also dense in As
pq(R

n) with (3.12). For any ball K in R
n (and s ∈ R, 0 < q < ∞)

there is a number cK > 0 such that

‖f |As
p1,q(R

n)‖ ≤ cK ‖f |As
p2,q(R

n)‖, 0 < p1 ≤ p2 < ∞,

for all f ∈ As
p2,q(R

n) with supp f ⊂ K. This well-known assertion follows from Hölder’s
inequality and characterisations of the spaces As

pq(R
n) in terms of local means as it may be

found in [4, Sections 2.4.6, 2.5.3, pp. 122, 138]. However then one gets again from Proposition 10
and the corresponding density assertion for the spaces in (3.12) that DΓ is dense in all spaces
in (1.9).

Step 2 We prove Proposition 19(i). For s > 0 and 0 < p ≤ 1 it follows from Definition 8 that

‖f |Lp(Rn)‖p =
∥∥∥∥

∞∑
j=0

(ϕj f̂)∨|Lp(Rn)
∥∥∥∥

p

≤
∞∑

j=0

‖(ϕj f̂)∨|Lp(Rn)‖p ≤ c ‖f |Bs
pq(R

n)‖p;

similarly for 1 < p < ∞ (but this is well known). Together with elementary embeddings one
gets

‖ϕ |Lp(Rn)‖ ≤ c ‖ϕ |As
pq(R

n)‖, s > 0, 0 < p < ∞, 0 < q < ∞,

for all ϕ ∈ D(Rn) or ϕ ∈ S(Rn) as requested in Definition 12 resulting in (2.23). If f is a
non-trivial element

f ∈ As
pq(R

n) with Γ = supp f compact and |Γ| = 0,

hence 0 < p < 1, 0 < s ≤ n( 1
p − 1) then it follows by similar arguments to those in Steps 2

and 3 in Section 3.1 (but much simpler) that f can be approximated by D(Rn)-functions with
supports in

Γε = {y ∈ R
n : dist (y, Γ) < ε}

for any ε > 0. Then one gets supp tr f ⊂ Γ and hence tr f = 0 in Lp(Rn). This can be extended
to all f covered by (2.24).

Step 3 The proof of Proposition 19(ii) is similar. So far we justified in Remark 20 that
trμμ′ ∈ Lp(Γ, μ) makes sense. It remains to prove that trμμ′ = 0 in Lp(Γ, μ). Let

Γ′ ⊂ Γ′
j =

Mj⋃
m=1

B(γ′
m, 2−j), Mj ∼ 2jd′

,

where B(γ′
m, 2−j) are open balls centred at Γ′ and of radius 2−j , with j ∈ N. As in Step 2 one

can approximate μ′ in B
n−d

p
pp (Rn) by D(Rn)-functions with supports in Γ′

j . However

μ(Γ′
j) ≤ c 2−jd 2jd′ → 0 if j → ∞.
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This proves trμμ′ = 0 in Lp(Γ, μ).

Appendix

A.1 Atoms

Atomic decompositions in the spaces Bs
pq(R

n), F s
pq(R

n) and their numerous special cases have a
long and substantial history. This is not the subject of the present paper. The interested reader
may consult [4, Section 1.9] and [5, Section 1.5] both for (historical) references and additional
explanations. We follow here mainly [5, Section 1.5.1].

First we complement the notation introduced in Section 2.1. As usual, Z is the collection
of all integers; and Z

n denotes the lattice of all points m = (m1, . . . , mn) ∈ R
n with mj ∈ Z.

Let N
n
0 , where n ∈ N, be the set of all multi-indices,

α = (α1, . . . , αn) with αj ∈ N0, |α| =
n∑

j=1

αj .

If x = (x1, . . . , xn) ∈ R
n and β = (β1, . . . , βn) ∈ N

n
0 then we put

xβ = xβ1
1 · · ·xβn

n (monomials).

Let Qjm be cubes in R
n with sides parallel to the axes of coordinates, centred at 2−jm with

side-length 2−j+1 where m ∈ Z
n and j ∈ N0. If Q is a cube in R

n and r > 0 then rQ is the
cube in R

n concentric with Q and with side-length r times of the side-length of Q. Let χjm be
the characteristic function of Qjm.

Definition 21 (i) Let 0 < p < ∞, 0 < q < ∞. Then bpq is the collection of all sequences

λ = {λjm ∈ C : j ∈ N0, m ∈ Z
n} (A.1)

such that

‖λ |bpq‖ =
( ∞∑

j=0

( ∑
m∈Zn

|λjm|p
)q/p)1/q

< ∞,

and fpq is the collection of all sequences λ according to (A.1) such that

‖λ |fpq‖ =
∥∥∥∥
( ∑

j,m

2jnq/p |λjm χjm(·)|q
)1/q

|Lp(Rn)
∥∥∥∥ < ∞.

(ii) Let s ∈ R, 0 < p < ∞, K ∈ N0, L ∈ N0 and d ≥ 1. Then L∞-functions ajm : R
n �→ C

with j ∈ N0, m ∈ Z
n, are called (s, p)-atoms if

supp ajm ⊂ dQjm, j ∈ N0, m ∈ Z
n; (A.2)

there exist all (classical ) derivatives Dαajm with |α| ≤ K such that

|Dαajm(x)| ≤ 2−j(s−n
p )+j|α|, |α| ≤ K, j ∈ N0, m ∈ Z

n,

and ∫
Rn

xβ ajm(x) dx = 0, |β| < L, j ∈ N, m ∈ Z
n. (A.3)



Dichotomy between Traces and Density 553

Remark 22 If L = 0 then (A.3) is empty (no moment conditions). Of course, the atoms
depend on K, L, and d. But this will not be indicated. We put, as usual,

σp = n

(
1

min(p, 1)
− 1

)
and σpq = n

(
1

min(1, p, q)
− 1

)
.

Proposition 23 Let s ∈ R, 0 < p < ∞, 0 < q < ∞.
(i) Let K ∈ N0, L ∈ N0, with

K > s and L > σp − s (A.4)

be fixed. Then f ∈ S′(Rn) belongs to Bs
pq(R

n) if, and only if, it can be represented as

f =
∞∑

j=0

∑
m∈Zn

λjm ajm, λ ∈ bpq, (A.5)

where ajm are (s, p)-atoms according to Definition 21 with (A.4) and fixed d ≥ 1 in (A.2).
Furthermore,

‖f |Bs
pq(R

n)‖ ∼ inf ‖λ |bpq‖ (A.6)

are equivalent quasi-norms where the infimum is taken over all representations (A.5) (for fixed
K, L, d).

(ii) Let K ∈ N0, L ∈ N0, with

K > s and L > σpq − s (A.7)

be fixed. Then f ∈ S′(Rn) belongs to F s
pq(R

n) if, and only if, it can be represented as

f =
∞∑

j=0

∑
m∈Zn

λjm ajm, λ ∈ fpq, (A.8)

where ajm are (s, p)-atoms according to Definition 21 with (A.7) and fixed d ≥ 1 in (A.2).
Furthermore,

‖f |F s
pq(R

n)‖ ∼ inf ‖λ |fpq‖
are equivalent quasi-norms where the infimum is taken over all representations (A.8) (for fixed
K, L, d).

Remark 24 This formulation coincides essentially with a corresponding assertion in [5,
Section 1.5.1]. There one finds also some technical comments how the convergence in (A.5)
must be understood. The above proposition can be extended to p = ∞ and/or q = ∞. But
this will not be needed here.

A.2 Porosity

The arguments in this paper rely on atomic decompositions of B-spaces and F -spaces and the
miraculous interplay especially of F -spaces with porous sets in R

n. We collect what we need.

Definition 25 A closed set Γ in R
n is said to be porous if there is a number η with 0 < η < 1

such that one finds, for any ball B(x, r)centred at x ∈ R
n and of radius r with 0 < r < 1, a ball

B(y, ηr) with
B(y, ηr) ⊂ B(x, r) and B(y, ηr) ∩ Γ = ∅. (A.9)
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Remark 26 If one restricts (A.9) to balls B(x, r) centred at Γ then one gets (A.9) for all
admitted balls B(x, r) at the expense of a smaller η. Conditions of this type are well known in
fractal geometry. One may consult for example [7, Section 11, p. 156] where also the notation
porous comes from. We used this property of sets in connection with function spaces several
times and refer to [9, Definition 18.10, p. 142] and [11, Definition 9.16] denoted previously as
ball condition. There one finds also a few further references and discussions. In particular
according to [11, 9.17, pp. 138/139] any porous set Γ has Lebesgue measure |Γ| = 0. For us the
following observation is of interest.

Proposition 27 Any compact d-set in R
n with 0 < d < n is porous.

Remark 28 A proof has been given in [11, Proposition 9.18, Remark 9.19, pp. 139–141].
There one finds also some relevant references, in particular to [25–26]. One may also consult
[5, Definition 9.20, Remark 9.21, Proposition 9.22, pp. 393/394] for further properties.
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