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Abstract In this paper we study solvability of the Cauchy problem of the Kawahara equation

∂tu + au∂xu + β∂3
xu + γ∂5

xu = 0 with L2 initial data. By working on the Bourgain space Xr,s(R2)

associated with this equation, we prove that the Cauchy problem of the Kawahara equation is locally

solvable if initial data belong to Hr(R) and −1 < r ≤ 0. This result combined with the energy

conservation law of the Kawahara equation yields that global solutions exist if initial data belong to

L2(R).
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1 Introduction
In this paper we study the existence of a solution for the initial value problem

∂tu+ au∂xu+ β∂3
xu+ γ∂5

xu = 0 in R2, (1.1)
u(x, 0) = u0(x) for x ∈ R, (1.2)

where a, β, γ are real constants (a, γ �= 0), and u0 is a given function.
Equation (1.1) is an important dispersive equation that was first proposed by Kawahara in

1972 [1], as a model equation describing solitary wave propagation in media in which the first
order dispersion coefficient β is anomalously small (see also [2–4]). A more specific physical
background of this equation was introduced by Hunter and Scheurle in [5], where they used it
to describe the evolution of solitary waves in fluids in which the Bond number is less than but
close to 1/3 and the Froude number is close to 1. In the literature this equation is also referred
to as the fifth order KdV equation or singularly perturbed KdV equation [6, 7]. The fifth order
term ∂5

xu is called the Kawahara term, and its coefficient, γ, is called the next order dispersion
coefficient [2–4].

There has been a great deal of work on solitory wave solutions of the Kawahara equation
over the past thirty years [1–10]. It is found that, similarly to the KdV equation, the Kawahara
equation also has solitary wave solutions which decay rapidly to zero as t→ ∞, but unlike the
KdV equation whose solitary wave solutions are non-oscillating, the solitary wave solutions of
the Kawahara equation have oscillatory trails. This shows that the Kawahara equation is not
only similar but also different from the KdV equation in the properties of solutions, like what
happens between the formulations of this equation and the KdV equation. The strong physical
background of the Kawahara equation and such similarities and differences between it and
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the KdV equation in both the form and the behavior of the solution render the mathematical
treatment of this equation particularly interesting.

In [11] Cui and Tao established a series of Strichartz estimates for general linear dispersive
equations in one space variable, and used such estimates to prove that the problem (1.1)–(1.2)
has a local solution u ∈ C([−T, T ], Hr(R)) (for some T > 0) if u0 ∈ Hr(R) and r > 1/4. This
local result combined with the second and the third conservation laws implies that (1.1)–(1.2)
has a global solution u ∈ (C ∩ L∞)(R,H2(R)) if u0 ∈ H2(R). In this paper, we shall use
the method initiated by Bourgain [12–14] and developed by Kenig, Ponce and Vega [15,16] to
improve these results, and establish the global existence for this problem for L2 initial data.
More precisely, we shall first study the Bourgain space Xr,s(R2) (r, s ∈ R) associated with a
general class of dispersive equations including the Kawahara equation. By working in this space,
we prove that the problem (1.1)–(1.2) has a local solution u ∈ C([−T, T ], Hr(R)) (for some
T > 0) if u0 ∈ Hr(R) and −1 < r ≤ 0. This result combined with the energy conservation law
of the Kawahara equation then yields the existence of a global solution u ∈ (C∩L∞)(R,L2(R))
if u0 ∈ L2(R). Exact statement of these results is presented in Theorem 4.1.

In the next section, we work for general linear dispersive equations in one space variable and
study the Bourgain spaces Xr,s(R2) and the fundamental solution operator W (t) associated
with them. In Section 3 we concentrate attention on the Kawahara equation (1.1) and make
an estimate for the bilinear mapping B(u, v) = ∂x(uv) on the Bourgain space associated with
this equation. In Section 4 we use the results of Sections 2, 3 to establish the solvability of the
problem (1.1)–(1.2).

2 The Bourgain Space Xr,s(R2) and the Fundamental Solution Operator W (t)
In this section we consider the general linear dispersive equation

∂tu− iP (Dx)u = f(x, t), (x, t) ∈ R2, (2.1)
where P (Dx) is a linear partial differential operator with symbol P (ξ) being a non-constant
real polynomial in one variable, Dx = −i∂x, f is a complex-valued given function, and u is a
complex-valued unknown function. We shall derive some general results on the Bourgain space
associated with the equation (2.1) and the fundamental solution operator of this equation.

Clearly, the symbol of the equation (2.1) is τ − P (ξ). Hence we introduce
Definition 2.1 For reals r and s, the Bourgain space Xr,s(R2) associated with the equa-
tion (2.1) is defined as the completion of the Schwartz space S(R2) in the norm

‖u‖Xr,s(R2) =
( ∫ ∞

−∞

∫ ∞

−∞

(
1 + |ξ|2)r(1 +

∣∣τ − P (ξ)
∣∣2)s∣∣ũ(ξ, τ)∣∣2dξdτ

) 1
2

, (2.2)

where “˜” represents the Fourier transformation in two variables.
Definition 2.2 The fundamental solution operator W (t) (t ∈ R) of the equation (2.1) is
defined by

W (t)ϕ(x) = c

∫ ∞

−∞
ei(xξ+tP (ξ))ϕ̂(ξ)dξ, (2.3)

whenever the right-hand side makes sense in distribution sense, where “̂” represents the Fourier
transformation in one variable, and c = (2π)−1.

Since P (ξ) is real, it is clear that for every real r the operator W (t) (t ∈ R) is well-defined
on the Sobolev space Hr(R), and∥∥W (t)ϕ

∥∥
Hr(R)

=
∥∥ϕ∥∥

Hr(R)
, ∀ϕ ∈ Hr(R), (2.4)

so that {W (t) : t ∈ R} forms an one-parameter group of unitary operators on every Hr(R).
Lemma 2.1 Let u(x, t) ∈ S(R2) and v(x, t) = W (−t)u(x, t). Then

ṽ(ξ, τ) = ũ
(
ξ, τ + P (ξ)

)
, ∀ (ξ, τ) ∈ R2. (2.5)

For any real r, we denote by Jr the Bessel potential of order −r, i.e.

Jr
xϕ = c

∫ ∞

−∞
eixξ

(
(1 + |ξ|2) r

2 ϕ̂(ξ)
)
dξ,
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whenever the right-hand side makes sense in distribution sense.

Lemma 2.2 For reals r and s, u(x, t) ∈ Xr,s(R2) if and only if Jr
xJ

s
t W (−t)u(x, t) ∈ L2(R2),

and ∥∥u∥∥
Xr,s(R2)

=
∥∥Jr

xJ
s
t W (−t)u(x, t)∥∥

L2(R2)
. (2.6)

Lemma 2.3 If s > 1/2 then Xr,s(R2) ⊂ C(R,Hr(R)) ∩ L∞(R,Hr(R)), and
sup
t∈R

∥∥u(·, t)∥∥
Hr(R)

≤ Cs

∥∥u∥∥
Xr,s(R2)

, ∀u ∈ Xr,s(R2). (2.7)

Proof Let v(x, t) = W (−t)u(x, t). Then by (2.4) we have

sup
t∈R

∥∥u(·, t)∥∥
Hr(R)

= sup
t∈R

∥∥v(·, t)∥∥
Hr(R)

= sup
t∈R

(∫ ∞

−∞

∣∣Jr
xv(x, t)

∣∣2dx
) 1

2

≤
(∫ ∞

−∞

(
sup
t∈R

∣∣Jr
xv(x, t)

∣∣)2

dx

) 1
2

. (2.8)

Since s > 1/2, by the Sobolev embedding inequality we have

sup
t∈R

|Jr
xv(x, t)| ≤ Cs

( ∫ ∞

−∞

∣∣Js
t J

r
xv(x, t)

∣∣2dt
) 1

2

= Cs

(∫ ∞

−∞

∣∣Js
t J

r
xW (−t)u(x, t)∣∣2dt

) 1
2

,

∀x ∈ R. (2.9)
Substituting (2.9) into (2.8) and using (2.6), we immediately get (2.7).

As in [11, 17, 18], we denote by Lp
xL

q
T (T > 0, 1 ≤ p ≤ ∞, 1 ≤ q < ∞) the function space

consisting of measurable functions f(x, t) defined on R × [−T, T ], satisfying ‖f‖Lp
xLq

T
< ∞,

where the norm ‖ · ‖Lp
xLq

T
is defined as follows:

‖f‖Lp
xLq

T
=

( ∫ ∞

−∞

(∫ T

−T

|f(x, t)|qdt
) p

q

dx

) 1
p

(1 ≤ p <∞); ‖f‖L∞
x Lq

T
=sup

x∈R

( ∫ T

−T

|f(x, t)|qdt
) 1

q

.

As usual, the notation Dα (α ≥ 0) denotes the absolute derivative of order α, i.e.,

Dα
xϕ(x) = c

∫ ∞

−∞
eixξ|ξ|αϕ̂(ξ)dξ,

whenever the right-hand side makes sense in distribution sense.

Lemma 2.4 Let m = degP , and suppose that m ≥ 3. Let u ∈ Xr,s(R2) and assume that
−(m − 1)/2 < r ≤ 0, s > 1/2. Then for any T > 0 and 0 ≤ α ≤ (m − 1 + 2r)/2 there holds
Dα

xu ∈ Lp
xL

2
T , where p = 2(m− 1)/(m− 1 + 2r − 2α). In particular, u ∈ L2

loc(R
2).

Proof Let ṽ(ξ, τ) = (1 + |ξ|2) r
2 ũ(ξ, τ), (ξ, τ) ∈ R2,

w̃(ξ, τ) =
(
1 + |τ − P (ξ)|2) s

2 ṽ(ξ, τ) =
(
1 + |τ − P (ξ)|2) s

2 (1 + |ξ|2) r
2 ũ(ξ, τ), (ξ, τ) ∈ R2.

Then, since u ∈ Xr,s(R2), we have w ∈ L2(R2). We first prove that, for any 0 ≤ θ ≤ 1,

D
θ(m−1)

2
x v(x, t) ∈ L2/(1−θ)

x L2
T . (2.10)

For this purpose we define, for every τ ∈ R, a function ϕτ (x) by ϕ̂τ (ξ) = w̃(ξ, τ + P (ξ)), and
let

g(x, t, τ ) = W (t)ϕτ (x) = c

∫ ∞

−∞
ei(xξ+tP (ξ))ϕ̂τ (ξ)dξ = c

∫ ∞

−∞
ei(xξ+tP (ξ))w̃(ξ, τ + P (ξ))dξ.

Then, since ṽ(ξ, τ) =
(
1 + |τ − P (ξ)|2)− s

2 w̃(ξ, τ), it is easy to see that

v(x, t) = c

∫ ∞

−∞
eitτg(x, t, τ )(1 + |τ |2)− s

2 dτ. (2.11)

Since w ∈ L2(R2) so that also w̃(ξ, τ + P (ξ)) ∈ L2(R2), by the Fubini theorem we infer that
ϕ̂τ ∈ L2(R) for a.e. τ ∈ R, which implies that ϕτ ∈ L2(R) for a.e. τ ∈ R. Hence, since

g(x, t, τ ) = W (t)ϕτ (x), it follows from [11, Theorem 2.6] that D
m−1

2
x g(x, t, τ ) ∈ L∞

x L
2
T for a.e.

τ ∈ R, and there exists a constant CT > 0 depending only on T and P such that∥∥Dm−1
2

x g(·, ·, τ )∥∥
L∞

x L2
T

≤ CT ‖ϕτ‖L2(R) = CT ‖w̃(·, τ + P (·))‖L2(R), a.e. τ ∈ R.
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Since s > 1/2, this implies, by (2.11), that D
m−1

2
x v ∈ L∞

x L
2
T and∥∥Dm−1

2
x v

∥∥
L∞

x L2
T

≤ c

∫ ∞

−∞

∥∥Dm−1
2

x g(·, ·, τ )∥∥
L∞

x L2
T

· (1 + |τ |2)− s
2 dτ

≤ C

( ∫ ∞

−∞

∥∥Dm−1
2

x g(·, ·, τ )∥∥2

L∞
x L2

T

dτ

) 1
2

≤ CT

( ∫ ∞

−∞
‖w̃(·, τ + P (·))‖2

L2(R)dτ

) 1
2

= CT ‖w‖L2(R2).

Combining this result and the obvious assertion that v ∈ L2(R2) we conclude, by using the
interpolation theory, that (2.10) holds for any 0 ≤ θ ≤ 1.

We now take ϕ ∈ C∞
0 (R) such that ϕ(ξ) = 1 for |ξ| ≤ 1, and write

ũ(ξ, τ) = (1 + |ξ|2)− r
2 ṽ(ξ, τ)

= ϕ(ξ)(1 + |ξ|2)− r
2 ṽ(ξ, τ) +

(
1 − ϕ(ξ)

) · |ξ|r(1 + |ξ|2)− r
2 · |ξ|−rṽ(ξ, τ)

≡ ũ1(ξ, τ) + ũ2(ξ, τ).
Since v ∈ L2(R2) and ϕ ∈ C∞

0 (R), it is clear that Dα
xu1 ∈ L2(R2) for any α ≥ 0, so that

by also embedding Dα
xu1 ∈ Lp

xL
2
T for any α ≥ 0, 2 ≤ p ≤ ∞ and T > 0. Next, since

0 ≤ α ≤ (m − 1 + 2r)/2 and r ≤ 0 imply that 0 ≤ α − r ≤ (m − 1)/2, by (2.10) we have
h(x, t) ≡ F−1

(|ξ|α−rṽ(ξ, τ)
)

= Dα−r
x v(x, t) ∈ Lp

xL
2
T , where p = 2(m−1)/(m−1+2(r−α)) ≥ 2.

We denote ψ(ξ) =
(
1−ϕ(ξ)

)|ξ|r(1+ |ξ|2)− r
2 . Then D̂α

xu2(ξ, t) = ψ(ξ)ĥ(ξ, t). Since the function
ψ is smooth and satisfies |∂k

ξψ(ξ)| ≤ Ck(1 + |ξ|)−k, ∀ ξ ∈ R, k = 0, 1, 2, . . . , using the Mihlin
multiplier theorem we conclude that Dα

xu2 ∈ Lp
xL

2
T . Hence, the desired assertion holds.

Lemma 2.5 Let ψ ∈ C∞
0 (R), r ∈ R and s > 1/2. Then there exist constants Cj > 0 (j =

1, 2, 3) depending only on ψ and s such that∥∥ψ(t)W (t)ϕ(x)
∥∥

Xr,s(R2)
≤ C1‖ϕ‖Hr(R), (2.12)∥∥ψ(t)u(x, t)

∥∥
Xr,s(R2)

≤ C2‖u‖Xr,s(R2), (2.13)∥∥∥∥ψ(t)
∫ t

0

W (t− t′)u(x, t′)dt′
∥∥∥∥

Xr,s(R2)

≤ C3‖u‖Xr,s−1(R2), (2.14)

whenever the right-hand sides make sense. In particular, the constants C1, C2 and C3 are
independent of the operator W (t) or the polynomial P .

Proof (i) By Lemma 2.2 we have∥∥ψ(t)W (t)ϕ(x)
∥∥

Xr,s(R2)
=

∥∥Jr
xJ

s
t W (−t)(ψ(t)W (t)ϕ(x)

)∥∥
L2(R2)

=
∥∥Js

t ψ(t) · Jr
xϕ(x)

∥∥
L2(R2)

=
∥∥Js

t ψ(t)
∥∥

L2(R)
· ∥∥Jr

xϕ(x)
∥∥

L2(R)
.

Hence the inequality (2.12) follows from the fact that Js
t ψ(t) ∈ L2(R), which is obvious.

(ii) Similarly, by Lemma 2.2 we have∥∥ψ(t)u(x, t)
∥∥

Xr,s(R2)
=

∥∥Jr
xJ

s
t W (−t)(ψ(t)u(x, t)

)∥∥
L2(R2)

=
∥∥Js

t

(
ψ(t)J−s

t v(x, t)
)∥∥

L2(R2)
,

where v(x, t) = Jr
xJ

s
t W (−t)u(x, t). Hence the inequality (2.13) easily follows from the following

one: There exists a constant C > 0 depending only on ψ and s > 1/2 such that∥∥Js
t

(
ψ(t)J−s

t ϕ(t)
)∥∥

L2(R)
≤ C‖ϕ‖L2(R) (2.15)

for any ϕ ∈ L2(R), which is immediate.
(iii) Again, by Lemma 2.2 we have∥∥∥∥ψ(t)

∫ t

0

W (t− t′)u(x, t′)dt′
∥∥∥∥

Xr,s(R2)

=
∥∥∥∥Jr

xJ
s
t W (−t)

(
ψ(t)

∫ t

0

W (t− t′)u(x, t′)dt′
)∥∥∥∥

L2(R2)

=
∥∥∥∥Js

t

(
ψ(t)

∫ t

0

J1−s
t′ w(x, t′)dt′

)∥∥∥∥
L2(R2)

,
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where w(x, t′) = Jr
xJ

s−1
t′ W (−t′)u(x, t′). Hence the inequality (2.14) follows from the following

one: There exists a constant C > 0 depending only on ψ and s > 1/2 such that( ∫ ∞

−∞

∣∣∣∣Js
t

(
ψ(t)

∫ t

0

J1−s
t′ ϕ(t′)dt′

)∣∣∣∣
2

dt

) 1
2

≤ C‖ϕ‖L2(R) (2.16)

for any ϕ ∈ L2(R), which is also immediate.

3 A Bilinear Estimate
In this section we particularly take the polynomial P (ξ) = −γξ5 +βξ3. The notations Xr,s(R2)
and W (t) respectively denote the Bourgain space and the fundamental solution operator related
to the operator ∂t − iP (−i∂x) = ∂t + γ∂5

x + β∂3
x. We assume that

1
A

≤ |γ| ≤ A, |β| ≤ B, (3.1)
where A and B represent positive constants. The estimates to be established below will depend
on the constants A and B, and not on specific β and γ.

By Lemma 2.4 we see that if u, v ∈ Xr,s(R2) and r > −2, s > 1/2, then u, v ∈ L2
loc(R

2),
so that uv ∈ L1

loc(R
2). In this section we shall prove the following result.

Theorem 3.1 Assume that −1 < r ≤ 0 and max{ 1
2 ,

1
4 − 1

2r} < s ≤ 3
4 . Then u, v ∈ Xr,s(R2)

implies that ∂x(uv) ∈ Xr,s−1(R2), and there exists constant C > 0 depending only on r, s, A
and B such that

‖∂x(uv)‖Xr,s−1(R2) ≤ C‖u‖Xr,s(R2)‖v‖Xr,s(R2). (3.2)

We shall establish this result by a series of preliminary lemmas.
Lemma 3.2 The inequality (3.2) is implied by the following one :

‖∂x(u2)‖Xr,s−1(R2) ≤ C‖u‖2
Xr,s(R2). (3.3)

Lemma 3.3 The inequality (3.3) is implied by the following one :{∫ ∫
R2

(1 + |ξ|2)r(1 + |τ−P (ξ)|2)s−1|ξ|2
( ∫ ∫

R2
(1 + |η|2)− r

2 (1 + |ρ−P (η)|2)− s
2 |f(η, ρ)|

· (1 + |ξ−η|2)− r
2 (1 + |τ−ρ−P (ξ−η)|2)− s

2
∣∣f(ξ−η, τ−ρ)∣∣dηdρ

)2

dξdτ

} 1
2

≤C‖f‖2
L2(R2).(3.4)

Therefore, the problem of proving Theorem 3.1 is reduced to proving (3.4) for arbitrary
−1 < r ≤ 0 and max{ 1

2 ,
1
4 − 1

2r} < s ≤ 3
4 .

3.1 Some Basic Inequalities
The proof of (3.4) is based on the following calculus inequalities.
Lemma 3.4 (1) Assume that r > 0, s > 0, r + s > 1 and r �= 1, s �= 1. Then∫ ∞

−∞
(1 + |x− a|)−r(1 + |x− b|)−sdx ≤

{
C(1 + |a− b|)−min(r,s), if either r > 1 or s > 1,
C(1 + |a− b|)1−r−s, if both r < 1 and s < 1.

(2) Assume that 0 < α < 1, r > 1 − α and r �= 1. Then∫ ∞

−∞
|x|−α(1 + |x− a|)−rdx ≤

{
C(1 + |a|)−α, if r > 1,
C(1 + |a|)1−r−α, if r < 1.

(3) Assume that μ ≥ 0 and r > 1 + μ. Then
∫ ∞
−∞ |x|μ(1 + |x− a|)−rdx ≤ C(1 + |a|)μ.

(4) Assume that μ ≥ 0, 0 < α < 1, r > 1 and r + α− μ > 1. Then∫ ∞

−∞
|x|μ|x− a|−α(1 + |x− b|)−rdx ≤ C(1 + |a|)μ−α(1 + |b|)max{α,μ−α}.

3.2 The Case r = 0
In the following we denote

Q(ξ, η) = 5γξη(ξ − η)(ξ2 − ξη + η2) − 3βξη(ξ − η), (3.5)

Q0(ξ) = Q

(
ξ,
ξ

2

)
=

15γ
16

ξ3
(
ξ2 − 4β

5γ

)
. (3.6)
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It is obvious that
P (ξ − η) + P (η) = P (ξ) −Q(ξ, η), ∀ ξ, η ∈ R, (3.7)

and
∂Q(ξ, η)
∂η

= 5γξ(ξ − 2η)
(

2η2 − 2ξη + ξ2 − 3β
5γ

)
, ∀ ξ, η ∈ R. (3.8)

From (3.8) we easily see that if either βγ ≤ 0 or βγ > 0 and |ξ| ≥ √
(6/5)AB then the

polynomial Q(ξ, η) in η has a unique stationary point η = ξ/2 for ξ �= 0.

Lemma 3.5 Let M = 1 +
√

(6/5)AB. Then for all |ξ| ≥M and η ∈ R there holds∣∣∣∣∂Q(ξ, η)
∂η

∣∣∣∣ ≥ c0|ξ| 12 (1 + ξ2 + η2)
1
2 |Q(ξ, η) −Q0(ξ)| 12 , (3.9)

where c0 is a positive number depending only on A and B. For |ξ| ≤ M and |η| ≥ M there
holds ∣∣∣∣∂Q(ξ, η)

∂η

∣∣∣∣ ≥ c0|ξ| 14 |Q(ξ, η)| 34 , (3.10)

where c0 is as before.

Proof From (3.8) it is obvious that if either |ξ| ≥M or |η| ≥M, then∣∣∣∣∂Q(ξ, η)
∂η

∣∣∣∣ ≥ c0|ξ||2η − ξ|(1 + ξ2 + η2). (3.11)

Consider first the case |ξ| ≤ M , |η| ≥ M . Then clearly |Q(ξ, η)| ≤ C|ξ||η|4, or |η| ≥
c0|ξ|− 1

4 |Q(ξ, η)| 14 . Hence, by (3.11), |∂Q(ξ,η)
∂η | ≥ c0|ξ||η|3 ≥ c0|ξ| 14 |Q(ξ, η)| 34 , and (3.10) im-

mediately follows.
Next we consider the case |ξ| ≥M . A direct computation shows that

Q(ξ, η) −Q0(ξ) = − 5
16
γξ(2η − ξ)2

(
3ξ2 − 4ξη + 4η2 − 12β

5γ

)
, (3.12)

so that
|Q(ξ, η) −Q0(ξ)| ≤ C|ξ|(2η − ξ)2

(
1 + ξ2 + η2

)
, ∀ ξ, η ∈ R. (3.13)

This implies that

|2η − ξ| ≥ c0|ξ|− 1
2
(
1 + ξ2 + η2

)− 1
2 |Q(ξ, η) −Q0(ξ)| 12 , ∀ ξ, η ∈ R. (3.14)

Substituting (3.14) into (3.11) we see that (3.9) holds.

Lemma 3.6 Assume that s > 1/2. Then for all ξ ∈ R\{0} and τ ∈ R,∫ ∫
R2

(1+|ρ−P (η)|2)−s(1+|τ−ρ−P (ξ−η)|2)−sdρdη ≤ C|ξ|− 1
4 (1+|ξ|)− 15

4 (1+|τ−P (ξ)|) 1
2 . (3.15)

Proof By Lemma 3.4 (1) we have∫ ∞

−∞
(1 + |ρ− P (η)|2)−s(1 + |τ − ρ− P (ξ − η)|2)−sdρ ≤ C(1 + |τ − P (ξ − η) − P (η)|)−2s.

By (3.7), this implies that∫ ∞

−∞
(1 + |ρ−P (η)|2)−s(1 + |τ − ρ−P (ξ− η)|2)−sdρ ≤ C(1 + |τ −P (ξ) +Q(ξ, η)|)−2s. (3.16)

Hence∫ ∫
R2

(1+|ρ−P (η)|2)−s(1+|τ−ρ−P (ξ−η)|2)−sdρdη ≤ C

∫ ∞

−∞
(1+|τ−P (ξ)+Q(ξ, η)|)−2sdη, (3.17)

so that (3.15) is implied by the following estimate:∫ ∞

−∞
(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη ≤ C|ξ|− 1

4 (1 + |ξ|)− 15
4 (1 + |τ−P (ξ)|) 1

2 . (3.18)

In the following we give the proof of (3.18).
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Let M be as in Lemma 3.5. We first assume that |ξ| ≥ M . Then by (3.9) and Lemma 3.4
we have∫ ∞

−∞
(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη

≤ C|ξ|− 1
2 (1 + |ξ|)−1

∫ ∞

−∞
(1 + |τ−P (ξ)+Q(ξ, η)|)−2s|Q(ξ, η) −Q0(ξ)|− 1

2

∣∣∣∣∂Q(ξ, η)
∂η

∣∣∣∣dη
≤ C(1 + |ξ|)− 3

2

∫ ∞

−∞
(1 + |τ−P (ξ)+ζ|)−2s|ζ −Q0(ξ)|− 1

2 dζ

≤ C(1 + |ξ|)− 3
2 (1 + |Q0(ξ)|)− 1

2 (1 + |τ−P (ξ)|) 1
2 (by Lemma 3.4 (4))

≤ C(1 + |ξ|)−4(1 + |τ−P (ξ)|) 1
2 .

This proves (3.18) in the case |ξ| ≥M .
Next we assume that |ξ| ≤M . We split the integral on the left-hand side of (3.18) into two

parts: |η| ≤M and |η| ≥M . Clearly,∫
|η|≤M

(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη ≤ C. (3.19)

Using (3.10) we deduce that∫
|η|≥M

(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη

≤ C|ξ|− 1
4

∫
|η|≥M

(1 + |τ−P (ξ)+Q(ξ, η)|)−2s|Q(ξ, η)|− 3
4

∣∣∣∣∂Q(ξ, η)
∂η

∣∣∣∣dη
≤ C|ξ|− 1

4

∫ ∞

−∞
(1 + |τ − P (ξ) + ζ|)−2s|ζ|− 3

4 dζ

≤ C|ξ|− 1
4 (1 + |τ − P (ξ)|)− 3

4 (by Lemma 3.4 (2)). (3.20)
From (3.19) and (3.20), we easily see that (3.18) also holds in the case |ξ| ≤M .

Lemma 3.7 The estimate (3.4) holds for r = 0 and 1/2 < s ≤ 3/4.

Proof By the Cauchy inequality and Lemma 3.6 we have, for s > 1/2,∫ ∫
R2

(1 + |ρ−P (η)|2)− s
2 |f(η, ρ)| · (1 + |τ−ρ−P (ξ−η)|2)− s

2 |f(ξ−η, τ−ρ)|dηdρ

≤
( ∫ ∫

R2
(1 + |ρ−P (η)|2)−s(1 + |τ−ρ−P (ξ−η)|2)−sdηdρ

) 1
2

·
( ∫ ∫

R2
|f(η, ρ)|2|f(ξ−η, τ−ρ)|2dηdρ

) 1
2

≤ C|ξ|− 1
8 (1 + |ξ|)− 15

8 (1 + |τ−P (ξ)|) 1
4 ·

( ∫ ∫
R2

|f(η, ρ)|2|f(ξ−η, τ−ρ)|2dηdρ
) 1

2

.

Substituting this estimate into the left-hand side of (3.4), and noting that, when s ≤ 3/4,

(1 + |τ−P (ξ)|2)s−1|ξ|2 · |ξ|− 1
4 (1 + |ξ|)− 15

4 (1 + |τ−P (ξ)|) 1
2 ≤ C,

we see that (3.4) holds in the case r = 0 and 1/2 < s ≤ 3/4.

3.3 The Case −1 < r < 0

Lemma 3.8 Let −1 < r < 0 and s > max{ 1
2 ,

1
4 − 1

2r}. Then for all ξ ∈ R\{0} and τ ∈ R,∫ ∫
R2

(1 + |η|2)−r(1 + |ξ−η|2)−r(1 + |ρ−P (η)|2)−s(1 + |τ−ρ−P (ξ−η)|2)−sdρdη

≤ C|ξ|−|r|− 1
4 (1 + |ξ|)5|r|− 15

4 (1 + |τ−P (ξ)|) 1
2 . (3.21)
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Proof Let M be as before. Using (3.16) we get∫ ∫
R2

(1 + |η|2)−r(1 + |ξ−η|2)−r(1 + |ρ−P (η)|2)−s(1 + |τ−ρ−P (ξ−η)|2)−sdρdη

≤ C

∫ ∞

−∞
(1 + |η|)−2r(1 + |ξ−η|)−2r(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη. (3.22)

To estimate the last integral we denote
Ω1(ξ) = {η ∈ R : either |η| ≤M or |ξ−η| ≤M},
Ω2(ξ) = {η ∈ R : |η| ≥M and |ξ−η| ≥M}.

Since −r = |r| > 0, it is clear that if η ∈ Ω1(ξ) then (1 + |η|2)−r(1 + |ξ−η|2)−r ≤ C(1 + |ξ|)2|r|.
Hence, using (3.18) we get∫

Ω1(ξ)

(1 + |η|2)−r(1 + |ξ−η|2)−r(1 + |τ−P (ξ)+Q(ξ, η)|2)−sdη

≤ C(1 + |ξ|)2|r|
∫ ∞

−∞
(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη

≤ C|ξ|− 1
4 (1 + |ξ|)2|r|− 15

4 (1 + |τ−P (ξ)|) 1
2 . (3.23)

Next, since −r = |r| > 0, it is clear that if η ∈ Ω2(ξ) then (1 + |η|2)−r(1 + |ξ−η|2)−r ≤
C|η(ξ−η)|2|r|. Hence∫

Ω2(ξ)

(1 + |η|2)−r(1 + |ξ−η|2)−r(1 + |τ−P (ξ)+Q(ξ, η)|2)−sdη

≤ C

∫
Ω2(ξ)

|η(ξ−η)|2|r|(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη.

We denote μ = η(ξ−η). From the fact that ξ2 − μ = ξ2 − ξη + η2 ≥ 1
2 (ξ2 + η2) ≥ 1

3 |μ|
and the relation Q(ξ, η) = 5γξμ(ξ2 − μ) − 3βξμ, we easily deduce that if |η| ≥ M then |μ| ≤
C|ξ|− 1

2 |Q(ξ, η)| 12 . Hence∫
Ω2(ξ)

(1 + |η|2)−r(1 + |ξ−η|2)−r(1 + |τ−P (ξ)+Q(ξ, η)|2)−sdη

≤ C|ξ|−|r|
∫
|η|≥M

|Q(ξ, η)||r|(1 + |τ−P (ξ)+Q(ξ, η)|)−2sdη. (3.24)

For |ξ| ≥M , we use (3.9) to get∫
|η|≥M

|Q(ξ, η)||r|(1 + |τ−P (ξ)+Q(ξ, η)|2)−sdη

≤ C(1 + |ξ|)− 3
2

∫ ∞

−∞
|Q(ξ, η)||r|(1 + |τ−P (ξ)+Q(ξ, η)|)−2s|Q(ξ, η)−Q0(ξ)|− 1

2

∣∣∣∣∂Q(ξ, η)
∂η

∣∣∣∣dη
≤ C(1 + |ξ|)− 3

2

∫ ∞

−∞
|ζ||r||ζ−Q0(ξ)|− 1

2 (1 + |τ−P (ξ)+ζ|)−2sdζ

≤ C(1 + |ξ|)− 3
2 (1 + |Q0(ξ)|)|r|− 1

2 (1 + |τ−P (ξ)|) 1
2 (by Lemma 3.4 (4))

≤ C(1 + |ξ|)5|r|−4(1 + |τ−P (ξ)|) 1
2 . (3.25)

For |ξ| ≤M we use (3.10) to get∫
|η|≥M

|Q(ξ, η)||r|(1 + |τ−P (ξ)+Q(ξ, η)|2)−sdη

≤ C|ξ|− 1
4

∫
|η|≥M

|Q(ξ, η)||r|− 3
4 (1 + |τ−P (ξ)+Q(ξ, η)|)−2s

∣∣∣∣∂Q(ξ, η)
∂η

∣∣∣∣dη
≤ C|ξ|− 1

4

∫ ∞

−∞
|ζ||r|− 3

4 (1 + |τ−P (ξ)+ζ|)−2sdζ

≤ C|ξ|− 1
4 (1 + |τ−P (ξ)|)|r|− 3

4 (by Lemma 3.4 (2), (3)). (3.26)
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From (3.24)–(3.26) we see that, for all ξ ∈ R\{0},∫
Ω2(ξ)

(1 + |η|2)−r(1 + |ξ−η|2)−r(1 + |τ−P (ξ)+Q(ξ, η)|2)−sdη

≤ C|ξ|−|r|− 1
4 (1 + |ξ|)5|r|− 15

4 (1 + |τ−P (ξ)|) 1
2 . (3.27)

Substituting (3.23) and (3.27) into (3.22), we see that (3.21) holds.

Lemma 3.9 The estimate (3.4) holds for −1 < r < 0 and max{ 1
2 ,

1
4 − 1

2r} < s ≤ 3
4 .

Proof By the Cauchy inequality and Lemma 3.10 we have, for s > max{ 1
2 ,

1
4 − 1

2r},∫ ∫
R2

(1 + |η|2)− r
2 (1 + |ρ−P (η)|2)− s

2 |f(η, ρ)| · (1 + |ξ−η|2)− r
2

· (1 + |τ−ρ−P (ξ−η)|2)− s
2 |f(ξ−η, τ−ρ)|dηdρ

≤
( ∫ ∫

R2
(1 + |η|2)−r(1 + |ρ−P (η)|2)−s(1 + |ξ−η|2)−r(1 + |τ−ρ−P (ξ−η)|2)−sdηdρ

) 1
2

·
( ∫ ∫

R2
|f(η, ρ)|2|f(ξ−η, τ−ρ)|2dηdρ

) 1
2

≤ C|ξ|− 1
2 |r|− 1

8 (1 + |ξ|) 5
2 |r|− 15

8 (1 + |τ−P (ξ)|) 1
4 ·

( ∫ ∫
R2

|f(η, ρ)|2|f(ξ−η, τ−ρ)|2dηdρ
) 1

2

.

Substituting this estimate into the left-hand side of (3.4), and noticing that, when r ≥ −1 and
s ≤ 3

4 , (1 + |ξ|2)r(1 + |τ−P (ξ)|2)s−1|ξ|2 · |ξ|−|r|− 1
4 (1 + |ξ|)5|r|− 15

4 (1 + |τ−P (ξ)|) 1
2 ≤ C, we see

that (3.4) holds when −1 < r < 0 and max{ 1
2 ,

1
4 − 1

2r} < s ≤ 3
4 .

4 Solvability of the Problems (1.1)–(1.2)

For ε > 0 we introduce
v(x, t) = ε4u(εx, ε5t), v0(x) = ε4u0(εx). (4.1)

One can easily verify that the problem (1.1)–(1.2) is equivalent to the following problem:
∂tv + av∂xv + ε2β∂3

xv + γ∂5
xv = 0 in R2, (4.2)

v(x, 0) = v0(x) for x ∈ R. (4.3)
In the following we consider the local solvability of this problem.

Let Pε(ξ) = −γξ5+ε2βξ3, and let Wε(t) be the operator defined by (2.3) with P (ξ) replaced
by Pε(ξ). Take a function ψ ∈ C∞

0 (R) such that ψ(t) = 1 for |t| ≤ 1, and consider the equation

v(·, t) = ψ(t)Wε(t)v0 − 1
2
aψ(t)

∫ t

0

Wε(t− t′)∂x

(
v2(·, t′))dt′, t ∈ R. (4.4)

It is easy to see that the equation (4.4) is equivalent to the problem (4.2)–(4.3) when |t| < 1.
To solve the equation (4.4) we denote by Xr,s

ε (R2) the Bourgain space related to the equa-
tion (4.2), i.e., the space defined by (2.2) with P (ξ) replaced by Pε(ξ), where −1 < r ≤ 0 and
max{ 1

2 ,
1
4 − 1

2r} < s ≤ 3/4. We assume that u0 ∈ Hr(R) (so that also v0 ∈ Hr(R)), and
introduce a mapping Sε: v → w by

w(·, t) = ψ(t)Wε(t)v0 − 1
2
aψ(t)

∫ t

0

Wε(t− t′)∂x

(
v2(·, t′))dt′, t ∈ R.

By Lemma 2.5 and Theorem 3.1 we see that Sε is well-defined and it maps Xr,s
ε (R2) into itself.

Furthermore, Lemma 2.5 and Theorem 3.1 also ensure that there exists a constant C > 0
independent of ε such that

‖w‖Xr,s
ε (R2) ≤ C‖v0‖Hr(R) + C‖∂x(v2)‖Xr,s−1

ε (R2) ≤ C‖v0‖Hr(R) + C‖v‖2
Xr,s

ε (R2).

From the relation v0(x) = ε4u0(εx) one can easily verify that
‖v0‖Hr(R) ≤ ε

7
2+r‖u0‖Hr(R). (4.5)

Thus
‖w‖Xr,s

ε (R2) ≤ Cε
7
2+r‖u0‖Hr(R) + C‖v‖2

Xr,s
ε (R2). (4.6)
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From this inequality we easily see that if we take ε sufficiently small such that
4C2ε

7
2+r‖u0‖Hr(R) < 1, (4.7)

then Sε maps the closed ball in Xr,s
ε (R2)

{v ∈ Xr,s
ε (R2) : ‖v‖Xr,s

ε (R2) ≤ 2Cε
7
2+r‖u0‖Hr(R)} (4.8)

into itself. Moreover, by Lemma 2.5 and Theorem 3.1 we see that
‖Sεv1 − Sεv2‖Xr,s

ε (R2) ≤ C‖∂x(v2
1 − v2

2)‖Xr,s−1
ε (R2)

≤ C
(‖v1‖Xr,s

ε (R2) + ‖v2‖Xr,s
ε (R2)

)‖v1 − v2‖Xr,s
ε (R2) ≤ 4C2ε

7
2+r‖u0‖Hr(R)‖v1 − v2‖Xr,s

ε (R2).
Hence, by (4.7), Sε is a contraction mapping on the ball (4.8).

It follows from the Banach fixed point theorem that for small ε > 0 the equation (4.4) has
a unique solution for all t ∈ R, and, consequently, the problem (4.2)–(4.3) has a solution for
|t| < 1. By (4.1), this implies that the problem (1.1)–(1.2) has a solution for |t| < ε5. The local
solvability of the problem (1.1)–(1.2) is thus established for u0 ∈ Hr(R) with −1 < r ≤ 0.

Using the above result for the case r = 0 and the energy conservation law of the equation
(1.1), we can resort to a standard argument to show that the problem (1.1)–(1.2) is globally
solvable for u0 ∈ L2(R). More precisely, we have proved the following result:
Theorem 4.1 If u0 ∈ Hr(R) and −1 < r ≤ 0, then there exists T > 0 such that the problem
(1.1)–(1.2) has a solution on R × [−T, T ], satisfying u ∈ C([−T, T ], Hr(R)), ∂α

x u ∈ Lp
xL

2
T ,

∀α ∈ [0, 2 + r], where p = 4/(2 + r − α). For r = 0 the above assertion holds for all T > 0.
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