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Abstract In this paper, we establish a Rosenthal-type inequality of the maximum of partial sums for
p~-mixing random fields. As its applications we get the Hijeck—Reényi inequality and weak convergence
of sums of p~-mixing sequence. These results extend related results for NA sequence and p*-mixing
random fields.
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1 Introduction
Following the introductory concept of p~-mixing random variables in 1999 (see refs. [1]), Zhang
got moment inequalities of partial sums, central limit theorems, complete convergence and the
strong law of large numbers (see refs [1-3]). Since p~-mixing random variables include NA and
p*-mixing random variables, which have a lot of applications, their limit properties have aroused
wide interest recently. In this paper, we obtain a Rosenthal-type inequality of the maximum of
partial sums, the Hijeck—Renyi inequality and weak convergence of sums of p~-mixing sequence
under the Lindeberg condition, which develop the results in refs [1-3]. Now we introduce some
definitions as follows:
Definition 1.1 [4] A sequence {Xj;k € N} is called negatively associated (N A) if for every
pair of disjoint subsets S, T of N,
Cov{f(Xizi€ S5),g(X;;j€T)} <0,
whenever f,g € €,%€ is a class of functions which are coordinatewise increasing.
Definition 1.2 [1] A sequence {Xy;k € N} is called p*-mizing if
p*(s) = sup{p(S,T);S,T C N,dist(S,T) > s} — 0(s — c0),
where
p(S,T) =sup{|E(f — Ef)(g— Eg)/(| f = Ef ll2Il g — Eg ll2)|; f € L2(0(5)), 9 € L2(a(T))}.
Definition 1.3 [1] A sequence {Xy; k € N} is called p~-mizing if
p~(5) = sup{p~ (S,T); $,T C N, dist($,T) > s} — 0 (s — o),
where
Cov{f(Xi;i € 5),9(X;;5 € T)}
VVar{f(X;;i € S)}Var{g(X;;j € T)}
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It is easy to see that {Xj;k € N} is negatively associated if and only if p~(s) = 0 for
s > 1. Tt is obvious that p~(s) < p*(s), so p~-mixing is weaker than p*-mixing. In the past
several years, many limit results for NA sequences and p*-mixing fields were obtained (see refs
[5-12]). Peligrad [6] studied the importance of the condition lim, . p*(n) < 1 in estimating
the moments of partial sums or the maximum of partial sums for p*-mixing fields. In this paper,
we consider the condition

1\ 2
lim p~(n) <7, 0<r< (6—) , P> 2. (1)

n—oo p
The following two properties of p~-mixing are used in the next sections:

Property P1 [1] A subset of a p~-mixing field {X;};>1 with mixing coefficients p~(s) is
also p~-mixing with coefficients not greater than p=(s).

Property P2 [1] Increasing functions defined on disjoint subsets of a p~ -mixing field {X;};>1
with mixing coefficients p~(s) are also p~-mixing with coefficients not greater than p=(s).

2 Result

Theorem 2.1  For a positive integer N > 1, positive real numbers p > 2 and 0 <r < (%)g,

if {Xi}i>1 is a sequence of random variables with py, < r, with EX; = 0 and E|X;|P < oo for
every i > 1, then for all n > 1, there is a positive constant D = D(p, N,r) such that

i:Xj ’ < D(imxivﬂ + (ZEX2> 5).
j=1 i=1 i=1

This theorem is a basic tool in establishing various almost-sure results for sums of dependent
random variables.

FE max
1<i<n

Corollary 2.1  For a positive integer N > 1 and 0 < r < 11—2, {Xi}ti>1 is a sequence of

random variables with py < r, with EX; = 0 and E|X;|* < oo for every i > 1. If {by,n > 1}
s a positive nondecreasing real number sequence, then for e > 0, there is a positive constant C'

such that
k

bi > (Xi— EX;)

P<max
E
=1

k<n

n 0_2
> e) <CY
i=1 ¢

where 0? = VarX; fori > 1.

In this paper we shall use our maximal inequality to establish the functional form of the
central limit theorem.

For sequence {X;};>1 is a sequence of square integrable (EX? < o) centered (EX; = 0)
random variables, we denote o2 = Var(>_"_, X;) and by Cov(X;, X;)~ = (Cov(X;, X;))”. And
define, for 0 <t <1,

o2
vp(t) = inf{m :1<m<n, J’” > t} and W, (t) =

2
n

vn(t
Zi:(l : Xi.

On

(2)

Theorem 2.2  Suppose that {X;}i>1 is a sequence of p~ -mizing centered and not all degen-
erated random variables with EX? < 0o,i > 1, which satisfies:

(1) thuanoo O'LQ Z|i—j|>r.i ji<n COV(XhXj)i — 0, as r — o0;

(ii) For every € >0, 2% Y 1| EXZI(|X;| > e0,) — 0, as n — oo;

v (t+0) yrap X

Z”"mu—w)()<oo,foral10§t<t+5§1.
var( S xi)
Then Wy (t) =4 W (t), where Wy, (t) is defined by (2) and W (t) denotes the standard Brownian
process on [0, 1].

(ii) limsup,,_
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Corollary 2.2 Suppose that {X;}i>1 is a weakly stationary p~ -mizing sequence with EXq, =0
and 0 < EX? < co. If 0% = Var(X1)+2 ) 1o, Cov(Xy, Xj) > 0 and > _po, |Cov(X1, Xi)| < oo,

then o2 /n — o2 and W, 2 W, where W,, and W are defined as in Theorem 2.2.

3 Proof
The proof of Theorem 2.1 uses the following lemmas. The first lemma is Lemma 1 in Bradley [5].

Lemma 3.1  Suppose 0 <r <1 and {X;1, Xs,..., Xn} s a family of square integrable centered
random variables such that for any nonempty subset,

Sc{L2....,n}, S*={1,2,...,n} -85, corr(ZXk, Z Xk> <.

keS keS*

Then E(Y ;4 Xir)? < 22300 EXZ.

Lemma 3.2  Assume {X;};>1 is a sequence of random variables with EX; = 0, E|X;|P < oo,
for some p > 2 and every i > 1. For some 0 < r < (&)%, assume p; < r (or for a positive

integer N, pyy < 1). Then for all n > 1, there is a positive constant D' =D (p,7) such that
E|S,|P <D (ZE|Xi|p + (ZEX?) )
i=1

i=1
and

P n n %
P < ! . |P 2 .
E max |S[" <D KEE%SA) +;E\XZ| +<;EX1> ]

Proof of Lemma 3.2  The proof of the first inequality is similar to the proofs of Lemma 3.3
in [2] and Theorem 2.1 in [1] with only some changes. The proof of the second inequality is
similar to the proof of Lemma A.2 in [11].

Lemma 3.3 For somep > 2, let 0 <r < (é)% be fized. Suppose {Y;}i>1 is a sequence of
square integrable centered random variables with p; < r. Then for alln > 1, there is a positive

constant K = K (p,r) such that Emaxi<i<p | E;Zl Y| < K\ /35, EY}.

Proof of Lemma 3.3 When Z?Zl EYj2 = oo or 0, the inequality is obvious.

Define _ .
1 n 3
>ul[e]).
=1 j=1

where the supremum is taken over all sequences Y := {Y;} of square integrable centered random
variables with p; ({Y;}) <7 and Y7, EY}? < oc.
Fix such a random sequence {Y;} and with loss of generality assume that Z;L:1 EYj2 =1.
By using Lemma 3.1, we have
] 2> 1/2
i=1

2V PRE D%
j=1 j=1 j=1
n i 1/2 n 1/2
C’Z(ZEYf) gcn<ZEYf> < 0.
i=1 " j=1 j=1

Let M be a positive integer that will be specified later. For 1 < j < n, define
(n) _ (_ag—1/2 , —-1/2 (n1) _ v (n) _ (n) (n2) _ v _ y(n1)
Y = (M2 v (v AMT2), Y oy py™) y ey oy,

1<i<n

apn = sup (E max
Y

n

<Y E

i=1

a, = F max
1<i<n

(s

IN

SO

D RARED R
j=1 j=1 j=1
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Since _
(n2) (n2) 1/2 2 _ 1/2
B max | 2 Y,"7| < 3B < M2 3T BYE = 3M 2,
=== j=1 j=1
we get
l : - (n1) 1/2
B | 20| < e |2 0| 30

j=1 j=1

To estimate Emaxi<i<n [ 2.5, Yj(nl) |, we shall use a blocking procedure.
Take mg = 0 and define the integers my, recursively by
: m nl 1
my = min {m tm> my_1, | Z E(YJ( ))2 > M}
J=mEg—1
Note that, if we denote by [ the number of integers produced by this procedure, i.e.: mg, mq,
...,my_1, we have

= k (n1)\2 -1
122 Z E(Y; )>7’

k=1j=mp_1+1

so that | < M.
We partition the sum Y77, Yj(nl) into partial sums > 7, Yj("l) = St Xy, where X, =
Z;Zcmk—ﬂrl }/j(nl)’ for1<k<l—1and Xi= Z?:mz—1+1 )/j(nl)’ for m 2z n.
Obviously
i k
E v"| <E X;|+E YO =1+ L.
e | 20 S P [ 2, X + P (e | 2L LD

We evaluate the I; and I above.
l l
1< 3 B < S (BXDA,
k=1 k=1

Since p; ({Yi}) < r < 1, by Property P2 we have pl_({Yi(nl)}) < r < 1. By Lemma 3.1, let
Ki>(147r)/(1—r), forall 1 <k<I, wehave

my 2 my
EX% _ E( Z Yj(nl)> <K, Z E(Yj(nl))Q.

j=mp_1+1 j=mp_1+1
By Cauchy—Schwarz inequality for sequences, we obtain

l my 1/2 n 1/2
RS (X BR) < tnan | L BrR] < o
k=1
To estimate Is we notice that

l
(I)* < ZE max
k=1

j=mpr_1+1 Jj=1
J (n1) 4
nl
>yl

mi_1<j<m
k—1<J] k t=mp1+1

By Lemma 3.2, we obtain

i Y;(nl)

t=mp_1+1
J
> nm

t=mp_1+1

4

E max
mp_1<j<mg

mp_1<j<mpg

- 5w (OS2 o))

< Ky {E‘l max
Jj=mg_1+1 Jj=mp_1+1

We estimate each term on the right-hand side of above inequality.
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By the definition of my, we have
mkfl

(n1)\2 _ 1
> BT
j=mr_1+1
By using the definition of Yk(”l), we obtain
mp—1 ) 4 mp—1 ( 4
(n1)\4 n1)\2
I S
j=mpg—1+1 j=mg—_1+1

To fixed {Y}z>1, let {Y,}Z>1 be a new random variable so that for i = my_1+1,...,mp—1, Y-/ =
Y;, otherwise Y- = 0; so by Property P1 we have pl{Yl} < r. By the deﬁn1t1on of Qn, We get

miyg— 1 4
(nl) (n1)\2
> ovfza( S pr) s
t=mp_1+1 Jj=mg_1+1
Overall, by the above considerations, we obtain

()" < Ky [M+%+J\l4]

Now let K3 = max{Kj, K2}; by our estimates for I and I5, we get

>y, >ov
=1 :

E* max
mp_1<j<mg

+3M1/?

N

FE max
1<i<n

FE max
1<i<n

< [(K3M)Y? + (Ks /M) an + (55K3/ M)/ + 3M/2,
Therefore, by the definition of a,,, we obtain
an < (Ks/M)Y*a, + (K3/? + 3)M'/? 4 (5K3/M)Y/*.
Now we select M = M (r) to be M = M(r) = [16K3] + 1; and since K3 > 1, we obtain
an < %" F K214 3K YA (14 KV ) 11 < %” 421K,

which implies the desired result.
Proof of Theorem 2.1  The conclusion of Theorem 2.1 is an easy consequence of Lemma 3.1
after a standard reduction procedure. Let M be the integer mentioned in Theorem 2.1 such
that py < r. We consider now N sequences of a random variable {Y;; : ¢ > 0},1 < j < N,
defined by Y;j = Xz'N+j-

Notice that for each ¢, the first interlaced mixing coefficient p; (Y) for the sequence {Yj; :
i > 0} is smaller than py < 7.

It is easy to see that

N k

max |5, <E max E XiNail-

1§m§n‘ m| < — 1<k<n/N | = W+
j= i=

By using Lemma 3.3 and Cauchyfschwarz inequality, we obtain

n/N 1/2
< <
Elgln?)é [Sm| - E1<I£37§/N‘ZX1N+J KZ (ZEX%N-H)
N n/N

1/2 n 1/2
< KNl/Q(ZZEXWﬂ) :KNl/Z(Zan) :

j=1 i=0 m=1
which implies the desired result in Theorem 2.1 by Lemma 3.2.

Proof of Corollary 2.1 Let S, = i (X; — EX;) for n > 1. Without loss of generality,
setting by = 0, we have

k k i k k
o= 3o n BB 5 (520, -y BB - S0,y KB
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Note that i Z?:l(bj —bj_1)=1,s0

k
Sk X, —FX;
— | >¢ep C{ max — | > €.
{ br | — 1< <k ; b; .
Therefore
k
{max — >5} C max max Z : 5}
1<k<n | by 1<k<n 1<j<k
i=j

7j—1
%

kX,»—EXi . — EX,
; 2 b;

i i=1

max
1<j<k<n

J
X, — EX;
_ > .
< {2557z
By Theorem 2.1 we get
no 2
P(max —>€)§C’ U—;,
1<k<n | by, b;

which implies the result in Corollary 2.1.
Proof of Theorem 2.2 By condition (ii), there exists a sequence of positive numbers €, — 0
such that = >°" | EX2I(|X;| > €,0,) — 0, as n — oo.

In the followmg proving process we take C as a positive number and define

X X; X;
Mni = (—€n) V (— A en> -F [(—Gn) Vv (— A en>} and  Qp; = — — Ny
o o

n n

Denote W) (t) = Z””(t) Nni and W)/ (t) = Zf"(lt) ©ni, Where v, (t) is defined as above. Notice
that W, (t) = W), (t) + W)/ (t). By Property P2, we can find that {n,; : i < n}ln>1, {¢ni :
i < n}p>1 are also sequences of p~-mixing centered square integrable random variables, so by
Theorem 2.1 and condition (ii) of Theorem 2.2, we can get

1 2 n 2
" 2 X; | X
E[sup W/ (#)]]" < E max (2:1%) < C;EI( o > ) =0, as n—oo.
j= i=

Therefore W)/ (t) converges weakly to 0 and the limiting distribution of W, (¢) is the same as
the limiting distribution of W) (¢) if the last one exists (i.e., W, (t) — W,,(t) 20 asn— 00).

It’s easy to verify that:

(1) Hmsup, o D) ji>rij<n COV(Mnis M)~ — 0, as 1 — o0;

(i)’ For every € >0, .1 | EnZ,I(|nmi| > €) — 0, n — oo;

(iil)" sup,, iy Var(n,:) < oo. 4

By lim,, o0 Var(31 | 7n;) = lim, o Var(}"1-; 2%) = 1 and Theorem 3.2 of Reference [3],
we get W(1) — N(0,1).

In order to prove that W/(t) — N(0,t), from the above analysis, we have to show only
that lim,, . E(ZV"(t) 77m)2 = ¢, which is equivalent to lim,_., E(>7{" Xi)2 = ¢. Let [|X]|
= (EX?)Y/2. Since

Un (t)
X;
> o

i=1

v (t)—1

X;
2 o

=1

<

9

P

by the definition of v,(t), this relation gives vt < || Z”"(t) & < WVt + H%H By the
Un (t) X ) _ t

condition (ii), we get lim,, o || =2 Xentw [| = 0. Then we get hmn_,oo B o
Next, we have to show that W’( ) has asymptotically uncorrelated increments, that is,

Tim_ Cov (W (1), Wi (t +6) ~ Wy (1)) = 0.
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By condition (iii)" and Theorem 2.1,

U (t+6) vy (t46)
Var( > ><c > Enn]<CZEvyn]<C
j:un(t)+1 vn ()41 j=1

Since €, — 0, we can take i,, — 00, such that €ntn — 0. Then
\COV(WZL(t),W’(t+5)— W ()

v (t)— Vn, (t+6) v (t) v (t+98)
< COV( Z Nnis Z nnj)‘ + ’Cov( Z Mnis Z 77@)’
Jj=vn (t) i=vp (t)—in+1 j=vn(t)+1
v (t)— Vn, (t46) — v (t) Vn, (t+6)
< Cp~ (in) +Cov( Z Tnis Y 77nj> + 0> Al DD nnj)‘
j=vn(t)+1 i=vp (t)—in+1 j=vn(t)+1
vn, (t4+8)
< Cp_ (ZTL) + Z COV(nma nnj)_ + Gnin Z Mg
[i—j1>in,i,5<n J=va(t)+1

) c _ .
< Cp~ (in) + — Z Cov(X;, X;)” + Cepin — 0,
" |ij|2in,d5<n
as n — oo uniformly in ¢, §, with 0 < ¢ <t 4+ 6 < 1. So it’s easy to know that, uniformly in ¢,

S, with0<t<t+6<1,

Vn, (t46) 2 Vn (t46) X, 2
lim E( > nm) = lim E< > —1) = 4.

On
i=vp () i=vp (t)

Then, by condition (iii), we can get

v (t+8) "/n(t"r‘s) EX2 E vn (t+9) X
R R e R )
i=vp (t) n n

Finally, we prove that W/ n > 1 is tight to finish the proof. According to [13, Theorem 7.3],
we have to prove only that
I = hH%)hTILn—»bolipP< ‘Smtz‘xx W) (s) — W, (t)] > e) — 0.
In order to prove it, we shall use Theorem 2.1 with p = 4 and the property of 7,;. Then
(3]
L= hm hrrL[LSolipP(iLJOit5<sn<l%§H)5 W/ (s) — W, (id)] > e>
(5]
< hrr(l) ll’rl;,rl—»SOlip zz P sonax (W) (s) — W, (id)| > e)
(3] k 4
< C'lim lim sup Zz: E ( kguir(l(zﬁl)é) Z : nnj)

—0 p—oo (

[3] vn((i+1)0) vn((i+1)8) 2
4
<C hrr%) lim sup E [ E Eny,; + ( E Enn]) }

e =0 j=vn(id) Jj=vn(id)
(3]

v, ((i41)8) vn((i41)0) 2
< Cl1m hmbupz [en Z EU,QU' + ( Z E%;) }

6—0
e =0 Jj=vn(i8) J=vn(i6)
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(3]
< 5 <
C hr% llririsolipz (end +0°) < C hrr(l) hrrljup(en +9) =

i=0
Proof of Corollary 2.2 For the sequence is weakly stationary, then

n—1 n
oG o) £

=1 j=i+1 =1 j=i+1

Ny

EX?+2 X, =EX?+2) EX|X; -2 -EX, X,.

1 + ZZ; 1 + lz; 1 Z n 1

Since Y2, |Cov (X1, X})| < 0o, then we have )2, Cov(Xy, X;) < co. By the Kronecker
lemma, we get >, LEX;X; — 0, as n— oo. So 02/n — o>

Now, in order to prove this corollary, it’s enough to verify that the three conditions of
Theorem 2.2 are satisfied.

It’s obvious that Y, , Cov(X1, X})~ < 0o, then

1 ~ C n—r ~

— Z Cov(X;, X;)” < EZ(n—r—I—l—k‘)Cov(Xl,XkH) — 0,as n — 0.

™ Ji—j|>ri,i<n k=0

For every € > 0, by EX? < oo, it’s easy to get Condition (ii).

For the sequence is stationary, so it’s enough to show limsup,, .. %ﬁr(}(g < 00, which

2
. . . ag
is obvious by limy, . 2= = 2.
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