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1 Introduction

Suppose {Xi : i ∈ Z} is a real-valued random variable sequence on a probability space (Ω, B, P ).
Let Fn

m denote the σ-field generated by (Xi : m ≤ i ≤ n). Let

α(n) = sup
{|P (AB) − P (A)P (B)| : A ∈ Fm

−∞, B ∈ F∞
m+n

}
.

The sequence {Xi} is said to be α-mixing or strong mixing if α(n) → 0 as n → ∞.
The moment inequalities of partial sums Sn :=

∑n
i=1 Xi play a very important role in various

proofs of limit theorems, for example, the Marcinkiewicz–Zygmund inequality and the Rosenthal
inequality for independent random variables, the Burkholder inequality for martingales. For
dependent random variables, many scholars have also been trying to develop these inequalities.
One can refer to Billingsley (1968, [1]), Peligrad (1982, 1985, 1987, [2–4]), Roussas and Ioannides
(1987, [5]), Shao (1988, 1989, 1995, [6–8]), Yang (1997, [9]) and Zhang (1998, 2000, [10, 11]) for
φ-mixing or ρ-mixing sequences, Birkel (1988, [12]) and Shao and Yu (1996, [13]) for positively
associated sequences, Su, Zhao and Wang (1997, [14]), Shao and Su (1999, [15]), Shao (2000,
[16]), Zhang and Wen (2001, [17]) and Yang (2001, [18]) for negatively associated sequences.

In this paper, we consider the strong mixing sequences. In this case, Yokoyama (1980, [19])
first got that

E|Sn|r ≤ Cnr/2 (1.1)

for r > 2 and a strictly stationary sequence. Shao and Yu (1996, [13]) and Yang (2000, [20])
investigated some general inequalities. The follow inequalities are due to Shao and Yu (1996
[13], Theorem 4.1; also see Lemma 12.2.2 in Lin and Lu (1996, [21])).

Theorem A Let r > 2, δ > 0, 2 < v ≤ r + δ and {Xi, i ≥ 1} be an α-mixing sequence of
random variables with EXi = 0 and ||Xi||r+δ := (E|Xi|r+δ)1/(r+δ) < ∞. Assume that α(n) ≤
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Cn−θ for some C > 0 and θ > 0. Then , for any ε > 0, there exists K = K(ε, r, δ, v, θ, C) < ∞
such that

E |Sn|r ≤ K
{

(nCn)r/2 max
1≤i≤n

||Xi||rv + n(r−δθ/(r+δ))∨(1+ε) max
1≤i≤n

||Xi||rr+δ

}
, (1.2)

where Cn =
(∑n

i=0(i + 1)2/(v−2)α(i)
)(v−2)/v

. In particular, for any ε > 0,

E |Sn|r ≤ K
{

nr/2 max
1≤i≤n

||Xi||rv + n1+ε max
1≤i≤n

||Xi||rr+δ

}
(1.3)

if θ > v/(v − 2) and θ ≥ (r − 1)(r + δ)/δ, and

E |Sn|r ≤ Knr/2 max
1≤i≤n

||Xi||rr+δ (1.4)

if θ ≥ r(r + δ)/(2δ).
These inequalities use the maximal moments max1≤i≤n ||Xi||rv and max1≤i≤n ||Xi||rr+δ as

up-boundary. In some cases, it will lose the information of the moment sums
∑n

i=1 ||Xi||rv and∑n
i=1 ||Xi||rr+δ. Indeed, we have the well-known Rosenthal inequality

E max
1≤j≤n

|Sj |r ≤ C

{ n∑
i=1

E|Xi|r +
( n∑

i=1

E|Xi|2
)r/2}

(1.5)

for independent random variable sequences.
The main purpose of this paper is to develop some maximal moment inequalities which use

moment sums as up-boundary for partial sums of strong mixing sequences. Our inequalities
are very near to (1.5) and improve Theorem A. To show the application of the inequalities, we
apply them to discuss the asymptotic normality of the weight function estimate for the fixed
design regression model.

Throughout this paper, it is supposed that C denotes constant which only depends on some
given numbers, [x] denotes the integral part of x, ||X||r := (E|X|r)1/r, a∧ b := min{a, b}. The
paper is organized as follows. Section 2 contains the maximal moment inequalities and their
proofs, Section 3 gives the application of the inequalities.

2 Moment Inequality
We will prove the following results.
Theorem 2.1 Let r > 2, δ > 0, 2 < v ≤ r + δ and {Xi, i ≥ 1} be an α-mixing sequence of
random variables with EXi = 0 and E|Xi|r+δ < ∞. Suppose that

θ > max {v/(v − 2), (r − 1)(r + δ)/δ} (2.1)

and α(n) ≤ Cn−θ for some C > 0. Then, for any ε > 0, there exists a positive constant
K = K(ε, r, δ, v, θ, C) < ∞ such that

E max
1≤j≤n

|Sj |r ≤ K

{
nε

n∑
i=1

E|Xi|r +
n∑

i=1

||Xi||rr+δ +
( n∑

i=1

||Xi||2v
)r/2}

. (2.2)

Theorem 2.2 Let r > 2, δ > 0 and {Xi, i ≥ 1} be an α-mixing sequence of random variables
with EXi = 0 and E|Xi|r+δ < ∞. Suppose that

θ > r(r + δ)/(2δ) (2.3)

and α(n) ≤ Cn−θ for some C > 0. Then, for any ε > 0, there exists a positive constant
K = K(ε, r, δ, θ, C) < ∞ such that

E max
1≤j≤n

|Sj |r ≤ K

{
nε

n∑
i=1

E|Xi|r +
( n∑

i=1

||Xi||2r+δ

)r/2}
. (2.4)
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Remark 2.1 Since E|Xi|r ≤ ||Xi||rr+δ, we have (1.3) and (1.4) in Theorem A from (2.2)
and (2.4). Obviously, r(r + δ)/(2δ) < (r − 1)(r + δ)/δ for r > 2. Hence the mixing rate of the
condition (2.3) is weaker than that of the condition (2.1). And the condition (2.1) is almost
the same as θ > v/(v − 2) and θ ≥ (r− 1)(r + δ)/δ in Theorem A, the condition (2.3) is almost
the same as θ ≥ r(r + δ)/(2δ) in Theorem A.

Remark 2.2 Note that (2.2) and (2.4) contain the information of moment sums. They are
more efficient in researching weight sums than (1.3) and (1.4). Indeed, there are many weight
estimates in statistics, such as least squares regression estimate, non-parameter regression es-
timate and non-parameter density estimate. So Theorem 2.1 and Theorem 2.2 are very useful
results.

Remark 2.3 In application of the inequalities (2.2) and (2.4), we may choose a sufficiently
small ε > 0. If the random sequence is independent, then (2.2) is near to (1.5) by taking
v = 2 + δ for a sufficiently small δ > 0.

To prove our theorems, we first give the following lemmas.

Lemma 2.1 (i) Suppose that ξ and η are F k
1 - measurable and F∞

k+n - measurable random
variables, respectively. If E|ξ|p < ∞, E|η|p < ∞ for some p, q, s > 1 with 1/p + 1/q + 1/s = 1,
then

|E(ξη) − (Eξ)(Eη)| ≤ 10α1/s(n)||ξ||p · ||η||q.

(ii) If
∑∞

i=1 α(q−2)/q(i) < ∞ for some q > 2, then E (
∑n

i=1 Xi)
2 ≤ C

∑n
i=1 E||Xi||2q.

One can see the result (i) in Roussas and Ioannides (1987, [5]). It is easy to get the result
(ii) from (i). Also see Lemma 1.2.4 in Lin and Lu (1996, [21]).

Lemma 2.2 For any x, y ∈ R1, we have

|x + y|r ≤ |y|r + d1|x|r + rx|y|r−1sgn(y) + d2x
2|y|r−2 for r > 2 (2.5)

where d1 = 2r, d2 = 2r · r2.
Proof For r > 2, t ∈ R1, it is easy to show that |1 + t|r ≤ 1 + d1|t|r + rt + d2t

2. From this, we
have the result by taking t = y/x as x �= 0. It is clear as x = 0.

Let k = [(n/2)λ] and m = [(n/2)1−λ], where 0 < λ < 1 which will be given later on. Clearly,

n < 2(m + 1)k,
1
4
nλ < k < nλ, m < n1−λ. (2.6)

Fix n and redefine Xi as Xi = Xi for 1 ≤ i ≤ n and Xi = 0 for i > n. For j = 1, 2, . . . , m + 1,
set

Yj =
n∧(2j−1)k∑

i=2(j−1)k+1

Xi, Zj =
n∧2jk∑

i=(2j−1)k+1

Xi

and S1,j =
∑j

i=1 Yi, S2,j =
∑j

i=1 Zi.

Lemma 2.3

max
1≤j≤n

|Sj |r ≤ C

{
max

1≤j≤m+1
|S1,j |r + max

1≤j≤m+1
|S2,j |r +

2(m+1)∑
j=1

max
1≤l≤k

∣∣∣∣ (j−1)k+l∑
i=(j−1)k+1

Xi

∣∣∣∣r}.

Proof Noting that Sj =
∑[j/k]k

i=1 Xi +
∑j

i=[j/k]k+1 Xi, we have

max
1≤j≤n

|Sj |r ≤ 2r−1 max
1≤j≤n

∣∣∣∣ [j/k]k∑
i=1

Xi

∣∣∣∣r + 2r−1 max
1≤j≤n

∣∣∣∣ j∑
i=[j/k]k+1

Xi

∣∣∣∣r := I1 + I2
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and

I1 ≤ 22(r−1) max
1≤j≤m+1

|S1,j |r + 22(r−1) max
1≤j≤m+1

|S2,j |r,

I2 ≤ 2r−1 max
1≤j≤2(m+1)

max
1≤l<k

∣∣∣∣ (j−1)k+l∑
i=(j−1)k+1

Xi

∣∣∣∣r ≤ 2r−1

2(m+1)∑
j=1

max
1≤l<k

∣∣∣∣ (j−1)k+l∑
i=(j−1)k+1

Xi

∣∣∣∣r.
These equations above imply the desired result.

Clearly
max

1≤j≤m+1
|S1,j |r ≤

∣∣∣ max
1≤j≤m+1

S1,j

∣∣∣r +
∣∣∣ max
1≤j≤m+1

(−S1,j)
∣∣∣r. (2.7)

Denote

Mj = max{0, Yj+1, Yj+1 + Yj+2, . . . , Yj+1 + Yj+2 + · · · + Ym+1},
Nj = max{Yj+1, Yj+1 + Yj+2, . . . , Yj+1 + Yj+2 + · · · + Ym+1},
M̃j = max{0,−Yj+1,−Yj+1 − Yj+2, . . . ,−Yj+1 − Yj+2 − · · · − Ym+1},
Ñj = max{−Yj+1,−Yj+1 − Yj+2, . . . ,−Yj+1 − Yj+2 − · · · − Ym+1}.

Then

max
1≤j≤m+1

S1,j = N0, Nj = Yj+1 + Mj+1, 0 ≤ Mj ≤ |Nj |, (2.8)

max
1≤j≤m+1

(−S1,j) = Ñ0, Ñj = −Yj+1 + M̃j+1, 0 ≤ M̃j ≤ |Ñj |, (2.9)

and

Mj = max{S1,j , S1,j+1, . . . , S1,m+1} − S1,j ≤ max
j≤i≤m+1

|S1,i| + |S1,j | ≤ 2 max
1≤j≤m+1

|S1,j |, (2.10)

M̃j = max{−S1,j ,−S1,j+1, . . . ,−S1,m+1} + S1,j

≤ max
j≤i≤m+1

|S1,i| + |S1,j | ≤ 2 max
1≤j≤m+1

|S1,j |. (2.11)

Lemma 2.4 If θ > (r − 1)(r + δ)/δ, then for any ρ > 0, there exist positive constants
Cρ = C(ρ, r, δ, θ) < ∞ and Cr = C(r) < ∞ such that

m∑
j=1

E
(
YjM

r−1
j

) ≤ Cρ

n∑
i=1

‖ Xi ‖r
r+δ +ρCrE max

1≤j≤m+1
|S1,j |r, (2.12)

m∑
j=1

E(YjM̃
r−1
j ) ≤ Cρ

n∑
i=1

‖ Xi ‖r
r+δ +ρCrE max

1≤j≤m+1
|S1,j |r. (2.13)

If θ > r(r + δ)/(2δ), then for any ρ > 0, there exist positive constants Cρ = C(ρ, r, δ, θ) < ∞
and Cr = C(r) < ∞ such that

m∑
j=1

E(YjM
r−1
j ) ≤ Cρ

( n∑
i=1

‖ Xi ‖2
r+δ

)r/2

+ ρCrE max
1≤j≤m+1

|S1,j |r, (2.14)

m∑
j=1

E(YjM̃
r−1
j ) ≤ Cρ

( n∑
i=1

‖ Xi ‖2
r+δ

)r/2

+ ρCrE max
1≤j≤m+1

|S1,j |r. (2.15)

Proof Let β = δ/[r(r + δ)]. By Lemma 1 with p = r/(r− 1), q = r + δ and s = r(r + δ)/δ, and
(2.10), we obtain that

m∑
j=1

E
(
YjM

r−1
j

) ≤ 10αβ(k)
m∑

j=1

‖ Yj ‖r+δ · ‖ Mj ‖r−1
r



Moment Inequality for Strong Mixing Sequence 1017

≤ 10 · 2r−1αβ(k)
m∑

j=1

‖ Yj ‖r+δ ·
(

E max
1≤j≤m+1

|S1,j |r
)(r−1)/r

≤ 5 · 2rρ−(r−1)/rαβ(k)
n∑

i=1

‖ Xi ‖r+δ ·
(

ρE max
1≤j≤m+1

|S1,j |r
)(r−1)/r

≤ 5r · 2r2
αβr(k)

rρ(r−1)

(
n∑

i=1

‖ Xi ‖r+δ

)r

+
ρ(r − 1)

r
E max

1≤j≤m+1
|S1,j |r, (2.16)

using the Hölder inequality a1/rb(r−1)/r ≤ 1
r a + r−1

r b in the last inequality above. Put B =
αβr(k) (

∑n
i=1 ‖ Xi ‖r+δ)

r. If θ > (r − 1)(r + δ)/δ, then

B ≤ nr−1αβr(k)
n∑

i=1

‖ Xi ‖r
r+δ . (2.17)

Taking λ = (r − 1)(r + δ)/(θδ), we have 0 < λ < 1 and

nr−1αβr(k) ≤ Cnr−1k−θβr ≤ Cnr−1−λθβr ≤ Cnr−1−λθδ/(r+δ) = C. (2.18)

A combination of (2.16) with (2.17) and (2.18) yields (2.12). If θ > r(r + δ)/(2δ), then

B ≤ nr/2αβr(k)

(
n∑

i=1

‖ Xi ‖2
r+δ

)r/2

. (2.19)

Taking λ = r(r + δ)/(2θδ), we have 0 < λ < 1 and

nr/2αβr(k) ≤ Cnr/2k−θβr ≤ Cnr/2−λθβr ≤ Cnr/2−λθδ/(r+δ) = C. (2.20)

From (2.16), (2.19) and (2.20), then (2.14) follows. Similarly, we get (2.13) and (2.15).
Lemma 2.5 If θ > max{v/(v − 2), (r − 1)(r + δ)/δ}, then for any ρ > 0, there exist positive
constants Cρ = C(ρ, r, v, δ, θ) < ∞ and Cr = C(r) < ∞ such that

m∑
j=1

E
(
Y 2

j Mr−2
j

) ≤ Cρ

(
n∑

i=1

||Xi||2v
)r/2

+ Cρ

n∑
i=1

‖ Xi ‖r
r+δ +ρCrE max

1≤j≤m+1
|S1,j |r, (2.21)

m∑
j=1

E
(
Y 2

j M̃r−2
j

)
≤ Cρ

(
n∑

i=1

||Xi||2v
)r/2

+ Cρ

n∑
i=1

‖ Xi ‖r
r+δ +ρCrE max

1≤j≤m+1
|S1,j |r. (2.22)

If θ > r(r + δ)/(2δ), then for any ρ > 0, there exist positive constants Cρ = C(ρ, r, δ, θ) < ∞
and Cr = C(r) < ∞ such that

m∑
j=1

E
(
Y 2

j Mr−2
j

) ≤ Cρ

(
n∑

i=1

‖ Xi ‖2
r+δ

)r/2

+ ρCrE max
1≤j≤m+1

|S1,j |r, (2.23)

m∑
j=1

E(Y 2
j M̃r−2

j ) ≤ Cρ

(
n∑

i=1

‖ Xi ‖2
r+δ

)r/2

+ ρCrE max
1≤j≤m+1

|S1,j |r. (2.24)

Proof Let β = δ/[r(r + δ)]. By Lemma 2.1 (i) with p = r/(r − 2), q = (r + δ)/2 and s =
r(r + δ)/(2δ), and (2.10), we obtain that

m∑
j=1

E(Y 2
j Mr−2

j ) =
m∑

j=1

E(Y 2
j )E(Mr−2

j ) +
m∑

j=1

Cov
(
Y 2

j , Mr−2
j

)



1018 Yang S. C.

≤
m∑

j=1

E(Y 2
j )E(Mr−2

j ) + 10α2β(k)
m∑

j=1

‖ Yj ‖2
r+δ‖ Mj ‖r−2

r

≤ 2r−2
m∑

j=1

E(Y 2
j )E max

1≤j≤m+1
|S1,j |r−2 + Cα2β(k)

m∑
j=1

‖ Yj ‖2
r+δ

(
E max

1≤j≤m+1
|S1,j |r

)(r−2)/r

≤ 2r−2

( m∑
j=1

EY 2
j

)(
E max

1≤j≤m+1
|S1,j |r

)(r−2)/r

+ Ckα2β(k)
( n∑

i=1

‖ Xi ‖2
r+δ

)(
E max

1≤j≤m+1
|S1,j |r

)(r−2)/r

≤ C1

ρr(r−2)/4

( m∑
j=1

EY 2
j

)r/2

+
C2

ρr(r−2)/4
kr/2αβr(k)

( n∑
i=1

‖ Xi ‖2
r+δ

)r/2

+
2(r − 2)ρ

r
E max

1≤j≤m+1
|S1,j |r, (2.25)

using the Hölder inequality a2/rb(r−2)/r ≤ 2
r a + r−2

r b in the last inequality above.
If θ > max{v/(v − 2), (r − 1)(r + δ)/δ}, then

∑∞
i=1 α(v−2)/v(i) ≤ C

∑∞
i=1 i−θ(v−2)/v < ∞.

By Lemma 2.1 (ii), ( m∑
j=1

EY 2
j

)r/2

≤ C

( n∑
i=1

||Xi||2v
)r/2

. (2.26)

Taking λ = (r − 1)(r + δ)/(θδ), we have 0 < λ < 1 and

nr/2−1kr/2αβr(k) ≤ Cnr/2−1kr/2−θβr ≤ Cnr/2−1+λ(r/2−θβr) = Cnr(λ−1)/2 ≤ C.

Hence

kr/2αβr(k)
( n∑

i=1

‖ Xi ‖2
r+δ

)r/2

≤ nr/2−1kr/2αβr(k)
n∑

i=1

‖ Xi ‖r
r+δ≤ C

n∑
i=1

‖ Xi ‖r
r+δ . (2.27)

A combination of (2.25) with (2.26) and (2.27) yields (2.21).
If θ > r(r + δ)/(2δ), then

∑∞
i=1 αδ/(r+δ)(i) ≤ C

∑∞
i=1 i−θδ/(r+δ) ≤ C

∑∞
i=1 i−r/2 < ∞. By

Lemma 2.1 (ii), ( m∑
j=1

EY 2
j

)r/2

≤ C

( n∑
i=1

||Xi||2r+δ

)r/2

. (2.28)

Taking λ = r(r + δ)/(2θδ), then we have 0 < λ < 1 and

kr/2αβr(k) ≤ Ckr/2−θβr ≤ Cnλ(r/2−θβr) = Cnr(λ−1)/2 ≤ C. (2.29)

From (2.25), (2.28) and (2.29), then (2.23) follows. Similarly, we get (2.22) and (2.24).

Lemma 2.6 If θ > max{v/(v − 2), (r − 1)(r + δ)/δ}, then

E max
1≤j≤m+1

|S1,j |r ≤ C

{m+1∑
j=1

E|Yj |r +
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

, (2.30)

E max
1≤j≤m+1

|S2,j |r ≤ C

{m+1∑
j=1

E|Zj |r +
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

. (2.31)
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If θ > r(r + δ)/(2δ), then

E max
1≤j≤m+1

|S1,j |r ≤ C

{m+1∑
j=1

E|Yj |r +
( n∑

i=1

‖ Xi ‖2
r+δ

)r/2}
, (2.32)

E max
1≤j≤m+1

|S2,j |r ≤ C

{m+1∑
j=1

E|Zj |r +
( n∑

i=1

‖ Xi ‖2
r+δ

)r/2}
. (2.33)

Proof By (2.8) and Lemma 2.2∣∣∣ max
1≤j≤m+1

S1,j

∣∣∣r = |N0|r = |Y1 + M1|r ≤ d1|Y1|r + rY1M
r−1
1 + d2Y

2
1 Mr−2

1 + Mr
1

≤ d1|Y1|r + rY1M
r−1
1 + d2Y

2
1 Mr−2

1 + |N1|r ≤ · · ·

≤ d1

m+1∑
j=1

|Yj |r + r

m∑
j=1

YjM
r−1
j + d2

m∑
j=1

Y 2
j Mr−2

j . (2.34)

In the same way,∣∣∣ max
1≤j≤m+1

(−S1,j)
∣∣∣r ≤ d1

m+1∑
j=1

|Yj |r + r

m∑
j=1

YjM̃
r−1
j + d2

m∑
j=1

Y 2
j M̃r−2

j . (2.35)

As θ > max{v/(v − 2), (r − 1)(r + δ)/δ}, we have

E| max
1≤j≤m+1

S1,j |r

≤ d1

m+1∑
j=1

E|Yj |r + Cρ

n∑
i=1

‖ Xi ‖r
r+δ +Cρ

( n∑
i=1

||Xi||2v
)r/2

+ ρCrE max
1≤j≤m+1

|S1,j |r

by combining (2.34) with (2.12) and (2.21), and

E| max
1≤j≤m+1

(−S1,j)|r

≤ d1

m+1∑
j=1

E|Yj |r + Cρ

n∑
i=1

‖ Xi ‖r
r+δ +Cρ

( n∑
i=1

||Xi||2v
)r/2

+ ρCrE max
1≤j≤m+1

|S1,j |r

by combining (2.35) with (2.13) and (2.22). Hence, from (2.7) and the two equations above,

E max
1≤j≤m+1

|S1,j |r

≤ C1

m+1∑
j=1

E|Yj |r + Cρ

n∑
i=1

‖ Xi ‖r
r+δ +Cρ

(
n∑

i=1

||Xi||2v
)r/2

+ ρCrE max
1≤j≤m+1

|S1,j |r.

Thus

(1 − ρCr)E max
1≤j≤m+1

|S1,j |r ≤ C1

m+1∑
j=1

E|Yj |r + Cρ

n∑
i=1

‖ Xi ‖r
r+δ +Cρ

(
n∑

i=1

||Xi||2v
)r/2

yields (2.30) by taking a sufficiently small ρ. Similarly, we obtain (2.31)–(2.33).
Proof of Theorem 2.1 By Lemmas 2.3 and 2.6 (the case of θ > max{v/(v−2), (r−1)(r+δ)/δ})

E max
1≤j≤n

|Sj |r ≤ C

{m+1∑
i=1

(E|Yi|r + E|Zi|r) +
2(m+1)∑

j=1

E max
1≤l≤k

∣∣∣∣ (j−1)k+l∑
i=(j−1)k+1

Xi

∣∣∣∣r
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+
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

. (2.36)

Using the Minkowski inequality to E|Yi|r, E|Zi|r and E max1≤l≤k |
∑(j−1)k+l

i=(j−1)k+1 Xi|r in the
above, and noting (2.6), we have

E max
1≤j≤n

|Sj |r ≤ C

{
kr−1

n∑
i=1

E|Xi|r +
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

≤ C

{
nλ(r−1)

n∑
i=1

E|Xi|r +
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

.

Applying the inequality above to E|Yi|r, E|Zi|r and E max1≤l≤k |
∑(j−1)k+l

i=(j−1)k+1 Xi|r in (2.36),

E max
1≤j≤n

|Sj |r ≤ C

{
kλ(r−1)

n∑
i=1

E|Xi|r +
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

≤ C

{
nλ2(r−1)

n∑
i=1

E|Xi|r +
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

.

Again, applying the inequality above to E|Yi|r, E|Zi|r and E max1≤l≤k

∣∣∣∑(j−1)k+l
i=(j−1)k+1 Xi

∣∣∣r in
(2.36), and repeating t times in this way, we have

E max
1≤j≤n

|Sj |r ≤ C

{
nλt(r−1)

n∑
i=1

E|Xi|r +
n∑

i=1

‖ Xi ‖r
r+δ +

( n∑
i=1

||Xi||2v
)r/2}

for integer t ≥ 1. Since 0 < λ < 1, λt(r − 1) < ε for some t > 1. Thus (2.2) holds.
Proof of Theorem 2.2 By Lemma 2.3 and Lemma 2.6 (the case of θ > r(r + δ)/(2δ))

E max
1≤j≤n

|Sj |r ≤ C

{m+1∑
i=1

(E|Yi|r + E|Zi|r) +
2(m+1)∑

j=1

E max
1≤l≤k

∣∣∣∣ (j−1)k+l∑
i=(j−1)k+1

Xi

∣∣∣∣r

+
( n∑

i=1

‖ Xi ‖2
r+δ

)r/2}
,

Which implies (2.5) in the same way as in the proof of Theorem 2.1.

3 Application
To show the application of the inequalities in Section 2, here we discuss the asymptotic normality
of the general linear estimator for the fixed design regression. Consider observations

Yni = g(xni) + εni, 1 ≤ i ≤ n, (3.1)

where the design points xn1, . . . , xnn ∈ A, which is a compact set of Rd, g is a bounded real
valued function on A, and εn1, . . . , εnn are regression errors with zero mean and finite variance
σ2. A common estimate of g is

gn(x) =
n∑

i=1

wni(x)Yni, (3.2)

where weight function wni(x), i = 1, 2, . . . , n, depend on the fixed design points xn1, . . . , xnn

and on the number of observations n.
In the independent case, the estimate (3.2) has been considered in many literatures, such

as, Priestly and Chao (1972, [22]), Clark (1997, [23]), Georgiev (1984a, 1984b, 1988, [24–26]),
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Georgiev and Greblicki (1986, [27]), and the references therein. In various dependence cases,
gn(x) has been also researched very much. Fox example, Fan (1990, [28]), Roussas (1989, [29]),
Roussas et al. (1992, [30]), Tran, et al (1986, [31]) and the references therein.

Under the strong mixing condition, asymptotic normality of (3.2) has been established by
Roussas et al. (1992, [30]). Here our purpose is to use the moment inequalities in Section 2
to give some more weaker conditions for asymptotic normality of the estimate (3.2). Adopting
the basic assumptions of Roussas et al. (1992, [30]), we assume the following.

Assumption (A1). (i) g:A → R is a bounded function defined on the compact subset A
of Rd; (ii) {ξt : t = 0,±1, . . . } is a strictly stationary and α-mixing time series with Eξ1 =
0, var(ξ1) = σ2 ∈ (0,∞); (iii) For each n, the joint distribution of {εni : 1 ≤ i ≤ n} is the same
as that of {ξ1, . . . , ξn}.

Denote
wn(x) := max{|wni(x)| : 1 ≤ i ≤ n}, σ2

n(x) := Var(gn(x)). (3.3)

Assumption (A2). (i) Σn
i=1|wni(x)| ≤ C for all n ≥ 1; (ii) wn(x) = O(Σn

i=1w
2
ni(x)); (iii)

Σn
i=1w

2
ni(x) = O(σ2

n(x)).
Assumption (A3). There exist positive integers p := p(n) and q := q(n) such that p+ q ≤ n

for sufficiently large n and as n → ∞,

qp−1 → o, np−1α(q) → 0, nqp−1
n∑

i=1

w2
ni(x) → 0, (3.4)

p
n∑

i=1

w2
ni(x) → 0. (3.5)

Here we will prove the following result.
Theorem 3.1 Let Assumptions (A1) ∼ (A3) be satisfied. If for some s > 0, E|ξ1|2+s < ∞,
and

α(n) = O(n−θ) for some θ > (2 + s)/s, (3.6)

then
σn(x)−1{gn(x) − Egn(x)} d−→ N(0, 1). (3.7)

Remark 3.1 Compare Theorem 3.1 here with Theorem 3.1 in Roussas et al. (1992, [30]),
who use the conditions

p2
n∑

i=1

w2
ni(x) → ∞ (as n → ∞), (3.8)

∞∑
i=1

αs/(2+s)(i) < ∞ for some s > 0. (3.9)

Clearly, (3.5) is weaker than (3.8). Furthermore, (3.6) is almost as weak as (3.9). In addition,
our proof is much more simple than that of Roussas et al. (1992, [30]).
Proof of Theorem 3.1 We first give some denotations. For convenience of writing, omit
everywhere the argument x and set Sn = σ−1

n (gn − Egn), Zni = σ−1
n wniεni for i = 1, 2, . . . , n,

so that Sn =
∑n

i=1 Zni.
Let k = [n/(p + q)]. Then Sn may be split as Sn = S′

n + S′′
n + S′′′

n , where

S′
n =

k∑
m=1

ynm, S′′
n =

k∑
m=1

y′
nm, S′′′

n = y′
nk+1,

ynm =
km+p−1∑

i=km

Zni, y′
nm =

lm+q−1∑
j=lm

Znj , y′
nk+1 =

n∑
i=k(p+q)+1

Zni,
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km = (m − 1)(p + q) + 1, lm = (m − 1)(p + q) + p + 1, m = 1, . . . , k. Thus, to prove (3.7), it
suffices to show that

E(S′′
n)2 → 0, E(S′′′

n )2 → 0 (3.10)

and
S′

n
d→ N(0, 1). (3.11)

By Lemma 2.1(ii), Assumption (A2) (ii) and (iii), and (3.4), we have

E(S′′
n)2 ≤ C

k∑
m=1

km+q−1∑
i=km

σ−2
n w2

ni ≤ Ckqσ−2
n w2

n ≤ C
n

p + q
qwn

≤ C(1 + qp−1)−1nqp−1
n∑

i=1

w2
ni → 0

and

E(S′′′
n )2 = E(y′

nk+1)
2 ≤ C

n∑
i=k(p+q)+1

σ−2
n w2

ni ≤ C(n − k(p + q))σ−2
n w2

n

≤ C

(
n

p + q
− k

)
(p + q)wn ≤ C(1 + qp−1)p

n∑
i=1

w2
ni → 0.

So (3.10) holds.
Now to prove (3.11). Put s2

n = Σk
m=1var(ynm). From Lemma 2.2 of Roussas et al. (1992,

[30])
E(S′

n)2 → 1 and s2
n → 1. (3.12)

Let Φx stand for the characteristic function of the r. v. X. Then, by Theorem 7.2 in Roussas
and Ioannides (1987, [5]) and (3.4),∣∣∣∣Φs′

n
(t) −

k∏
m=1

Φynm
(t)
∣∣∣∣ ≤ C(k − 1)α(q) ≤ Cnp−1α(q) → 0. (3.13)

Hence, {ynm : m = 1, . . . , k} may be assumed to be independent random variables. From (3.12)
and according to the Berry–Esseen central limit theorem, for (3.11) it suffices to show that

k∑
m=1

E|ynm|r → 0 for some r > 2. (3.14)

Since θ > (2+ s)/s in (3.6), we may choose positive t such that 0 < t < s/2 and (2+ s)/s <
(1 + t)(2 + s)/(s − 2t) < θ. Let r = 2(1 + t) and δ = s − 2t. Then r + δ = 2 + s and

r(r + δ)
2δ

=
(1 + t)(2 + s)

s − 2t
< θ.

Given positive ε < (r − 2)/2, using Theorem 2.2, Assumption (A2) and (3.5), we have

k∑
m=1

E|ynm|r ≤ C
k∑

m=1

{
pε

km+p−1∑
i=km

E|Zni|r +
( km+p−1∑

i=km

σ−2
n w2

ni||ξl||2r+δ

)r/2}

≤ C

{
pε

n∑
i=1

|wni|r/2 + p(r−2)/2
n∑

i=1

|wni|r/2

}
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≤ Cp(r−2)/2
n∑

i=1

|wni|r/2 ≤ Cp(r−2)/2w(r−2)/2
n

n∑
i=1

|wni|

≤ C

(
p

n∑
i=1

w2
ni

)(r−2)/2

→ 0,

so (3.14) holds, thus completing the proof.
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