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Abstract In this paper, we obtain results on precise large deviations for non-random and random

sums of negatively associated nonnegative random variables with common dominatedly varying tail

distribution function. We discover that, under certain conditions, three precise large-deviation prob-

abilities with different centering numbers are equivalent to each other. Furthermore, we investigate

precise large deviations for sums of negatively associated nonnegative random variables with certain

negatively dependent occurrences. The obtained results extend and improve the corresponding results

of Ng, Tang, Yan and Yang (J. Appl. Prob., 41, 93–107, 2004).
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1 Introduction
In this section, we first introduce some classes of heavy-tailed distribution functions (d.f.s), for
details, see Embrechts, Klüppelberg and Mikosch [1], etc. Let X be an r.v. with d.f. F on
[0,∞) and F (x) = 1 − F (x). Denote by

K =
{

F :
∫ ∞

0

eλx F (dx) = ∞ for any λ > 0
}

the heavy-tailed distributions class. Denote by

L =
{

F : lim
x→∞

F (x − y)
F (x)

= 1 for any y ∈ (−∞,∞)
}

the long-tailed distributions class. Denote by

D =
{

F : lim sup
x→∞

F (xy)
F (x)

< ∞ for any 0 < y < 1
}

the dominated-tailed distributions class, which is the main object of the present paper. Clearly,
L and D are subclasses of K with better properties.
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Furthermore, for any y > 1, set F ∗(y) = lim infx→∞
F (xy)

F (x)
, F

∗
(y) = lim supx→∞

F (xy)

F (x)
and

then define LF = limy↓1 F ∗(y), γF = inf
{ − log F∗(y)

log y for all y > 1
}
. The following proposition

is well known.
Proposition 1.1 F ∈D ⇐⇒ F ∗(y) > 0 for all y > 1 ⇐⇒ F ∗(y) > 0 for some y > 1 ⇐⇒
LF > 0 ⇐⇒ γF < ∞.

Some subclasses of D are as follows. Denote by C = {F : LF = 1} the class of d.f. with
consistently varying tail, which was first introduced by Cline and Samorodnitsky [2]. For some
0 < α ≤ β < ∞, denote by ERV(α, β) = {F : y−β ≤ F ∗(y) ≤ F

∗
(y) ≤ y−α for all y > 1}

the extended regularly varying class. Particularly, if α = β, it reduces to the regularly varying
class, denoted by R−α. Another well-known result is the following proposition.
Proposition 1.2 The following relations are proper:

R−α ⊂ ERV (α, β) ⊂ C ⊂ L ∩ D ⊂ D ⊂ K .

Throughout this paper, {Xk : k ≥ 1} denotes a sequence of identically distributed r.v.s
with d.f. F on [0,∞). For n ≥ 1, we denote by Sn the nth partial sum or non-random sum of
the sequence {Xk : k ≥ 1}. Some earlier work on precise large deviations of non-random sums
can be found in Nagaev [3, 4, 5] and Heyde [6, 7, 8]. Nagaev [9], [10] studied the precise large
deviations for R−α. The precise deviations for ERV (α, β) have been investigated by many
researchers such as Cline and Hsing [11], Klüppelberg and Mikosch [12], Mikosch and Nagaev
[13], Tang, Su, Jiang and Zhang [14], Ng, Tang, Yan and Yang [15], Hu [16], among others.
The following result is due to Ng, Tang, Yan and Yang [15]:
Theorem 1.A Let {Xk : k ≥ 1} be a sequence of independent, identically distributed (i.i.d.)
nonnegative r.v.s with d.f. F ∈ C and finite expectation μ. Then, for any fixed γ > 0,

lim
n→∞ sup

x≥γn

∣∣∣∣P (Sn − nμ > x)
nF (x)

− 1
∣∣∣∣ = 0. (1.1)

Just as it was pointed out in Embrechts, Klüppelberg and Mikosch [1] that, random sums
are the bread and butter of insurance mathematics, many researchers have investigated precise
large deviations for random sums on the basis of research on non-random sums. We refer the
reader to Cline and Hsing [11], Klüppelberg and Mikosch [12], Mikosch and Nagaev [13], Tang,
Su, Jiang and Zhang [14], Ng, Tang, Yan and Yang [15], among others. In this paper we always
suppose that {N(t) : t ≥ 0} is a nonnegative integer-valued process and λ(t) = EN(t) → ∞ as
t → ∞. SN(t) =

∑N(t)
k=1 Xk, t ≥ 0 is the so-called random sum. Under the following condition:

N(t)(λ(t))−1 P→ 1 as t → ∞ (1.2)
and the following assumption:
Assumption 1.1 For any δ > 0 and some ε(= ε(δ)) > 0,

E(1 + ε)N(t)I(N(t) > (1 + δ)λ(t)) = o(1) as t → ∞. (1.3)
Klüppelberg and Mikosch [12] studied the precise large deviations for random sums of r.v.s

belonging to ERV(α, β), where 1 < α ≤ β < ∞.
Tang, Su, Jiang and Zhang [14] obtained the same result under a weaker condition:

Assumption 1.2 For some ε > 0 and any δ > 0,
E(N(t))β+εI(N(t) > (1 + δ)λ(t)) = O(λ(t)) as t → ∞. (1.4)

Recently, Ng, Tang, Yan and Yang [15] obtained a more general result (Theorem 1.B below)
under a reasonable condition:
Assumption 1.3 For some p > γF and any δ > 0

E(N(t))pI(N(t) > (1 + δ)λ(t)) = O(λ(t)) as t → ∞. (1.5)

Theorem 1.B Let {Xk : k ≥ 1} be a sequence of i.i.d., nonnegative r.v.s with d.f. F ∈ C and
finite expectation μ, independent of a nonnegative and integer-valued process {N(t) : t ≥ 0}.
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Assume that N(·) satisfies Assumption 1.3. Then for any γ > 0,

lim
t→∞ sup

x≥γλ(t)

∣∣∣∣P (SN(t) − μλ(t) > x)
λ(t)F (x)

− 1
∣∣∣∣ = 0. (1.6)

From the development of the precise large deviations, we find that researchers weaken the
restrictions on N(·) and extend the scope of F step by step. We will go further in this direction
and do some work in the following three aspects:

1) In former research, {Xk : k ≥ 1} was always assumed to be a sequence of i.i.d., nonnega-
tive r.v.s with common d.f. F ∈ C , where Xk in most cases was the kth claim size or the stocks
held by the kth investor. In this paper, the precise large deviations of negatively associated
r.v.s with common d.f. F ∈ D will be investigated.

2) On the basis of the above research, we can conveniently investigate the precise large de-
viations for sums of negatively associated r.v.s with certain negatively dependent occurrences.
Compared with Proposition 5.1 of Ng, Tang, Yan and Yang [15], we extend the scope of occur-
rence r.v.s.

3) We will discuss and compare the precise large deviations with centering numbers 0, λ(t)μ
and N(t)μ respectively. We discover that, under certain conditions, the above-mentioned three
large-deviation probabilities are equivalent to each other. Furthermore, in the last case, the
condition on N(·) can be weakened to:
Assumption 1.4 For any δ > 0

EN(t)I(N(t) > (1 + δ)λ(t)) = o(λ(t)) as t → ∞. (1.7)
The outline of the present paper is as follows: Section 2 investigates the precise large

deviations for non-random and random sums of a sequence of negatively associated r.v.s {Xk :
k ≥ 1}. Section 3 investigates the precise large deviations for sums of negatively associated
r.v.s with certain negatively dependent occurrences. Without special statements, the notation
in this section are still valid and all limit relationships are as n → ∞ or t → ∞.

2 Precise Large Deviations of Sums
The concept of negatively associated was first introduced by Joag-Dev and Proschan [17].
By definition, a sequence {Xk : k ≥ 1} is said to be negatively associated (NA) if, for any
disjoint nonempty subsets A and B of {1, . . . , m}, m ≥ 2 and any coordinatewise nondecreasing
functions f and g, the inequality

Cov(f(Xi : i ∈ A), g(Xj : j ∈ B)) ≤ 0
holds whenever the moment involved exists. For details, one can also refer to Matula [18], Su,
Zhao and Wang [19], Shao [20], among others.

Let A ⊂ {1, 2, . . .}, σ(Xi : i ∈ A) be a σ-field generated by Xi, i ∈ A and define
ϕ(1) = sup

n≥2
sup
k≥1

sup
C∈σ(Xi:1≤i≤n,i 	=k) D∈σ(Xk),P (D)>0

|P (C|D) − P (C)| .
Obviously, 0 ≤ ϕ(1) ≤ 1 and when {Xk : k ≥ 1} is independent, ϕ(1) = 0.
Theorem 2.1 Let {Xk : k ≥ 1} be a sequence of NA, identically distributed nonnegative
r.v.s with d.f. F ∈ D and finite expectation μ. Then, for any fixed γ > 0,

1 ≤ lim inf
n→∞ inf

x≥γn

P (Sn > x)
nF (x)

≤ lim sup
n→∞

sup
x≥γn

P (Sn > x)
nF (x)

≤ L−1
F (2.1)

and

max{(1 − ϕ(1))LF , F ∗(1 + μγ−1)} ≤ lim inf
n→∞ inf

x≥γn

P (Sn − nμ > x)
nF (x)

≤ lim sup
n→∞

sup
x≥γn

P (Sn − nμ > x)
nF (x)

≤ L−1
F . (2.2)

Theorem 2.2 Let {Xk : k ≥ 1} be a sequence of NA, identically distributed nonnegative
r.v.s with d.f. F ∈ D and finite expectation μ, independent of a nonnegative and integer-valued
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process {N(t) : t ≥ 0}. Assume that N(·) satisfies Assumption 1.3. Then, for any fixed γ > 0,

1 ≤ lim inf
t→∞ inf

x≥γλ(t)

P (SN(t) > x)
λ(t)F (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (SN(t) > x)
λ(t)F (x)

≤ L−1
F (2.3)

and

max{(1 − ϕ(1))LF , F ∗(1 + μγ−1)} ≤ lim inf
t→∞ inf

x≥γλ(t)

P (SN(t) − λ(t)μ > x)
λ(t)F (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (SN(t) − λ(t)μ > x)
λ(t)F (x)

≤ L−1
F . (2.4)

If N(·) only satisfies Assumption 1.4, then for any fixed γ > 0,

max{(1 − ϕ(1))LF , F ∗(1 + μγ−1)} ≤ lim inf
t→∞ inf

x≥γλ(t)

P (SN(t) − N(t)μ > x)
λ(t)F (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (SN(t) − N(t)μ > x)
λ(t)F (x)

≤ L−1
F . (2.5)

Remark 2.1 In particular, if F ∈ C and {Xk : k ≥ 1} is a sequence of i.i.d. r.v.s, then LF = 1
and ϕ(1) = 0. Then, by the above two theorems, we can immediately obtain Theorem 1.A and
1.B of this paper and

P (SN(t) > x) ∼ λ(t)F (x) uniformly for x ≥ γλ(t).
And if N(·) only satisfies Assumption 1.4, we have

P

( N(t)∑
k=1

(Xk − μ) > x

)
∼ λ(t)F (x) uniformly for x ≥ γλ(t).

Hence, under a proper condition, P (
∑N(t)

k=1 Xk > x), P (
∑N(t)

k=1 Xk−λ(t)μ > x) and P (
∑N(t)

k=1

(Xk − μ) > x) are equivalent to each other uniformly for x ≥ γλ(t).
Proof of Theorem 2.1 We first prove (2.1). By Property P3 of Joag-Dev and Proschan
[17], μ = EX1 < ∞ and the standard argument, we have the left-hand inequality of (2.1)
immediately. Now we prove the right-hand inequality of (2.1) along the line of the proof of
Theorem 3.1 of Ng, Tang, Yan and Yang [15]. For any θ ∈ (0, 1), define

X̃k = XkI(Xk ≤ θx) + θxI(Xk > θx), k ≥ 1 and S̃n =
n∑

k=1

X̃k, n ≥ 1.

By Property P6 of Joag-Dev and Proschan [17], it follows that {X̃k : k ≥ 1} is also NA. It is
easy to show that

P (Sn > x) ≤ nF (θx) + P (S̃n > x). (2.6)

We only estimate the second term in (2.6). Let a = max{− log(nF (θx)), 1}, which tends to
∞ uniformly for x ≥ γn. For any fixed h > 0, by Property P2 of Joag-Dev and Proschan [17],

P (S̃n > x)
nF (θx)

≤ e−hx+a

( ∫ θx

0

eht F (dt) + ehθxF (θx)
)n

≤ exp
{

n

∫ θx

0

(eht − 1) F (dt) + n(ehθx − 1)F (θx) − hx + a

}
. (2.7)

For arbitrarily fixed τ > 1, let ρ > max{γF , τ−1} and h = a−ρτ log a
θx . Applying an elementary

inequality, eu − 1 ≤ ueu, we obtain that
n(ehθx − 1)F (θx) ≤ nhθxehθxF (θx) = (a − ρτ log a) a−ρτ

≤ a1−ρτ → 0 as n → ∞. (2.8)
By the proof of Theorem 3.1 of Ng, Tang, Yan and Yang [15], we have that

n

∫ θx

0

(eht − 1) F (dt) − hx + a → −∞ as n → ∞. (2.9)
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Hence, by (2.6)–(2.9) and F ∈ D , we have

lim sup
n→∞

sup
x≥γn

P (Sn > x)
nF (x)

≤ lim sup
x→∞

F (θx)
F (x)

= (F ∗(θ−1))−1.

Letting θ ↑ 1, yields the right-hand inequality of (2.1).
Now we prove (2.2). The right-hand inequality of (2.2) follows immediately from the right-

hand inequality of (2.1). We start to prove the left-hand inequality of (2.2). By the left-hand
inequality of (2.1) and x ≥ γn,

lim inf
n→∞ inf

x≥γn

P (Sn − nμ > x)
nF (x)

≥ lim inf
n→∞ inf

x≥γn

P (Sn > x(1 + μγ−1))
nF (x(1 + μγ−1))

F (x(1 + μγ−1))
F (x)

≥ lim inf
x→∞

F (x(1 + μγ−1))
F (x)

= F ∗(1 + μγ−1). (2.10)

On the other hand, if ϕ(1) = 1, then the left-hand inequality of (2.2) obviously holds. If
ϕ(1) < 1, let S

(k)
n = Sn − Xk, k = 1, . . . , n, n ≥ 1. Then for any λ > 1,

P (Sn − nμ > x) ≥ P (Sn − nμ > x, max
1≤k≤n

Xk > λx)

≥
n∑

k=1

P (S(k)
n − nμ > (1 − λ)x, Xk > λx) − (nF (λx))2

≥
n∑

k=1

(P (S(k)
n − nμ > (1 − λ)x)F (λx) − ϕ(1)F (λx)) − (nF (λx))2

= nF (λx)
(

n−1
n∑

k=1

P (S(k)
n − nμ > (1 − λ)x) − ϕ(1) − nF (λx)

)
. (2.11)

Since μ = EX1 < ∞, nF (λx) → 0 as n → ∞ uniformly for x ≥ γn. By Theorem 1 of Matula
[18], we have P (S(k)

n − nμ > (1 − λ)x) → 1 as n → ∞ uniformly for x ≥ γn, which, together
with the Toeplitz lemma, implies that

n−1
n∑

k=1

P (S(k)
n − nμ > (1 − λ)x) → 1 as n → ∞ uniformly for x ≥ γn. (2.12)

By (2.11) and (2.12), we obtain that

lim inf
n→∞ inf

x≥γn

P (Sn − nμ > x)
nF (x)

= lim inf
n→∞ inf

x≥γn

P (Sn − nμ > x)
nF (λx)

F (λx)
F (x)

≥ (1 − ϕ(1))F ∗(λ).

Let λ ↓ 1 in the above inequality. Then we have

lim inf
n→∞ inf

x≥γn

P (Sn − nμ > x)
nF (x)

≥ (1 − ϕ(1))LF . (2.13)

Combining (2.10) and (2.13), we obtain the left-hand inequality of (2.2). This completes the
proof of Theorem 2.1.
Proof of Theorem 2.2 By Lemma 2.4 of Ng, Tang, Yan and Yang [15] and Assumption 1.3, we
obtain (1.2), i.e. N(t)(λ(t))−1 P→ 1 as t → ∞. We first prove (2.3). For any 0 < δ < 1, we use
the idea of the proof of Theorem 4.1 of Ng, Tang, Yan and Yang [15] and divide P (SN(t) > x)
into three parts as

P (SN(t) > x) =
( ∑

n<(1−δ)λ(t)

+
∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)

+
∑

n>(1+δ)λ(t)

)
P (Sn > x)P (N(t) = n)

=: K11 + K12 + K13. (2.14)
We first estimate K11. By (1.2) and the right-hand inequality of (2.1) of Theorem 2.1, for

all large t,
K11 ≤ P (S[(1−δ)λ(t)] > x)P (N(t) < (1 − δ)λ(t))

≤ 2[(1 − δ)λ(t)]F (x)L−1
F P (N(t) < (1 − δ)λ(t)) = o(λ(t)F (x)). (2.15)
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Now we deal with K12. For any ε > 0, by the right-hand inequality of (2.1) of Theorem 2.1,
for all large t,
K12≤P (S[(1+δ)λ(t)] > x)P ((1 − δ)λ(t)≤N(t)≤(1 + δ)λ(t))≤(1+ε)(1+δ)λ(t)F (x)L−1

F . (2.16)
Besides, for any 0 < ε < 1, by (1.2) and the left-hand inequality of (2.1) of Theorem 2.1, for all
large t,
K12 ≥ P (S[(1−δ)λ(t)] > x)P ((1 − δ)λ(t) ≤ N(t) ≤ (1 + δ)λ(t)) ≥ (1−ε)(1−δ)λ(t)F (x). (2.17)

In order to estimate K13, we need the following lemma:
Lemma 2.1 Let {Xk : k ≥ 1} be a sequence of NA, identically distributed nonnegative r.v.s
with EX1 = μ < ∞. Then, for any v > 0 and x > 0,

P (Sn > x) ≤ nF (xv−1) + (eμnx−1)v. (2.18)

Proof For any fixed x > 0 and v > 0, let

X̃k = XkI(Xk ≤ xv−1) + xv−1I(Xk > xv−1), k ≥ 1 and S̃n =
n∑

k=1

X̃k, n ≥ 1.

It is not hard to show that
P (Sn > x) ≤ nF (xv−1) + P (S̃n > x). (2.19)

And, by Property P6 of Joag-Dev and Proschan [17], we know that {X̃k : k ≥ 1} is also NA.
Since for any h > 0, (eht − 1)t−1 is nondecreasing for t > 0, we obtain by Property P2 of
Joag-Dev and Proschan [17] and an elementary inequality 1 + u ≤ eu that

P (S̃n > x) ≤ e−hx(Eeh �X1)n = e−hx

( ∫ xv−1

0

eht F (dt) + ehxv−1
F (xv−1)

)n

= e−hx

(
1 +

∫ xv−1

0

(eht − 1) F (dt) + (ehxv−1 − 1)F (xv−1)
)n

≤ e−hx

(
1 + (ehxv−1 − 1)x−1v

( ∫ xv−1

0

t F (dt) + xv−1F (xv−1)
))n

≤ e−hx(1 + (ehxv−1 − 1)x−1vμ)n

≤ exp{n(ehxv−1 − 1)x−1vμ − hx}. (2.20)
Letting h = vx−1 log(xn−1μ−1 + 1)(> 0) in (2.20), we obtain that

P (S̃n > x) ≤ (enμx−1)v. (2.21)
By (2.19) and (2.21), we know that (2.18) holds.

Now we continue to estimate K13. Let v = p > γF (≥ 1) in (2.18). By Lemma 2.1, (1.2),
Assumption 1.3 and Lemma 2.1 of Ng, Tang, Yan and Yang [15], we obtain

K13 ≤
∑

n≥(1+δ)λ(t)

(
nF (xp−1) + (eμnx−1)p

)
P (N(t) = n)

= O(1)
(
F (x)EN(t)I(N(t) ≥ (1 + δ)λ(t)) + x−pE(N(t))pI(N(t) ≥ (1 + δ)λ(t))

)
= o(λ(t)F (x)). (2.22)

By (2.14), (2.15), (2.16), (2.17), (2.22) and the arbitrariness of ε and δ, we know that (2.3)
holds.

Next, we prove (2.4). For any 0 < δ < 1, we also divide P (SN(t) − λ(t)μ > x) into three
parts as

P (SN(t) − λ(t)μ > x) =
∞∑

n=1

P (Sn − λ(t)μ > x)P (N(t) = n)

=
( ∑

n<(1−δ)λ(t)

+
∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)

+
∑

n>(1+δ)λ(t)

)
P (Sn − λ(t)μ > x)P (N(t) = n)

=: K21 + K22 + K23. (2.23)
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Clearly,
K2i ≤ K1i = o(λ(t)F (x)) as t → ∞, i = 1, 3. (2.24)

And for any ε > 0 and all large t,
K22 ≤ K12 ≤ (1 + ε)(1 + δ)λ(t)F (x)L−1

F . (2.25)
For any 0 < ε < 1

2 , by the left-hand inequality of (2.2) of Theorem 2.1 and x ≥ γλ(t), for
all large t,

K22 ≥ P (S[(1−δ)λ(t)] > x + λ(t)μ)P ((1− δ)λ(t) ≤ N(t) ≤ (1 + δ)λ(t))

≥ (1 − ε)[(1 − δ)λ(t)]F (x + λ(t)μ − [(1 − δ)λ(t)]μ) max{(1 − ϕ(1))LF , F ∗(1 + μγ−1)}
≥ (1 − 2ε)(1 − δ)λ(t)F (x(1 + 2δγ−1μ)) max{(1 − ϕ(1))LF , F ∗(1 + μγ−1)}. (2.26)

By (2.23), (2.24), (2.25), (2.26) and the arbitrariness of ε and δ, we know that (2.4) holds.
Finally, we prove (2.5). By Lemma 2.4 of Ng, Tang, Yan and Yang [15], we easily see that

Assumption 1.4 implies (1.2). For any 0 < δ < 1, we also divide P (SN(t) − N(t)μ > x) into
three parts as

P (SN(t) − N(t)μ > x) =
∞∑

n=1

P (Sn − nμ > x)P (N(t) = n)

=
( ∑

n<(1−δ)λ(t)

+
∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)

+
∑

n>(1+δ)λ(t)

)
P (Sn − nμ > x)P (N(t) = n)

=: K31 + K32 + K33. (2.27)
Clearly,

K31 ≤ K11 = o(λ(t)F (x)) as t → ∞. (2.28)

And for any ε > 0 and all large t,
K32 ≤ K12 ≤ (1 + ε)(1 + δ)λ(t)F (x)L−1

F . (2.29)
Furthermore, for any 0 < ε < 1

2 , by (1.2) and the left-hand inequality of (2.2) of Theorem 2.1,
for all large t,

K32 ≥ (1 − 2ε)(1 − δ)λ(t)F (x) max{(1 − ϕ(1))LF , F ∗(1 + μγ−1)}. (2.30)
For any ε > 0, by (1.2), Assumption 1.4 and the right-hand inequality of (2.1) of Theo-

rem 2.1, for all large t,
K33 ≤ (1 + ε)

∑
n>(1+δ)λ(t)

nF (x)L−1
F P (N(t) = n)

= (1 + ε)L−1
F F (x)EN(t)I(N(t) > (1 + δ)λ(t))

= o(λ(t)F (x)). (2.31)
By (2.27), (2.28), (2.29), (2.30), (2.31) and the arbitrariness of ε and δ, we get (2.5). This
completes the proof of Theorem 2.2.

3 Precise Large Deviations of Sums with Occurrences
In this section, we use Theorems 2.1 and 2.2 to investigate the precise large deviations for sums
with certain negatively dependent claim occurrences. In this aspect, Ng, Tang, Yan and Yang
[15] ingeniously used the method of Shao [20] and presented the following result.
Theorem 3.A Let {Xk : k ≥ 1} be a sequence of i.i.d. nonnegative r.v.s with finite expecta-
tion μ and d.f. F ∈ C , let {Ik : k ≥ 1} be an NA sequence of Bernoulli variables with common
expectation q ∈ (0, 1] and let {N(t) : t ≥ 0} be an ordinary renewal counting process driven by a
sequence of i.i.d. nonnegative r.v.s {Yk : k ≥ 1} which have finite expectation. Suppose that the
sequences {Xk : k ≥ 1}, {Ik : k ≥ 1} and the process {N(t) : t ≥ 0} are mutually independent.
Then, for any γ > 0 and x ≥ γλ(t),

P

( N(t)∑
k=1

XkIk − μqλ(t) > x

)
∼ qλ(t)F (x). (3.1)
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Let S1n =
∑n

k=1 XkIk for all n ≥ 1 and S1(t) =
∑N(t)

k=1 XkIk for all t ≥ 0. Then S1n and
S1(t) denote the nonstandard non-random and random sums with NA occurrences respectively.
We will extend and improve Theorem 3.A in the following three aspects.

1) We may assume that {Xk : k ≥ 1} and {Ik : k ≥ 1} are sequences of NA, identically
distributed nonnegative r.v.s with common d.f. F ∈ D and {Ik : k ≥ 1} may not be a sequence
of Bernoulli variables.

2) In particular, when {Ik : k ≥ 1} is a sequence of identically distributed Bernoulli
variables, the sequence {Ik : k ≥ 1} may be assumed to be pairwise negatively quadrant
dependent. The notion of negatively quadrant dependent was introduced by Lehmann [21].
By definition, a sequence {Xk : k ≥ 1} is said to be pairwise negatively quadrant dependent
(Pairwise NQD) if, for any i, j ∈ {1, 2, . . .}, i �= j and any xi, xj ∈ R, the inequality

P (Xi > xi, Xj > xj) ≤ P (Xi > xi)P (Xj > xj) (3.2)
holds. It is will known that any NA sequence is Pairwise NQD.

3) We may assume that N(·) is a nonnegative and integer-valued counting process satisfying
Assumption 1.3 or 1.4, and not necessarily be a renewal counting process. Meanwhile, it can
also be driven by a sequence of positively dependent nonnegative r.v.s.

Let Zk = XkIk, k ≥ 1, ϕ1(1) be generated by {Zk : k ≥ 1}, F1 be the d.f. of X1I1 and the
definitions of F 1, F 1∗ and LF1 be the same as in Section 1.
Theorem 3.1 Let {Xk : k ≥ 1} be a sequence of NA, identically distributed nonnegative
r.v.s with d.f. F ∈ D and finite expectation μ, let {Ik : k ≥ 1} be a sequence of NA, identically
distributed nonnegative r.v.s with d.f. W and finite expectation q and let {N(t) : t ≥ 0} be
a nonnegative and integer-valued counting process. Suppose that the sequence {Xk : k ≥ 1},
{Ik : k ≥ 1} and the process {N(t) : t ≥ 0} are mutually independent. Then, for any fixed
γ > 0,

1 ≤ lim inf
n→∞ inf

x≥γn

P (S1n > x)
nF 1(x)

≤ lim sup
n→∞

sup
x≥γn

P (S1n > x)
nF 1(x)

≤ L−1
F1

(3.3)

and

max{(1 − ϕ1(1))LF1 , F 1∗(1 + μqγ−1)} ≤ lim inf
n→∞ inf

x≥γn

P (S1n − nμq > x)
nF 1(x)

≤ lim sup
n→∞

sup
x≥γn

P (S1n − nμq > x)
nF 1(x)

≤ L−1
F1

. (3.4)

If N(·) satisfies Assumption 1.3, then for any fixed γ > 0,

1 ≤ lim inf
t→∞ inf

x≥γλ(t)

P (S1(t) > x)
λ(t)F 1(x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (S1(t) > x)
λ(t)F 1(x)

≤ L−1
F1

(3.5)

and

max{(1 − ϕ1(1))LF1 , F 1∗(1 + μqγ−1)} ≤ lim inf
t→∞ inf

x≥γλ(t)

P (S1(t) − λ(t)μq > x)
λ(t)F 1(x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (S1(t) − λ(t)μq > x)
λ(t)F 1(x)

≤L−1
F1

. (3.6)

If N(·) only satisfies Assumption 1.4, then for any fixed γ > 0,

max{(1 − ϕ1(1))LF1 , F 1∗(1 + μqγ−1)} ≤ lim inf
t→∞ inf

x≥γλ(t)

P (S1(t) − N(t)μq > x)
λ(t)F 1(x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (S1(t) − N(t)μq > x)
λ(t)F 1(x)

≤L−1
F1

. (3.7)

Theorem 3.2 Let {Xk : k ≥ 1} be a sequence of NA, identically distributed nonnegative r.v.s
with d.f. F ∈ D and finite expectation μ, let {Ik : k ≥ 1} be a sequence of Pairwise NQD,
identically distributed Bernoulli variables with finite expectation q and let {N(t) : t ≥ 0} be
a nonnegative and integer-valued counting process. Suppose that the sequence {Xk : k ≥ 1},
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{Ik : k ≥ 1} and the process {N(t) : t ≥ 0} are mutually independent. Then, for any fixed
γ > 0,

1 ≤ lim inf
n→∞ inf

x≥γn

P (S1n > x)
nqF (x)

≤ lim sup
n→∞

sup
x≥γn

P (S1n > x)
nqF (x)

≤ L−1
F (3.8)

and

max{(1 − ϕ1(1))LF , F ∗(1 + μqγ−1)} ≤ lim inf
n→∞ inf

x≥γn

P (S1n − nμq > x)
nqF (x)

≤ lim sup
n→∞

sup
x≥γn

P (S1n − nμq > x)
nqF (x)

≤ L−1
F . (3.9)

If N(·) satisfies Assumption 1.3, then for any fixed γ > 0,

1 ≤ lim inf
t→∞ inf

x≥γλ(t)

P (S1(t) > x)
λ(t)qF (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (S1(t) > x)
λ(t)qF (x)

≤ L−1
F (3.10)

and

max{(1 − ϕ1(1))LF , F ∗(1 + μqγ−1)} ≤ lim inf
t→∞ inf

x≥γλ(t)

P (S1(t) − λ(t)μq > x)
λ(t)qF (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (S1(t) − λ(t)μq > x)
λ(t)qF (x)

≤L−1
F .(3.11)

If N(·) only satisfies Assumption 1.4, then for any fixed γ > 0,

max{(1 − ϕ1(1))LF , F ∗(1 + μqγ−1)} ≤ lim inf
t→∞ inf

x≥γλ(t)

P (S1(t) − N(t)μq > x)
λ(t)qF (x)

≤ lim sup
t→∞

sup
x≥γλ(t)

P (S1(t) − N(t)μq > x)
λ(t)qF (x)

≤L−1
F .(3.12)

In Theorems 3.1 and 3.2, if we further assume that {Xk : k ≥ 1} is a sequence of i.i.d.
nonnegative r.v.s with finite expectation μ and d.f. F ∈ C , and {Ik : k ≥ 1} is an NA sequence
of Bernoulli variables with common expectation q ∈ (0, 1], then we can obtain Theorem 3.A
easily.
Proof of Theorem 3.1 By (ii) of Theorem 3.3 of Cline and Samorodnitsky [2] and F ∈ D , we
know that F1 ∈ D . Thus LF1 > 0 and EZ1 = μq. Since {Xk : k ≥ 1} and {Ik : k ≥ 1} are
mutually independent, by Property P7 of Joag-Dev and Proschan [17], {Xk, Ik : k ≥ 1} is an
NA sequence. Thus {Zk : k ≥ 1} is also NA by Property P6 of Joag-Dev and Proschan [17].

Hence, by Theorems 2.1 and 2.2, Theorem 4.1 is verified. This completes the proof of
Theorem 4.1.
Proof of Theorem 3.2 Since {Ik : k ≥ 1} is a sequence of Pairwise NQD, identically distrib-
uted Bernoulli variables and {Xk : k ≥ 1} is an NA, identically distributed sequence, it is not
hard to show that {Zk : k ≥ 1}is also a Pairwise NQD sequence, F 1(x) = qF (x) for all x ≥ 0,
EZ1 = μq, F 1∗(λ) = F ∗(λ) for all λ > 1 and LF1 = LF . For any θ ∈ (0, 1), let

Z̃k = ZkI(Zk ≤ θx) + θxI(Zk > θx), k ≥ 1 and S̃1n =
n∑

k=1

Z̃k, n ≥ 1.

It is easy to show that
P (S̃1n > x) ≤ P (S̃n > x) for all n ≥ 1 and any x > 0. (3.13)

By (3.13), we know that the right-hand inequalities of Theorem 3.2 hold.
Obviously,

P (S1n > x) ≥ P ( max
1≤k≤n

Zk > x) ≥ nqF (x)(1 − nqF (x)). (3.14)

Set S
(k)
1n = S1n − Zk, k = 1, . . . , n, n ≥ 1. For any λ > 1, since {Zk : k ≥ 1}is also a

Pairwise NQD, identically distributed sequence, we obtain that
P (S1n − nqμ > x) ≥ P (S1n − nqμ > x, max

1≤k≤n
Zk > λx)
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≥
n∑

k=1

P (S1n − nqμ > x, Zk > λx) −
∑

1≤k<l≤n

P (S1n − nqμ > x, Zk > λx, Zl > λx)

≥
n∑

k=1

P (S(k)
1n − nqμ > (1 − λ)x, Zk > λx) − (nqF (λx))2

≥
n∑

k=1

(P (S(k)
1n − nqμ > (1 − λ)x)P (Zk > λx) − ϕ1(1)P (Zk > λx)) − (nqF (λx))2

= nqF (λx)
(

n−1
n∑

k=1

P (S(k)
1n − nqμ > (1 − λ)x) − ϕ1(1) − nqF (λx)

)
. (3.15)

By (3.14) and (3.15), we can verify the left-hand inequalities of Theorem 3.2 along the same
line of proof as that of Theorems 2.1 and 2.2. This completes the proof of Theorem 3.2.
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