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1 Introduction

It is well known that Bismut [1–3] first introduced a backward stochastic differential equation
(BSDE for short) when he was studying adjoint equations of the stochastic optimal control
problem. The first well-posedness result for nonlinear BSDEs was introduced by Pardoux and
Peng [4] and independently by Duffie and Epstein [5]. Since then, BSDEs have been proved to
be a useful tool in stochastic control, mathematical finance and other fields. For example, El
Karoui, Peng and Quenez proved the comparison theorem of BSDE and gave some applications
in optimal control and financial mathematics in [6]. Using the comparison theorem of BSDE,
Hamadene and Lepeltier [7] studied the existence of optimal control and saddle point for the
stochastic control and differential game problem. Kohlmann and Zhou [8] combined BSDE with
the linear-quadratic stochastic control problem. Tang and Li [9] studied the BSDE with Poisson
process as the noise source and gave the maximum principle for stochastic control system with
random jump. Xu [10] studied one kind of forward-backward stochastic control system and
got the stochastic maximum principle with state constraints. Jiang [11] studied a property of
g-expectation which is introduced by BSDE.

In this paper, we deal with one kind of stochastic optimal control problem where the con-
trol variable is the terminal condition of a BSDE. This BSDE is regarded as the state equation
and needs to satisfy some constraints. Different from classical stochastic control problems (see
[12–13]), our problem has the economic background which can be seen in El Karoui, Peng and
Quenez [14]. In their paper, they deal with a recursive utility optimization problem where
the terminal wealth and consumption are control variables. Introducing Lagrange multiplier

Received October 20, 2004, Accepted January 26, 2007
This work is supported by the National Basic Research Program of China (973 Program, No. 2007CB814900)

the Natural Science Foundation of China (10671112), Shandong Province (Z2006A01), and the New Century

Excellent Young Teachers Program of Education Ministry of China



2190 Ji S. L. and Wu Z.

and perturbing the terminal condition, they get a maximum principle when the coefficients
of the control system satisfy convexity assumption. In this paper, we use the terminal per-
turbation method and Ekeland’s variational principle to deal with the corresponding optimal
control problem with state constraints. Using Ekeland’s variational principle to deal with state
constraints is systematically studied in Ji [15]. Without convexity assumption, we obtain a
necessary condition which the optimal objective satisfies, i.e. a maximum principle.

Then we apply the obtained results to study dynamic measure of risk. In a financial market,
if an investor has not enough initial wealth x, he cannot perfectly hedge the liability C at future
time T . An interesting problem is how to quantify such a risk. There are many excellent works
concerning this subject (see Föllmer and Leukert [16–17] , Cvitanic and Karatas [18]). In [18],
Cvitanic and Karatas quantified the risk by

inf
π(·)∈A (x)

E0

(
C − Xx,π(T )

S0(T )

)+

,

where π(·) is the portfolio strategy, S0(·) is the price of the risk-free instrument and X(·) rep-
resents the investor’s wealth. Föllmer and Leukert [16–17], Edirisinghe, Naik and Uppal [19]
proposed the related criteria. This measure associates with a stochastic optimal control problem
in which the control (portfolio strategy) and state (wealth) constraints are imposed . Cvitanic
and Karatas [18] employed the tools of convex duality and proved the existence of optimal strat-
egy. In this paper, we apply the obtained results to study the problem introduced by Cvitanic
and Karatas [18]. In more details, we first rewrite the stochastic optimal control problem in
[18] as a backward formulation, i.e. instead of the portfolio strategy we use the terminal wealth
as control variable. Then we obtain the same results as those in [18]. Furthermore, we can deal
with nonlinear wealth equation even without convex assumption. In nonlinear case the convex
duality method doesn’t work and we obtain a necessary condition that the terminal wealth of
an investor must satisfy. The corresponding results can be applied more widely in the financial
market.

This paper is organized as follows: in Section 2, we deal with one kind of stochastic control
problem motivated by dynamic measure of risk. Using terminal perturbation method and
Ekeland’s variational principle, a stochastic maximum principle is obtained. In Section 3, we
apply the obtained maximum principle to study dynamic measure of risk in which the wealth
equation is linear and obtain the same results as those in [18]. We study the dynamic measure of
risk problem when the wealth equation is nonlinear without convexity assumption in Section 4.

2 One Kind of Stochastic Optimization Problem

2.1 Introduction

In this section, we study one kind of stochastic optimization problem with state constraints.
Applying Ekeland’s variational principle, we introduce a new approach to get the maximum
principle for this problem without convexity assumption.

Let

W0(·) = (W 1
0 (·), . . . , W d

0 (·))′
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be a standard d-dimensional Brownian Motion defined on a complete probability space (Ω,F,P0).
The information structure is given by a filtration F = {Ft}0≤t≤T ; which is the σ-algebra
generated by the Brownian Motion W0(·) and augmented. For any given Euclidean space H,
we denote by (·, ·) (resp.| · |) the scalar product (resp. norm) of the space. We denote by
M2(0, T ; H), the space of all Ft-adapted processes with values in H, such that

E0

∫ T

0

| x(t) |2 dt < ∞, ∀ x(·) ∈ M2(0, T ; H),

where E0 denotes expectation with respect to the probability measure P0. Obviously, M2(0, T ;
H) is a Hilbert space. Let us denote by L2(Ω, FT , P0), the space of all FT -measurable random
variables ξ with values in R, such that E0 | ξ |2< ∞.

Let A ∈ L2(Ω, FT , P0; R), C ∈ L2(Ω, FT , P0; R) and A ≤ C a.s.

Definition 2.1 We set

U = {ξ | ξ ∈ L2(Ω, FT , P0), A ≤ ξ ≤ C a.s.}
and call U the objective domain.

We want to maximize the following cost function

J(ξ) � E0[u(ξ)]

subject to {
−dX(t) = f(X(t), Z(t), t)dt− Z(t)dW0(t),
X(T ) = ξ,

(2.1)

where ξ ∈ U , X(t) is the state variable which satisfies an initial constraint X(0) = x and f, u

are given maps. This kind of optimization problem has the economic background which can be
seen in [14].

We choose the metric in U to be

d(v, u) � (E0 | v − u |2) 1
2 , ∀ v, u ∈ U,

and let f, u be such that

f(X, Z, t, ω) : R × R1×d × [0, T ] × Ω → R,

u(X, ω) : R × Ω → R.

We assume
(H1) f is continuous in R × R1×d × [0, T ] for a.a. ω and continuously differentiable with

respect to (X, Z).
(H2) u is continuously differentiable with respect to X.

(H3) The derivatives of f and u are bounded.
(H4) For each (X, Z) ∈ R × R1×d, f(X, Z, ·) ∈ M2(0, T ; R).
Thanks to assumptions (H1)–(H4), one can find a unique pair (X(·), Z(·)) ∈ M2(0, T ; R)×

M2(0, T ; Rd) which satisfies (2.1) according to the existence and uniqueness theorem of BSDE
in [4].

Definition 2.2 ξ is called admissible objective for given x ∈ R , if the solution of (2.1)
satisfies X(0) = x. We shall denote by N (x) the set of admissible objectives for x, and denote
X(0) by Xξ

0 .
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An admissible objective ξ∗ is called optimal objective if it attains the maximum of J(ξ)
over N (x). Our aim is to obtain a characterization of the optimal objective.

2.2 Variational Equation

The purpose of this section is to obtain the first order variational equation.
Let ξ∗ be an optimal objective and (X∗(·), Z∗(·)) be the corresponding optimal trajectory.

Let ξ̂ ∈ L2(Ω, F , P0) such that (ξ∗ + ξ̂) ∈ U . Since U is convex, then for any 0 ≤ p ≤ 1,

ξp � ξ∗ + pξ̂

is also in U .
Let (δX(·), δZ(·)) be the solution of{
−dδX(t) = [fX(X∗(t), Z∗(t), t)δX(t) + fZ(X∗(t), Z∗(t), t)δZ(t)]dt − δZ(t)dW0(t),

δX(T ) = ξ̂.
(2.2)

One can find a unique pair (δX(·), δZ(·)) ∈ M2(0, T ; R)×M2(0, T ; Rd) which satisfies (2.2).
(2.2) is called variational equation.

We denote by (Xp(·), Zp(·)) the solution of (2.1) corresponding to X(T ) = ξp.
Set

X̃p(t) = p−1(Xp(t) − X∗(t)) − δX(t),

Z̃p(t) = p−1(Zp(t) − Z∗(t)) − δZ(t).

Using the techniques in [20], we have the following convergence results.

Lemma 2.3 Assume (H1), (H3) and (H4). Then

lim
p→0

sup
0≤t≤T

E0 | X̃p(t) |2= 0,

lim
p→0

E0

∫ T

0

| Z̃p(t) |2 dt = 0.

Proof From (2.1) and (2.2) we have⎧⎪⎨
⎪⎩

−dX̃p(t) = p−1[f(Xp(t), Zp(t), t) − f(X∗(t), Z∗(t), t) − pfX(X∗(t), Z∗(t), t)δX(t)
−f

′
Z(X∗(t), Z∗(t), t)δZ(t)]dt − Z̃p(t)dW0(t),

X̃p(T ) = 0.

Let

Ap(t) =
∫ 1

0

fX(X∗(t) + λp(δX(t) + X̃p (t)), Z∗(t) + λp(δZ(t) + Z̃p(t)), t)dλ,

Bp(t) =
∫ 1

0

fZ(X∗(t) + λp(δX(t) + X̃p (t)), Z∗(t) + λp(δZ(t) + Z̃p(t)), t)dλ,

Cp(t) = [Ap(t) − fX(X∗(t), Z∗(t), t)]δX(t) + [Bp(t) − fZ(X∗(t), Z∗(t), t)]δZ(t).

Thus {
−dX̃p (t) = (Ap(t) · X̃p (t) + Bp(t) · Z̃p(t) + Cp(t))dt − Z̃p(t)dW0(t),

X̃p(T ) = 0.

Using Itô’s formula to | X̃p (t) |2, we get

E0 | X̃p (t) |2 +E0

∫ T

t

| Z̃p(s) |2 ds

= 2E0

∫ T

t

X̃p(s)(Ap(s) · X̃p(s) + Bp(s) · Z̃p(s) + Cp(s))ds
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≤ KE0

∫ T

t

| X̃p(s) |2 ds +
1
2
E0

∫ T

t

| Z̃p(s) |2 ds + E0

∫ T

t

| Cp(s) |2 ds,

where K is a constant.
So

E0 | X̃p (t) |2 +
1
2
E0

∫ T

t

| Z̃p(s) |2 ds ≤ KE0

∫ T

t

| X̃p(s) |2 ds + E0

∫ T

t

| Cp(s) |2 ds.

Using the Lebesgue dominate convergence theorem, we have

lim
p→0

E0

∫ T

0

| Cp(t) |2 dt = 0.

Applying Grownwall’s inequality, we obtain the result.

2.3 Variational Inequality

In this section, we will employ the well-known Ekeland’s variational principle to get the varia-
tional inequality.

Ekeland’s Variational Principle Let (V, d(·, ·)) be a complete metric space and let F (·) :
V → R be a lower semi-continuous function, bounded from below. If for some ε > 0, there
exists u ∈ V satisfying

F (u) ≤ inf
v∈V

F (v) + ε,

then there exists uε ∈ V such that
(i) F (uε) ≤ F (u),
(ii) d(u, uε) ≤

√
ε,

(iii) F (v) +
√

εd(v, uε) ≥ F (uε) for all v ∈ V.

We now introduce a mapping Fε(·) : U → R by

Fε(ξ) = {| Xξ
0 − x |2 +[E0(u(ξ∗) − u(ξ)) + ε]2} 1

2 ,

where the complete metric space U is defined in Definition 2.1, x is the given initial state
constraint with Xξ

0 , ε is an arbitrary positive constant and ξ∗ is the optimal objective.

Lemma 2.4 Fε(·) is a continuous function on U .

Using the method similar to that for Lemma 2.3, it is easy to prove this lemma.

Lemma 2.5 Let ξ∗ be the optimal objective. Supposing (H1)–(H4), then there exist h0 ∈
R, h ∈ R, for each ξ̂ such that (ξ∗ + ξ̂) ∈ U and the following variational inequality holds

h0 · δX0 + hE[uX(ξ∗) · ξ̂] ≥ 0, (2.3)

where δX0 is the value of (2.2) at time 0.

Proof We consider function Fε(·) and it is easy to check that

Fε(ξ∗) = ε;

Fε(ξ) > 0, ∀ ξ ∈ U ;
Fε(ξ∗) ≤ inf

ξ∈U
Fε(ξ) + ε.

Thus from Ekeland variational principle, there exists ξε ∈ U, such that
(i) Fε(ξε) ≤ Fε(ξ∗),
(ii) d(ξε, ξ∗) ≤ √

ε,

(iii) Fε(ξ) +
√

εd(ξ, ξε) ≥ Fε(ξε).
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For each ξ̄ ∈ U, we denote ξ̂ = ξ̄ − ξ∗ by ξ̂.
Set

ξ̂ε = ξ̄ − ξε,

ξε
p = ξε + pξ̂ε.

Let (Xε
p(·), Zε

p(·)) (resp. (Xε(·), Zε(·))) be the solution of (2.1) corresponding to ξε
p (resp.

ξε). From Ekeland’s variational principle, it follows that

Fε(ξε
p) +

√
εd(ξε

p, ξ
ε) − Fε(ξε) ≥ 0, (2.4)

where

d(ξε
p, ξ

ε) = (E0 | pξ̂ε |2) 1
2 = p(E0 | ξ̂ε |2) 1

2 .

We consider the variational equation{
−dδXε(t) = [fX(Xε(t), Zε(t), t)δXε(t) + fZ(Xε(t), Zε(t), t)δZε(t)]dt − δZε(t)dW0(t),

δXε(T ) = ξ̂ε,

and from Lemma 2.3, we get

lim
p→0

sup
0≤t≤T

E0

∣∣∣∣X
ε
p(t) − Xε(t)

p
− δXε(t)

∣∣∣∣ = 0.

Thus

X
ξε

p

0 − Xξε

0 = pδXε
0 + o(p).

This leads to the following expansion

| X
ξε

p

0 − x |2 − | Xξε

0 − x |2= 2p(Xξε

0 − x)δXε
0 + o(p).

Since

[E0(u(ξ∗) − u(ξε
p)) + ε]2 − [E0(u(ξ∗) − u(ξε)) + ε]2

= −2pE0[uX(ξε) · ξ̂ε][E0(u(ξ∗) − u(ξε)) + ε] + o(p),

we have

lim
p→0

Fε(ξε
p) − Fε(ξε)

p
= lim

p→0

1
Fε(ξε

p) + Fε(ξε)
F 2

ε (ξε
p) − F 2

ε (ξε)
p

=
1

Fε(ξε)
{(Xξε

0 − x)δXε
0 − E0[uX(ξε) · ξ̂ε][E0(u(ξ∗) − u(ξε)) + ε]}.

Set

h0
ε =

Xξε

0 − x

Fε(ξε)
,

hε = − 1
Fε(ξε)

[E0(u(ξ∗) − u(ξε)) + ε].

From (2.4),

h0
ε · δXε

0 + hεE0[uX(ξε) · ξ̂ε] ≥ −√
ε(E0 | ξ̂ε |2) 1

2 . (2.5)

According to the definition of Fε(·), it is obvious that | h0
ε |2 + | hε |2= 1.

Thus there exists a convergence subsequence of (h0
ε, h

0). We denote the limit by (h0, h). An
analysis similar to that in Lemma 2.3 yields δXε

0 → δX0. It is also easy to check that

E0[uX(ξε) · ξ̂ε] → E0[uX(ξ∗) · ξ̂].
Let ε → 0 in (2.5). It follows that (2.3) holds.
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2.4 Maximum Principle

Now we introduce the adjoint equation{
dq(t) = fX(X∗(t), Z∗(t), t)q(t)dt + fZ(X∗(t), Z∗(t), t)q(t)dW0(t),
q(0) = h0,

(2.6)

where (X∗(·), Z∗(·)) is the corresponding optimal trajectory.
It is easily seen that there is a unique process in M2(0, T ; R) which satisfies (2.6).
Let

M � {ω | ξ∗(ω) = A(ω)}, N � {ω | ξ∗(ω) = C(ω)}.

Theorem 2.6 We assume (H1)–(H4). Let ξ∗ be the optimal objective and let (X∗(·), Z∗(·))
be the corresponding optimal trajectory. Then there exist constants h, h0 ∈ R such that

huX(ξ∗(ω)) + qT (ω) ≥ 0, if ξ∗(ω) = A(ω), a.s.

huX(ξ∗(ω)) + qT (ω) = 0, if A(ω) < ξ∗(ω) < C(ω), a.s.

huX(ξ∗(ω)) + qT (ω) ≤ 0, if ξ∗(ω) = C(ω), a.s.,

where q(t) is the solution of the adjoint equation (2.6).

Proof Applying Itô’s lemma to δX(t)q(t) yields

E0(δX(T ) · q(T ) − δX0 · q(0))

= E0

[
−
∫ T

0

[(fX(X∗(t), Z∗(t), t)δX(t) + f ′
Z(X∗(t), Z∗(t), t)δZ(t))q(t)

]
dt

+
∫ T

0

[(fX(X∗(t), Z∗(t), t)δX(t)q(t)+ < δZ(t), fZ(X∗(t)(t), Z∗(t), t)q(t) >)]dt

= 0.

Thus

h0 · δX0 = E0[ξ̂ · q(T )].

From (2.3), we have that for each ξ̄ ∈ U , the following inequality holds

E0[ξ̂ · q(T )] + hE0[uX(ξ∗) · ξ̂] = E0[(q(T ) + huX(ξ∗)) · ξ̂]
= E0[(q(T ) + huX(ξ∗)) · (ξ̄ − ξ∗)]

≥ 0.

Let us consider the case where M is a nonempty set. It is easy to check for each ε > 0

P{ω | ω ∈ M, huX(ξ∗(ω)) + qT (ω) < −ε} = 0.

Thus, from the continuous property of probability, we have

huX(ξ∗(ω)) + qT (ω) ≥ 0, ∀ ω ∈ M, a.s.

Using a similar method, we can prove

huX(ξ∗(ω)) + qT (ω) = 0, if A(ω) < ξ∗(ω) < C(ω), a.s.

huX(ξ∗(ω)) + qT (ω) ≤ 0, if ξ∗(ω) = C(ω), a.s. .

The proof is complete.

3 Application in Dynamic Measure of Risk

In this section, we apply the results of Section 2 to study the dynamic measure of risk.
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We assume in financial market there are one bank account (risk free instrument) and several
stocks(risky instruments). The respective prices S0(·) and S1(·), . . . , Sd(·) of these financial
instruments are governed by the equations

dS0(t) = S0(t)r(t)dt, S0(0) = 1,

dSi(t) = Si(t)
[
bi(t)dt +

d∑
j=1

σij(t)dW j
0 (t)

]
, Si(0) = si > 0, i = 1, . . . , d.

We assume:
(H5) The interest rate r(·) is a predictable and bounded process.
(H6) The stock-appreciation rates b(·) = (b1(·), . . . , bd(·))′ is a predictable and bounded

process.
(H7) The stock-volatility matrix σ(·) = {σij(·)}1≤i,j≤d is a predictable and bounded

process. σ(·) is assumed to be invertible and σ−1(·) is assumed to be bounded uniformly
in (t, ω) ∈ [0, T ] × Ω.

Then, the risk premium process

θ0(t) � σ−1(t)[b(t) − r(t)1̃], 0 ≤ t ≤ T, (3.1)

where 1̃ = (1, . . . , 1)′ ∈ Rd, is bounded and

Z0(t) � exp
[
−
∫ t

0

θ′0(s)dW0(s) − 1
2

∫ t

0

‖θ0(s)‖2ds

]
, 0 ≤ t ≤ T (3.2)

is a P0-martingale. Thus the discounted stock prices S1(·)
S0(·) , . . . ,

Sd(·)
S0(·) become martingales and

W (t) � W0(t) +
∫ t

0

θ0(s)ds, 0 ≤ t ≤ T (3.3)

becomes Brownian motion under the risk-neutral equivalent martingale measure

P (Λ) = E0[Z0(T )1Λ], Λ ∈ F . (3.4)

Given the above assumptions, we consider a small agent whose actions can’t affect the
market prices and who can decide at time t ∈ [0, T ] which amount πi(t) to invest in each of the
stocks i = 1, . . . , d with initial capital x .

Let X(·) = Xx,π(·) denote his wealth process. X(·) satisfies the equation⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX(t) =
[
X(t) −

d∑
i=1

πi(t)
]
r (t) dt +

d∑
i=1

πi(t)
[
bi(t)dt +

d∑
j=1

σij(t)dW j
0 (t)

]

= r(t)X(t)dt + π′(t)σ(t)dW (t),

X(0) = x.

(3.5)

Definition 3.1 (i) A process π : [0, T ]×Ω → Rd is called portfolio process if it is a predictable
process and satisfies E0

∫ T

0
‖π(t)‖2dt < ∞.

(ii) The process X(·) = Xx,π(·) defined by (3.5) is called the wealth process corresponding
to portfolio π(·) and initial capital x.

(iii) Given a random variable A ∈ L2(Ω, FT , P ) , a portfolio process π(·) is said admissible
for the initial capital x, and we write π(·) ∈ A (x), if

Xx,π(t) ≥ S0(t) · E
[

A

S0(T )

∣∣∣∣F (t)
]

� A(t), 0 ≤ t ≤ T (3.6)

holds almost surely. Here E denotes expectation with respect to the probability measure P of
(3.4).
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Then we study the problem of dynamic measures of risk in [18].
Suppose that the total liabilities of the investor at time T are described by a contingent

claim C : a random variable in L2(Ω, FT , P ) , with P [C ≥ A] = 1 and P [C > A] > 0.
Define

C(t)
S0(t)

� E

[
C

S0(T )

∣∣∣∣F (t)
]
, 0 ≤ t ≤ T. (3.7)

From the standard results on complete financial markets [18], we know that we can’t hedge
the liability C perfectly if A(0) ≤ x < C(0). In this case, we shall adopt the following value
function of the stochastic control problem introduced by Cvitanic and Karatzas [18]

V0(x) � V0(x; C) � inf
π(·)∈A (x)

E0

(
C − Xx,π(T )

S0(T )

)+

(3.8)

(least expected discounted net loss, over all admissible portfolios) as a reasonable measure of
risk.

Now we give an equivalent form of the problem (3.8) in order to resolve it by results in
Section 2. Given the investor’s terminal wealth X(T ) = ξ (ξ ∈ L2(Ω, FT , P )), we can describe
the wealth process of the investor by BSDE:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX(t) =
[
X(t) −

d∑
i=1

πi(t)
]
r (t) dt +

d∑
i=1

πi(t)
[
bi(t)dt +

d∑
j=1

σij(t)dW j
0 (t)

]

= r(t)X(t)dt + π′(t)σ(t)dW (t),

X(T ) = ξ.

(3.9)

Thanks to assumptions (H5), (H6) and (H7), then equation (3.9) has a unique pair of
square-integrable solution (X(·), π(·)) such that (X(·), π(·)) ∈ M2(0, T ; R)× M2(0, T ; Rd) (see
[6]). We denote by (Xξ(·), πξ(·)) the solution of (3.9) with respect to the terminal condition
X(T ) = ξ.

Definition 3.2 Given a random variable A ∈ L2(Ω, FT , P ) and the initial wealth x, the
terminal wealth ξ is called admissible for the initial wealth x, and we write ξ ∈ A ′(x), if
Xξ(0) = x and ξ ≥ A, a.s.

Lemma 3.3 (i) We assume ξ ∈ A ′(x). Then we have πξ(·) ∈ A (x), where (Xξ(·), πξ(·)) is
the solution of (3.9).

(ii) We assume π(·) ∈ A (x) . Then we have Xx,π(T ) ∈ A ′(x), where Xx,π(·) is the
solution of (3.5).

Proof (i) Let ξ ∈ A ′(x). By Definition 3.2, Xξ(0) = x, Xξ(T ) = ξ ≥ A, a.s.
Then (Xξ(·), πξ(·)) satisfies the following forward stochastic differential equation{

dXξ(t) = r(t)Xξ(t)dt + [πξ(t)]T σ(t)dW (t),
Xξ(0) = x.

So Xξ(·) = Xx,πξ

(·).
Let X(T ) = A in equation (3.9). We have an explicit solution for XA(·)

XA(t) = S0(t) · E
[

A

S0(T )

∣∣∣∣F (t)
]

= A(t), 0 ≤ t ≤ T.

Since ξ ≥ A, it yields Xξ(t) = Xx,πξ

(t) ≥ XA(t) = A(t) according to the comparison
theorem of BSDE in [6]. By Definition 3.1, πξ(·) is admissible.
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(ii) Let π(·) ∈ A (x). According to Definition 3.1, Xx,π(0) = x, Xx,π(T ) ≥ A, a.s.

We consider equation (3.5), (Xx,π(·), π(·)) satisfies the following BSDE{
dX(t) = r(t)X(t)dt + π′(t)σ(t)dW (t),
X(T ) = Xx,π(T ).

By Definition 3.2, Xx,π(T ) ∈ A ′(x). The proof is complete.

Remark 3.4 By Lemma 3.3, we have the equivalent value function of problem (3.8):

V0(x) = inf
ξ∈A ′(x)

E0

(
C − ξ

S0(T )

)+

.

Definition 3.5 ξ∗ is called optimal objective if ξ∗ ∈ A ′(x) and V0(x) = E0(C−ξ∗

S0(T ) )
+.

Lemma 3.6 We assume (H5)–(H7). Then if the optimal objective ξ∗ exists, it satisfies
ξ∗ ≤ C.

Proof Set B � {ω | ξ∗(ω) > C(ω)}.
Suppose P (B) > 0. Then we have 0 < P (B) < 1.

Set

ξ′(ω) �
{

ξ∗(ω), ω ∈ BC ,

C(ω), ω ∈ B.

We have

E0

(
C − ξ∗

S0(T )

)+

= E0

(
C − ξ′

S0(T )

)
.

Since ξ∗(ω) > ξ′(ω), it follows that Xξ∗
(0) = x > Xξ′

(0) � x′ by the comparison theorem
of BSDE.

Xξ′
(·) satisfies the following forward stochastic differential equation:{

dXξ′
(t) = r(t)Xξ′

(t)dt + [πξ′
(t)]T σ(t)dW (t),

Xξ′
(0) = x′.

(3.10)

We consider the equation {
dy(t) = r(t)y(t)dt,

y(0) = x − x′.
(3.11)

Because x > x′, (3.11) has a positive solution

y(t) = (x − x′) exp
[ ∫ t

0

r(s)ds

]
= (x − x′)S0(T ).

From (3.10) and (3.11), we obtain{
d(Xξ′

(t) + y(t)) = r(t)(Xξ′
(t) + y(t))dt + [πξ′

(t)]T σ(t)dW (t),
Xξ′

(0) + y(0) = (x − x′) + x′ = x.

Since Xξ′
(0)+y(0) = x and Xξ′

(T )+y(T ) = ξ′ +(x−x′)S0(T ) � η ≥ A, η is an admissible
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objective.

E0

(
C − η

S0(T )

)+

= E0

(
C − ξ′

S0(T )
− (x − x′)

)+

= E0

((
C − ξ∗

S0(T )
− (x − x′)

)
1BC

)+

< E0

((
C − ξ∗

S0(T )

)
1BC

)+

= E0

(
C − ξ∗

S0(T )

)+

.

This contradicts the fact that ξ∗ is the optimal objective. The proof is complete.

Remark 3.7 Lemma 3.6 implies that we can define

V0(x) � V0(x; C) � inf
ξ∈A 0(x)

E0

(
C − ξ

S0(T )

)
,

where
A 0(x) � {ξ | Xξ(0) = x, A ≤ ξ ≤ C, a.s.}

and it doesn’t change the stochastic optimal control problem (3.8).
Since

V0(x) = inf
ξ∈A 0(x)

E0

(
C − ξ

S0(T )

)

= E0

(
C

S0(T )

)
− inf

ξ∈A 0(x)
E0

(
ξ

S0(T )

)

= E0

(
C

S0(T )

)
+ sup

ξ∈A 0(x)

E0

(
ξ

S0(T )

)
,

it is sufficient to study

V ′
0(x) � V ′

0(x; C) � sup
ξ∈A 0(x)

E0

(
ξ

S0(T )

)
. (3.12)

Now we know the stochastic optimal control problem (3.8) is equivalent to finding ξ∗ which
makes

E0

(
ξ∗

S0(T )

)
= sup

ξ∈A 0(x)

E0

(
ξ

S0(T )

)
.

This is the typical form of the optimization problem discussed in Section 2, so we can use the
results in Section 2 to resolve this problem.

First, we describe (3.9) by BSDE{
−dX(t) = −[r(t)X(t) + Z(t)θ0(t)]dt − Z(t)dW0(t),
X(T ) = ξ,

(3.13)

where
Z(t) � π′(t)σ(t), θ0(t) = σ−1(t)[b(t) − r(t)1̃], 0 ≤ t ≤ T.

Theorem 3.8 We assume (H5)–(H7). Then if the optimal objective ξ∗ exists, there exist a
constant λ ∈ R and a random variable U with A ≤ U ≤ C, a.s. such that

ξ∗ = C1[Z0(T )<λ] + A1[Z0(T )>λ] + U1[Z0(T )=λ]

or
ξ∗ = C1[Z0(T )>λ] + A1[Z0(T )<λ] + U1[Z0(T )=λ].
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Proof In this case, u(X) = X
S0(T ) , f(X, Z, t) = −[r(t)X + θ0(t)Z], uX(ξ∗) = 1

S0(T ) .

The adjoint equation is{
−dq(t) = r(t)q(t)dt + q(t)θ′0(t)dW0(t),
q(0) = h0.

(3.14)

(3.14) has an explicit solution,

q(t) = h0 exp
[
−
∫ t

0

r(s)ds −
∫ t

0

θ′0(s)dW0(s) − 1
2

∫ t

0

‖θ0(s)‖2ds

]

=
h0

S0(t)
Z0(t).

By Theorem 2.6, the necessary condition becomes
h

S0(T )
+

h0

S0(T )
Z0(T ) ≥ 0, if ξ∗(ω) = A(ω), a.s.

h

S0(T )
+

h0

S0(T )
Z0(T ) = 0, if A(ω) < ξ∗(ω) < C(ω), a.s.

h

S0(T )
+

h0

S0(T )
Z0(T ) ≤ 0, if ξ∗(ω) = C(ω), a.s.

(i) We assume h0 > 0. Let λ � −h
h0 .

The necessary condition becomes ∃λ ∈ R,⎧⎪⎨
⎪⎩

Z0(T ) ≥ λ, if ξ∗(ω) = A(ω), a.s.
Z0(T ) = λ, if A(ω) < ξ∗(ω) < C(ω), a.s.

Z0(T ) ≤ λ, if ξ∗(ω) = C(ω). a.s.

Thus the optimal objective ξ∗ has the form:

ξ∗ = C1[Z0(T )<λ] + A1[Z0(T )>λ] + U1[Z0(T )=λ].

(ii) We assume h0 < 0. The necessary condition is⎧⎪⎨
⎪⎩

Z0(T ) ≤ λ, if ξ∗(ω) = A(ω), a.s.

Z0(T ) = λ, if A(ω) < ξ∗(ω) < C(ω), a.s.
Z0(T ) ≥ λ, if ξ∗(ω) = C(ω). a.s.

Then the optimal objective ξ∗ has the form:

ξ∗ = C1[Z0(T )>λ] + A1[Z0(T )<λ] + U1[Z0(T )=λ].

(iii) We assume h0 = 0. Then we have h2 = 1. It is easy to check that we can’t find ξ ∈ U

which satisfies the necessary condition and the initial constraint. The proof is complete.

Theorem 3.9 We assume (H5)–(H7). Then ξ∗ = C1[Z0(T )<λ̂] + A1[Z0(T )>λ̂] + U1[Z0(T )=λ̂]

is the optimal objective if there exists λ̂ ∈ R+ such that

E

[
C

S0(T )
1[Z0(T )<λ̂] +

A

S0(T )
1[Z0(T )>λ̂] +

U

S0(T )
1[Z0(T )=λ̂]

]
= x.

Proof For any η ∈ A 0(x), we have

E

(
ξ∗

S0(T )
− η

S0(T )

)
= E0

(
Z0(T )

[
ξ∗

S0(T )
− η

S0(T )

])
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= E0

(
Z0(T )

[
C − η

S0(T )
1[Z0(T )<λ̂] +

A − η

S0(T )
1[Z0(T )>λ̂] +

U − η

S0(T )
1[Z0(T )=λ̂]

])

≤ λ̂E0

[
C − η

S0(T )
1[Z0(T )<λ̂] +

A − η

S0(T )
1[Z0(T )>λ̂] +

U − η

S0(T )
1[Z0(T )=λ̂]

]

= λ̂E0

(
ξ∗

S0(T )
− η

S0(T )

)
.

Since ξ∗ ∈ A 0(x) and E
(

η
S0(T )

)
= x, it follows that E

(
ξ∗

S0(T ) − η
S0(T )

)
= 0.

Thus

E0

(
ξ∗

S0(T )

)
≥ E0

(
η

S0(T )

)
, ∀ η ∈ A 0(x).

The proof is complete.

Remark 3.10 This result gives a sufficient condition for the optimal objective.

Theorem 3.11 We assume that there exists λ̃ ∈ R+ such that

E

[
C

S0(T )
1[Z0(T )>λ̃] +

A

S0(T )
1[Z0(T )<λ̃] +

U

S0(T )
1[Z0(T )=λ̃]

]
= x.

Then ξ∗ = C1[Z0(T )>λ̃] + A1[Z0(T )<λ̃] + U1[Z0(T )=λ̃] makes E0

(
ξ

S0(T )

)
attain minimum over

A 0(x).

Proof This follows by the same method as in Theorem 3.9.

Remark 3.12 Set

λ̂ � sup
{

λ ∈ R+

∣∣∣∣E
[

C

S0(T )
1[Z0(T )<λ] +

A

S0(T )
1[Z0(T )≥λ]

]
≤ x

}
. (3.15)

According to proposition 3.1 of [18], we know that for every x ∈ (A(0), C(0)) and λ̂ as in (3.15),
there exists an FT measurable random variable U with A ≤ U ≤ C such that

E

[
C

S0(T )
1[Z0(T )<λ̂] +

A

S0(T )
1[Z0(T )>λ̂] +

U

S0(T )
1[Z0(T )=λ̂]

]
= x. (3.16)

By Theorem 3.9, we know that the optimal objective exists for this stochastic control problem.

4 Nonlinear Case

In this section, we consider the stochastic control problem (3.8) where the wealth process is
described by a nonlinear BSDE. Here we employ all assumptions in Section 2.

Corresponding to (3.9), the wealth process satisfies{
−dX(t) = f(X(t), Z(t), t)dt− Z(t)dW0(t),
X(T ) = ξ,

(4.1)

where

f : R × Rd × [0, T ] × Ω → R

is a nonlinear function and satisfies assumptions (H1)–(H4).

We denote by (A(·), ZA(·)) (resp. (C(·), ZC(·))) the solution of (4.1) with respect to X(T ) =
A (resp. X(T ) = C). Suppose A(0) < x < C(0).

Definition 4.1 Given a random variable A ∈ L2(Ω, F (T ), P0) and the initial wealth x, the
terminal wealth ξ corresponding to (4.1) is called admissible for the initial wealth x, and we
write ξ ∈ N ′(x), if Xξ(0) = x and ξ ≥ A, a.s.
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We still suppose, at time T, the agent’s liability is C: a random variable in L2(Ω, FT , P0)
with P0[C ≥ A] = 1 and P0[C > A] > 0.

Then we can give the value function of the extended stochastic control problem

V0(x) � V0(x; C) � inf
ξ∈N ′(x)

E0

(
C − ξ

S0(T )

)+

(4.2)

which means the least expected discounted net loss of the agent.

Definition 4.2 ξ∗ is called optimal objective, if ξ∗ ∈ N ′(x) and V0(x) = E0(C−ξ∗

S0(T ) )
+.

Lemma 4.3 We assume (H1)–(H4). Then if ξ∗ exists, it satisfies ξ∗ ≤ C.

Proof Set B0 � {ω | ξ∗(ω) > C(ω)}.
Suppose P0(B0) > 0. Let

ξ̂(ω) �
{

ξ∗(ω), ω ∈ BC
0 ,

C(ω), ω ∈ B0.

Thus

E0

(
C − ξ∗

S0(T )

)+

= E0

(
C − ξ̂

S0(T )

)+

= E0

(
C − ξ̂

S0(T )

)
.

We denote by (X ξ̂(·), Z ξ̂(·)) the solution of (4.1) corresponding to X(T ) = ξ̂.

Because ξ∗ > ξ̂, we have

Xξ∗
(0) = x > X ξ̂(0) � x′

by the comparison theorem of BSDE.

X ξ̂(·) satisfies the following forward stochastic differential equation:{
dX ξ̂(t) = f(X ξ̂(t), Z ξ̂(t), t)dt + Z ξ̂(t)dW0(t),
X ξ̂(0) = x′.

Suppose X(·) satisfies the equation:{
dX(t) = f(X(t), Z ξ̂(t), t)dt + Z ξ̂(t)dW0(t),
X(0) = x.

Since x > x′, it follows that X(t) > X ξ̂(t), 0 ≤ t ≤ T according to the comparison theorem
of stochastic differential equation.

Thus we have

X(T ) > X ξ̂(T ) = ξ̂,

E0

(
C(ω) − ξ∗(ω)

S0(T )

)+

= E0

(
C(ω) − ξ̂(ω)

S0(T )

)+

> E0

(
C(ω) − X(T )

S0(T )

)+

.

This contradicts the fact that ξ∗ is the optimal objective. The proof is complete.

Remark 4.4 Applying this theorem , we can define

V0(x) � V0(x; C) � inf
ξ∈N (x)

E0

(
C − ξ

S0(T )

)
,

where N (x) � {ξ | Xξ(0) = x, A ≤ ξ ≤ C, a.s.} is defined in Section 2.
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Thus, it is sufficient to study

V0(x) � V0(x; C) � max
ξ∈N (x)

E0

(
ξ

S0(T )

)
.

Theorem 4.5 We assume (H1)–(H4). Then if the optimal objective ξ∗ exists , there exist a
constant λ ∈ R and a random variable U with A ≤ U ≤ C such that

ξ∗ = C1[qT (ω)S0(T )<λ] + A1[qT (ω)S0(T )>λ] + U1[qT (ω)S0(T )=λ].

Proof Notice u(x) = E0( ξ
S0(T ) ).

According to Theorem 2.6, the optimal objective satisfies the following necessary condition:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h

S0(T )
+ qT (ω) ≥ 0, if ξ∗(ω) = A(ω), a.s.

h

S0(T )
+ qT (ω) = 0, if A(ω) < ξ∗(ω) < C(ω), a.s.

h

S0(T )
+ qT (ω) ≤ 0, if ξ∗(ω) = C(ω), a.s.,

where qT is the value of the solution of the adjoint equation at t = T :{
dqt = fx(X∗

t , Z∗
t , t)qtdt + fz(X∗

t , Z∗
t , t)qtdW0(t),

q(0) = h0.

Here (X∗
t , Z∗

t ) is the optimal trajectory corresponding to ξ∗.
Set λ = −h ∈ R. We have⎧⎪⎨

⎪⎩
qT (ω)S0(T ) ≥ λ, if ξ∗(ω) = A(ω), a.s.
qT (ω)S0(T ) = λ, if A(ω) < ξ∗(ω) < C(ω), a.s.
qT (ω)S0(T ) ≤ λ, if ξ∗(ω) = C(ω), a.s.

Thus the optimal objective ξ∗ has the form:

ξ∗ = C1[qT S0(T )<λ] + A1[qT S0(T )>λ] + U1[qT S0(T )=λ].

The proof is completed.

References
[1] Bismut, J.: Analyse convexe et probabilités. Thèse de Faculté des Sciences de Paris, Paris, 1973
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