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1 Introduction
The classical Weierstrass representation formula for minimal surfaces in R

3 with its generaliza-
tions to R

n has been proved to be an extremely useful tool for the study of minimal surfaces
in those spaces (see, for example, [1, 2]). In this paper we describe a method to derive a
Weierstrass-type representation formula for simply connected immersed minimal surfaces in
the three dimensional Heisenberg group H3 and in the product H

2 ×R of the hyperbolic plane
with the real line. Our work is motivated by the interest, in the last decade, in the theory of
minimal surfaces in H3, see, for example, [3–8], and by the recent work on minimal surfaces
in H

2 × R [9]. First, using the standard harmonic map equation, we give a Weierstrass-type
representation formula for simply connected immersed minimal surfaces in a Riemannian man-
ifold. This general setting is applied to the case of 3-dimensional Lie groups endowed with a
left invariant metric. We then discuss, using this setting, some examples of minimal surfaces
both in H3 and in H

2×R. By means of similar methods a Weierstrass-type formula for minimal
surfaces in the hyperbolic n-space has been derived by Kokubu in [10].

2 The General Setting
Let (Mn, g) be an n-dimensional Riemannian manifold, Σ a Riemann surface and f : Σ →Mn

a smooth map. The pull-back bundle f∗(TM) has a (fiber) metric and a compatible connection,
the pull-back connection, induced by the Riemannian metric and the Levi–Civita connection of
M. Consider the complexified bundle E = f∗(TM) ⊗ C. The metric g may be extended to E

as:
• a complex bilinear form (., .) : E × E → C;
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• a hermitian metric 〈〈., .〉〉 : E × E → C;
and the two extensions are related by: 〈〈V,W 〉〉 = (V,W ). Let (u, v) be local coordinates on Σ,
and z = u+ iv the (local) complex parameter and set, as usual,

∂

∂z
=

1
2

(
∂

∂u
− i

∂

∂v

)
;

∂

∂z
=

1
2

(
∂

∂u
+ i

∂

∂v

)
.

The pull-back connection extends to a complex connection on E, hermitian with respect to
〈〈., .〉〉, and it is well known (see, for example, [11]) that E has a unique holomorphic structure
such that a section W : Σ → E is holomorphic if and only if:

∇̃ ∂
∂z
W = 0, (1)

where ∇̃ is the pull-back connection.
Setting

∂f

∂u

∣∣∣∣
p

= f∗p

(
∂

∂u

∣∣∣∣
p

)
,

∂f

∂v

∣∣∣∣
p

= f∗p

(
∂

∂v

∣∣∣∣
p

)
,

we can regard φ = ∂f
∂z = 1

2

(
∂f
∂u − i∂f∂v

)
as a section of E and we have the following properties:

• The map f is an immersion if and only if 〈〈φ, φ〉〉 �= 0;
• If f is an immersion then f is conformal if and only if (φ, φ) = 0.
Let now f : Σ →M be a conformal immersion and z = u+ iv a local conformal parameter.

Then the induced metric is ds2 = λ2(du2 + dv2) = λ2|dz|2, and the Beltrami–Laplace operator
on Σ, with respect to the induced metric, is given by

Δ = λ−2

(
∂

∂u

∂

∂u
+

∂

∂v

∂

∂v

)
= 4λ−2 ∂

∂z

∂

∂z
.

We recall that a map f : Σ →M is harmonic if its tension field τ (f) = trace∇df vanishes. Let
{x1, . . . , xn} be a system of local coordinates in a neighborhood U ofMn such that U∩f(Σ) �= ∅.
Then, in an open set Ω ⊂ Σ, φ =

∑n
j=1 φj

∂
∂xj

for some complex-valued functions φj defined on
Ω. With respect to the local decomposition of φ, the tension field can be written as:

τ (f) =
∑
i

{
Δfi + 4λ−2

n∑
j,k=1

Γijk
∂fj
∂z

∂fk
∂z

}
∂

∂xi
= 4λ−2

∑
i

{
∂φi
∂z

+
n∑

j,k=1

Γijkφjφk

}
∂

∂xi
,

where Γijk are the Christoffel symbols ofM (see, for example [12]). The section φ is holomorphic,
according to (1), if and only if

∇̃ ∂
∂z

(∑
i

φi
∂

∂xi

)
=
∑
i

{
∂φi
∂z

∂

∂xi
+ φi∇ ∂f

∂z

∂

∂xi

}

=
∑
i

{
∂φi
∂z

∂

∂xi
+ φi∇�

j φj
∂

∂xj

∂

∂xi

}

=
∑
i

{
∂φi
∂z

+
∑
j,k

Γijkφjφk

}
∂

∂xi
= 0,

thus if and only if
∂φi
∂z

+
n∑

j,k=1

Γijkφjφk = 0, i = 1, . . . , n. (2)

From (2) and the expression of the tension field we have that 4λ−2
(∇̃ ∂

∂z
φ
)

= τ (f), and thus
f : Σ → M is harmonic if and only if φ is a holomorphic section of E. Now, since a conformal
map from a surface to a Riemannian manifold is harmonic if and only if it is a minimal immersion
(see, for example [13]), we conclude that a conformal immersion is minimal if and only if φ is
a holomorphic section of E.

Equations (2) can be seen as second order equations in the fi, and from this point of view
they are formally very similar to the equations of geodesics. If we look at (2) as a system of
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first order differential equations in the φi, where Γ’s are computed in fi(z) = 2Re
∫ z
z0
φi dz, it

can be written as:
∂φi
∂z

+ 2
∑
j>k

ΓijkRe(φjφk) +
∑
j

Γijj |φj |2 = 0, i = 1, . . . , n.

This implies that ∂φi

∂z ∈ R, and from
∂φi
∂z

=
1
2

(
∂Re(φi)
∂u

− ∂Im(φi)
∂v

)
+
i

2

(
∂Re(φi)
∂v

+
∂Im(φi)
∂u

)
,

we conclude that
∂Re(φi)
∂v

+
∂Im(φi)
∂u

= 0.

The latter equation ensures that (locally) the 1-forms φidz don’t have real periods. Therefore
we have the following:
Theorem 2.1 (Weierstrass representation) Let (Mn, g) be a Riemannian manifold and
{x1. . . . , xn} local coordinates. Let φj , j = 1, . . . , n, be complex-valued functions in an open
simply connected domain Ω ⊂ C which are solutions of (2). Then the map

fj(u, v) = 2Re
(∫ z

zo

φj dz

)

is well defined and defines a minimal conformal immersion if and only if the following conditions
are satisfied :

• ∑n
j,k=1 gjkφjφk �= 0;

• ∑n
j,k=1 gjkφjφk = 0.

If M = R
n with the flat metric, Equations (2) are just the Cauchy–Riemann equations.

But, in general, it is quite hard to find explicit solutions. One way of finding solutions is to
look at manifolds where (2) reduces to a system of partial differential equations with constant
coefficients. The first try is, naturally, the case where M is a Lie group, and this will be
considered in the next section. In any case, the existence of a Weierstrass representation may
be useful for theoretical results. For example, at least if the metric is analytic, the Cauchy
problem for (2) has a solution. In particular, for any point p ∈ M and any 2-plane π ⊆ TpM ,
there is a minimal surface through p with tangent plane π.

3 Weierstrass Representation on Lie Groups
In this section we will discuss the case of maps f : Σ → G, where G is a Lie group endowed
with a left invariant metric g. Let Ei, i = 1, . . . , n, be a basis of left invariant vector fields, and
let ∂

∂xi
, i = 1, . . . , n, be the coordinates vector fields in some chart U of G. Then in some open

set Ω ⊂ Σ the section φ = ∂f
∂z ∈ Γ(f∗(TG) ⊗ C) can be decomposed either with respect to the

coordinates vector fields or with respect to the left invariant vector fields:

φ =
n∑
i=1

φi
∂

∂xi
=

n∑
i=1

ψiEi,

for some complex functions φi, ψi : Ω → C. Moreover, there exists an invertible matrix A =
(Aij), with function entries Aij : f(Ω) ∩ U → R, i, j = 1, . . . , n, such that

φi =
∑
j

Aijψj . (3)

Now let Ckij be the structure’s constants of the Lie algebra g of G, that is, [Ei, Ej ] = CkijEk.
The Kozul formula for the Levi–Civita connection is:

2g(∇Ei
Ej , Ek) = Ckij − Cijk + Cjki := Lkij . (4)

Using the expression of φ with respect to the left invariant vector fields and (4) we get

∇̃ ∂
∂z

(∑
i

ψiEi

)
=
∑
i

{
∂ψi
∂z

Ei + ψi∇�
j ψjEj

Ei

}
=
∑
i

{
∂ψi
∂z

+
1
2

∑
j,k

Lijkψjψk

}
Ei.
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This means that the section φ is holomorphic if and only if
∂ψi
∂z

+
1
2

∑
j,k

Lijkψjψk = 0, i = 1, . . . , n. (5)

From Theorem 2.1 we have:

Theorem 3.1 Let ψj , j = 1, . . . , n, be complex-valued functions defined in a open simply
connected set Ω ⊂ C, such that the following conditions are satisfied :

• ∑i ψiψi �= 0;
• ∑i ψi

2 = 0;
• ψj are solutions of (5).

Then, the map f : Ω → G, defined by

fi(u, v) = 2Re
(∫ z

zo

∑
j

Aijψj dz

)
,

is a conformal minimal immersion.

If the dimension of M is three, as in the case of minimal surfaces in R
3, we can give a

simple geometric description of almost all solutions of the equation
∑3
i=1 ψi

2 = 0. The idea is
the following. From

∑3
i=1 ψ

2
i = 0 we have that

(ψ1 − iψ2)(ψ1 + iψ2) = −ψ2
3 ,

which suggests the definition of two new complex functions

G :=

√
1
2
(ψ1 − iψ2), H :=

√
−1

2
(ψ1 + iψ2). (6)

The functions G and H are single-valued complex functions which, for suitably chosen
square roots, satisfy ⎧⎪⎨

⎪⎩
ψ1 = G2 −H2,

ψ2 = i(G2 +H2),
ψ3 = 2GH.

The induced metric is then
ds2 = 2(|H|2 + |G|2)2(du2 + dv2),

and the Gauss map takes the form

N =
1

|H/G|2 + 1
[2Re(H/G)E1 + 2Im(H/G)E2 + (|H/G|2 − 1)E3].

If π : S
2(1) \ {0, 0, 1} → R2 is the stereographic projection from the north pole, then π ◦N =

(ReH/G, ImH/G). If we identify R
2 with the complex plane C and extend the π to a map

π̃ : S
2(1) → C ∪ {∞}, with π̃(0, 0, 1) = ∞, then

π ◦N = H/G.

This means that the map g = H/G can be identified with the Gauss map of f .

Remark 3.2 Equations (5) have the advantage, with respect to (2), to be partial differential
equations with constant coefficients. However, this just shifts the difficulties, because after
finding explicit solutions of (5), we have to compute the φi, and, for this, we have to compute
the Aij along the fi. In the next sections we will study two cases where these difficulties may
be overcome.

4 Minimal Surfaces in the Heisenberg Group H3

The 3-dimensional Heisenberg group H3 is the two-step nilpotent Lie group standardly repre-
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sented in Gl3(R) by ⎡
⎢⎢⎣

1 x1 x3 +
1
2
x1x2

0 1 x2

0 0 1

⎤
⎥⎥⎦ ,

with xi ∈ R. Endowed with the left-invariant metric

g = dx2
1 + dx2

2 +
(
dx3 +

1
2
x2dx1 − 1

2
x1dx2

)2

, (7)

(H3, g) has a rich geometric structure. In fact its group of isometries is of dimension 4, which
is the maximal possible dimension for a non-constant curvature metric on a 3-manifold. Also,
from the algebraic point of view, (H3, g) is a 2-step nilpotent Lie group, i.e. “almost Abelian”.
An orthonormal basis of left-invariant vector fields is given, with respect to the coordinates
vector fields, by ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

E1 =
∂

∂x1
− x2

2
∂

∂x3

E2 =
∂

∂x2
+ x1

2

∂

∂x3

E3 =
∂

∂x3

, (8)

and the non zero Lkij ’s are

L3
12 = 1, L3

21 = −1, L2
13 = −1, L2

31 = −1, L1
23 = 1, L1

32 = 1.
Let f : Ω ⊂ C → H3 be a smooth immersion and let φ = ∂f

∂z =
∑
φi

∂
∂xi

=
∑
ψiEi. From the

expressions of the left invariant vector fields (8), we have

φi =
∑
j

Aijψj ,

where A = (Aij) is the matrix

A =

⎡
⎢⎢⎣

1 0 0

0 1 0

−x2

2
x1

2
1

⎤
⎥⎥⎦ .

According to (5) the section φ = ψ1E1 + ψ2E2 + ψ3E3 is holomorphic if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ψ1

∂z
+ Re(ψ2ψ3) = 0,

∂ψ2

∂z
− Re(ψ1ψ3) = 0,

∂ψ3

∂z
− iIm(ψ1ψ2) = 0.

(9)

Remark 4.1 System (9) was found also in [14] using the Lie-algebra formulation of the
harmonic map equation.

Therefore, in this context, Theorem 3.1 assumes the following form:
Theorem 4.2 Let ψj , j = 1, . . . , 3, be complex-valued functions defined in a simply connected
domain Ω ⊂ C, such that the following conditions are satisfied :

• ∑i=1 ψiψi �= 0;
• ∑i=1 ψi

2 = 0;
• ψj are solutions of (9).

Then, the map f : Ω → H3, defined by

fi(u, v) = 2Re
(∫ z

zo

∑
j

Aijψj dz

)
,
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is a conformal minimal immersion.
Let us now write Equations (9), which ensure that φ is a holomorphic section, in terms of

the functions G and H defined by (6), that is,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

G
∂G

∂z
−H

∂H

∂z
= Im(GH)(|G|2 − |H|2),

i

(
G
∂G

∂z
+H

∂H

∂z

)
= Re(GH)(|G|2 − |H|2),

H
∂G

∂z
+G

∂H

∂z
= − i

2
(|G|4 − |H|4).

Note that the third equation is a combination of the first two. In fact, multiplying the first
times i and adding the second we get

2i
∂G

∂z
= (|G|2 − |H|2)H, (10)

while, subtracting i times the first from the second yields

2i
∂H

∂z
= (|G|2 − |H|2)G. (11)

It is now a straightforward computation to verify that the third equation is given by (10)
multiplied by H plus (11) multiplied by G. Therefore, Theorem 4.2 can be written as:
Theorem 4.3 Let G and H be complex-valued functions defined in a simply connected domain
Ω ⊂ C such that :

• G and H are not identically zero;
• G and H are solutions of (10) and (11).

Then the map f : Ω → H3, defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f1 = 2Re
(∫ z

zo

(G2 −H2) dz
)
,

f2 = 2Re
(
i

∫ z

zo

(G2 +H2) dz
)
,

f3 = 2Re
(∫ z

zo

(
2GH − f2

2
(G2 −H2) + i

f1
2

(G2 +H2)
)
dz

)
,

is a conformal minimal immersion.
We observe that in this case we do not have the problem discussed in Remark 3.2, since we

obtain the first two functions by direct integration and substituting in the third equation we
obtain the third function by a direct integration.

We shall now discuss some examples.
Example 4.4 (Vertical planes) Let G and H be two holomorphic solutions of (10) and (11),
i.e. ∂G

∂z = 0 and ∂H
∂z = 0. Then we must have |G| = |H|. Thus, from standard arguments of

complex analysis, H and G differ by a unitary complex number, that is, H = eiθG, θ ∈ R. The
corresponding minimal immersion f : C → H3 is given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

f1 = 2Re((1 − e2iθ)G̃)
f2 = 2Re(i(1 + e2iθ)G̃)

f3 = 2Re
(∫ z

zo

[
2eiθG2 − f2

2
(1 − e2iθ)G2 + i

f1
2
G2(1 + e2iθ)

]
dz

)
,

where G̃ =
∫ z
zo
G2. A simple calculation gives cos θf1 + sin θf2 = 0, thus the image of the

immersion lies in a “plane” parallel to the x3-axis, which forms an angle θ with the plane
x1 = 0. In this example the Gauss map g = H/G = eiθ has rank zero. These are the only
minimal surfaces of H3 with Gauss map of rank zero.
Example 4.5 (The saddle-type surface) We shall now discuss the case where G andH are two
purely imaginary functions depending only on one variable, that is G(u, v) = il(v), H(u, v) =
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ih(v), where l and h are two smooth real-valued functions defined in a open subset of R. Since
we can assume that |H| �= |G|, otherwise we are in the previous example, from (10) and (11),
we get

∂G

∂z
G =

∂H

∂z
H. (12)

Replacing the expressions of G and H in (12) gives ll′ = hh′, where with ′ we denote the
derivative with respect to v. So there exists a function q(v) such that l =

√
q + a and h =

√
q − a

for some constant a ∈ R. The function q is determined by the condition that G and H satisfy
(10) and (11), that is,

q′ = 4a
√
q2 − a2. (13)

Then φ1 = (G2 −H2) = −2a, φ2 = i(G2 +H2) = −2iq and, by integration, we get:{
f1 = −4au,

f2 = 4Q(v),
where Q(v) is a primitive function of q(v). To calculate f3, first note that

φ3 = 2GH − f2
2

(G2 −H2) + i
f1
2

(G2 +H2) = −2
√
q2 − a2 + 4aQ+ i4auq. (14)

Now, by integration of (13), we find that
√
q2 − a2 = 4aQ. Substituting this in (14) gives

φ3 = −4aQ+ i4auq.
Then, the corresponding immersion f : C → H3 is given by⎧⎪⎨

⎪⎩
f1(u, v) = −4au,
f2(u, v) = 4Q(v),

f3(u, v) = −8auQ(v).

It follows that the image of the immersion lies on the graph of the function x3 = 1
2x1x2. This is

a ruled surface of saddle type and the rank of its Gauss map is 1. In fact g = H/G = h(v)/l(v)
depends only on one parameter. It is interesting to note that the only minimal surfaces with
Gauss map of rank 1 in the Heisenberg group are the ruled minimal surfaces and that they can
be explicitly described (see [15]).
Example 4.6 (Helicoids) In this example we describe a minimal surface with Gauss map of
rank 2. Since the Gauss map is g = H/G we can choose for G and H two functions which are
the product of a function depending on one variable times a complex unit function depending
on the other variable, that is G(u, v) = e−iv/2l(u), H(u, v) = ieiv/2h(u), where l and h are two
smooth functions defined in a open subset of R. Equation (12) gives:

l2 + (l2)′ = −h2 + (h2)′. (15)
Then there exists a function ρ(u) such that l =

√
ρ′ − ρ/2 and h =

√
ρ′ + ρ/2 are solutions of

(15). Using (10) and (11) we obtain that ρ is a solution of the following differential equation:

ρ′′ − ρ = ρ
√

(ρ′)2 − ρ2,

which is equivalent to √
(ρ′)2 − ρ2 =

1
2
ρ2 + c c ∈ R.

The corresponding minimal immersion f : C \ {0} → H3 is given by⎧⎪⎨
⎪⎩

f1(u, v) = ρ(u) cos v,

f2(u, v) = ρ(u) sin v,
f3(u, v) = cv + b, b ∈ R.

(16)

If c �= 0, (16) gives a minimal parametrization of a helicoid, while, if c = 0, (16) gives the
minimal parametrization of the horizontal plane x3 = b.
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Example 4.7 (Catenoid-type surface) In this example, we give the Weierstrass functions G
and H for the Catenoid-type surface described in [6]. Let

h =

√
g2 + 4
g2 − 4

, g2 > 4,

where g = g(u) is a real-valued function which is a solutions of the ordinary differential equation

g′2 =
g2(g4 − 16) − 4

g2 − 4
.

Then the functions

H =
1
2
ei(v+l/2)

√
g′ + 2g(1 + il′/2), G =

1
2
e−i(v+l/2)

√
g′ − 2g(1 + il′/2),

with l = l(u) a real-valued function, are solutions of (10) and (11) if l′ = 2h
g2+4 . The correspond-

ing φ’s are ⎧⎪⎨
⎪⎩

φ1(u, v) = 1/2[g′ cos(l + 2v) − gl′ sin(l + 2v) + 2ig sin(l + 2v)],

φ2(u, v) = 1/2[g′ sin(l + 2v) + gl′ cos(l + 2v) − 2ig cos(l + 2v)],
φ3(u, v) = h/2.

Finally, after integration, we get the minimal parametrisation⎧⎪⎨
⎪⎩

f1(u, v) = g cos(l + 2v),
f2(u, v) = g sin(l + 2v),

f3(u, v) = h̃,

(17)

where h̃ is a primitive of h. The parametrization (17) is exactly, up to a change of coordinates,
the parametrisation of the minimal Catenoid of revolution (about the x3-axes) described in [6].

5 Minimal Surfaces in H
2 × R

Let H
2 be the hyperbolic plane {(x1, x2) ∈ R

2 : x2 > 0} endowed with the metric, of constant
Gauss curvature −1, gH = (dx2

1 +dx2
2)/x2

2. The hyperbolic plane H
2, with the group structures

derived by the composition of proper affine maps, is a Lie group and the metric gH is left
invariant. We can then consider H

2 ×R as a Lie group with the product structure and the left
invariant metric

g =
dx2

1 + dx2
2

x2
2

+ dx2
3.

With respect to the left invariant metric g, an orthonormal basis of left invariant vector fields
is

E1 = x2
∂

∂x1
, E2 = x2

∂

∂x2
, E3 =

∂

∂x3
.

In this case the matrix defined in (3) takes the form

A =

⎛
⎜⎝

x2 0 0

0 x2 0
0 0 1

⎞
⎟⎠ ,

while the non zero Lkij are L1
12 = −2, L2

11 = 2. We then have the following:

Theorem 5.1 Let ψj , j = 1, . . . , 3, be three complex-valued functions defined in a simply
connected domain Ω ⊂ C, such that the following conditions are satisfied :

• ∑i=1 ψiψi �= 0;
• ∑i=1 ψi

2 = 0;
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• ψ3 is holomorphic and ψ1, ψ2 are solutions of the system⎧⎪⎨
⎪⎩

∂ψ1

∂z
− ψ1ψ2 = 0,

∂ψ2

∂z
+ ‖ψ1‖2 = 0.

(18)

Then the map f : Ω → H
2 × R given by

fi(u, v) = 2Re
(∫ z

zo

∑
j

Aijψj dz

)

defines a conformal minimal immersion.

Proof According to (5) the section φ = ψ1E1 + ψ2E2 + ψ3E3 is holomorphic if and only if⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ψ1

∂z
− ψ1ψ2 = 0,

∂ψ2

∂z
+ ‖ψ1‖2 = 0,

∂ψ3

∂z
= 0.

Then the theorem follows from Theorem 3.1.
If we put f̃2 = 2Re

∫ z
zo
ψ2 dz, the minimal immersion becomes

f(u, v) =
(

2Re
∫ z

zo

ef̃2 ψ1 dz, e
f̃2 , 2Re

∫ z

zo

ψ3 dz

)
.

Example 5.2 If ψ2 is a holomorphic function, then from (18) we have that ψ1 must be
identically zero and the corresponding immersion is the minimal parametrization of the vertical
planes x1 = constant. If ψ1 and ψ2 are not holomorphic, then (18) implies that ψ2

1 + ψ2
2 is

holomorphic. The latter condition is surely satisfied if ψ2
1 + ψ2

2 = a for some constant a ∈ R.
Let examine the following cases:

a = 0 : Then, from ψ2
1 + ψ2

2 + ψ2
3 = 0, we have that ψ3 = 0 and the corresponding

immersion is the minimal parametrization of the horizontal planes x3 = constant. These are,
in fact, totally geodesic surfaces.

a = −1 : In this case, decomposing ψ1(u, v) = a1(u, v)+ ia2(u, v) and ψ2(u, v) = a3(u, v)+
ia4(u, v) with respect to their real and imaginary parts, the condition ψ2

1 +ψ2
2 = −1 reduces to

the following system: {
a2
1 − a2

2 + a2
3 − a2

4 = −1,

a1a2 + a3a4 = 0.
(19)

Choosing the solution {
a1(u, v) = sin(2v)a4(u, v),
a3(u, v) = − sin(2v)a2(u, v),

of the second equation of (19), then, from (18), the functions a1 and a2 are solutions of(
∂a1

∂u
− ∂a2

∂v

)(
∂a1

∂v
+
∂a2

∂u

)
= 4a1a2.

A solution of the latter equation is

a1 =
2 (cos(2u) + sin(2 v)) tan(2 v)

2 − sin(2u− 2 v) + sin(2 (u+ v))
; a2 =

2 sin(2u)
−2 + sin(2u− 2 v) − sin(2 (u+ v))

.
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Finally, after integration, the immersion f(u, v) = (f1(u, v), f2(u, v), f3(u, v)) becomes:

f1(u, v) =
2 sin(2u) tan(v)

sin(2u)2 tan(v)2 + (1 + cos(2u) tan(v))2
,

f2(u, v) =
1 − tan(v)2

sin(2u)2 tan(v)2 + (1 + cos(2u) tan(v))2
,

f3(u, v) = 2u.
Let α̃ : I → H

2 be the standard isometry from the hyperbolic disc I = {(x, y) ∈ R
2 : x2+y2 < 1}

to H
2, and define α : I × R → H

2 × R by α(x, y, z) = (α̃(x, y), z). Then the immersion f is
the composition α ◦ f̃ where f̃(u, v) = (tan v cos(2u), tan v sin(2u), 2u) is the immersion of a
minimal helicoid in I × R described in [9].
Remark 5.3 (Futher investigations) We would like to point out that some of the basic
questions that have been solved for the Weierstrass representation of minimal surfaces in R

3

are still without an answer for the Weierstrass representation in H3 and H
2 × R. Among these

questions are:
• An analysis of the non simply connected case;
• The application of the Weierstrass representation formula to the Berstein problem;
• The research of new examples.
Moreover, we believe that our method can be applied to other three-dimensional manifolds.

In particular, using the recent study of Harold Rosenberg of minimal surfaces in S
2 × R [16],

we shall deal, in a forthcoming paper, with the Weierstrass representation formula of minimal
surfaces in S

2 × R.
Acknowledgements The authors wish to thank the referee for his comments and suggestions
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