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of sums of ρ−-mixing sequence. These results extend related results for NA sequence and ρ∗-mixing

random fields.

Keywords ρ−-mixing, ρ∗-mixing, NA, rosenthal type inequalities, weak convergence

MR(2000) Subject Classification 60E15, 60F16

1 Introduction
Following the introductory concept of ρ−-mixing random variables in 1999 (see refs. [1]), Zhang
got moment inequalities of partial sums, central limit theorems, complete convergence and the
strong law of large numbers (see refs [1–3]). Since ρ−-mixing random variables include NA and
ρ∗-mixing random variables, which have a lot of applications, their limit properties have aroused
wide interest recently. In this paper, we obtain a Rosenthal-type inequality of the maximum of
partial sums, the Hájeck–Rènyi inequality and weak convergence of sums of ρ−-mixing sequence
under the Lindeberg condition, which develop the results in refs [1–3]. Now we introduce some
definitions as follows:
Definition 1.1 [4] A sequence {Xk; k ∈ N} is called negatively associated (NA) if for every
pair of disjoint subsets S, T of N,

Cov{f(Xi; i ∈ S), g(Xj; j ∈ T )} ≤ 0,

whenever f, g ∈ C , C is a class of functions which are coordinatewise increasing.
Definition 1.2 [1] A sequence {Xk; k ∈ N} is called ρ∗-mixing if

ρ∗(s) = sup{ρ(S, T ); S, T ⊂ N, dist(S, T ) ≥ s} → 0 (s → ∞),
where
ρ(S, T ) = sup{|E(f − Ef)(g − Eg)/(‖ f − Ef ‖2‖ g − Eg ‖2)|; f ∈ L2(σ(S)), g ∈ L2(σ(T ))}.

Definition 1.3 [1] A sequence {Xk; k ∈ N} is called ρ−-mixing if
ρ−(s) = sup{ρ−(S, T ); S, T ⊂ N, dist(S, T ) ≥ s} → 0 (s → ∞),

where

ρ−(S, T ) = 0 ∨ sup
{

Cov{f(Xi; i ∈ S), g(Xj; j ∈ T )}√
Var{f(Xi; i ∈ S)}Var{g(Xj ; j ∈ T )} ; f, g ∈ C

}
.
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It is easy to see that {Xk; k ∈ N} is negatively associated if and only if ρ−(s) = 0 for
s ≥ 1. It is obvious that ρ−(s) ≤ ρ∗(s), so ρ−-mixing is weaker than ρ∗-mixing. In the past
several years, many limit results for NA sequences and ρ∗-mixing fields were obtained (see refs
[5–12]). Peligrad [6] studied the importance of the condition limn→∞ ρ∗(n) < 1 in estimating
the moments of partial sums or the maximum of partial sums for ρ∗-mixing fields. In this paper,
we consider the condition

lim
n→∞ ρ−(n) ≤ r, 0 ≤ r <

(
1
6p

) p
2

, p ≥ 2. (1)

The following two properties of ρ−-mixing are used in the next sections:

Property P1 [1] A subset of a ρ−-mixing field {Xi}i≥1 with mixing coefficients ρ−(s) is
also ρ−-mixing with coefficients not greater than ρ−(s).

Property P2 [1] Increasing functions defined on disjoint subsets of a ρ−-mixing field {Xi}i≥1

with mixing coefficients ρ−(s) are also ρ−-mixing with coefficients not greater than ρ−(s).

2 Result

Theorem 2.1 For a positive integer N ≥ 1, positive real numbers p ≥ 2 and 0 ≤ r < ( 1
6p )

p
2 ,

if {Xi}i≥1 is a sequence of random variables with ρ−N ≤ r, with EXi = 0 and E|Xi|p < ∞ for
every i ≥ 1, then for all n ≥ 1, there is a positive constant D = D(p, N, r) such that

E max
1≤i≤n

∣∣∣∣
i∑

j=1

Xj

∣∣∣∣
p

≤ D

( n∑
i=1

E|Xi|p +
( n∑

i=1

EX2
i

) p
2
)

.

This theorem is a basic tool in establishing various almost-sure results for sums of dependent
random variables.

Corollary 2.1 For a positive integer N ≥ 1 and 0 ≤ r < 1
12 , {Xi}i≥1 is a sequence of

random variables with ρ−N ≤ r, with EXi = 0 and E|Xi|2 < ∞ for every i ≥ 1. If {bn, n ≥ 1}
is a positive nondecreasing real number sequence, then for ε > 0, there is a positive constant C
such that

P

(
max
k≤n

∣∣∣∣ 1
bk

k∑
i=1

(Xi − EXi)
∣∣∣∣ ≥ ε

)
≤ C

n∑
i=1

σ2
i

b2
i

,

where σ2
i = VarXi for i ≥ 1.

In this paper we shall use our maximal inequality to establish the functional form of the
central limit theorem.

For sequence {Xi}i≥1 is a sequence of square integrable (EX2
i < ∞) centered (EXi = 0)

random variables, we denote σ2
n = Var(

∑n
i=1 Xi) and by Cov(Xi, Xj)− = (Cov(Xi, Xj))−. And

define, for 0 ≤ t ≤ 1,

νn(t) = inf
{

m : 1 ≤ m ≤ n,
σ2

m

σ2
n

≥ t

}
and Wn(t) =

∑νn(t)
i=1 Xi

σn
. (2)

Theorem 2.2 Suppose that {Xi}i≥1 is a sequence of ρ−-mixing centered and not all degen-
erated random variables with EX2

i < ∞, i ≥ 1, which satisfies :
(i) lim supn→∞

1
σ2

n

∑
|i−j|≥r,i,j≤n Cov(Xi, Xj)− −→ 0, as r → ∞;

(ii) For every ε > 0, 1
σ2

n

∑n
i=1 EX2

i I(|Xi| > εσn) −→ 0, as n → ∞;

(iii) lim supn→∞
�νn(t+δ)

νn(t) Var(Xi)

Var
(�νn(t+δ)

νn(t) Xi

) < ∞, for all 0 ≤ t < t + δ ≤ 1.

Then Wn(t) D⇒ W (t), where Wn(t) is defined by (2) and W (t) denotes the standard Brownian
process on [0, 1].
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Corollary 2.2 Suppose that {Xi}i≥1 is a weakly stationary ρ−-mixing sequence with EX1 = 0
and 0 < EX2

1 < ∞. If σ2 = Var(X1)+2
∑∞

k=2 Cov(X1, Xk) > 0 and
∑∞

k=2 |Cov(X1, Xk)| < ∞,

then σ2
n/n → σ2 and Wn

D⇒ W , where Wn and W are defined as in Theorem 2.2.

3 Proof

The proof of Theorem 2.1 uses the following lemmas. The first lemma is Lemma 1 in Bradley [5].
Lemma 3.1 Suppose 0 ≤ r < 1 and {X1, X2, . . . , Xn} is a family of square integrable centered
random variables such that for any nonempty subset,

S ⊂ {1, 2, . . . , n}, S∗ = {1, 2, . . . , n} − S, corr
( ∑

k∈S

Xk,
∑

k∈S∗
Xk

)
≤ r.

Then E(
∑n

k=1 Xk)2 ≤ 1+r
1−r

∑n
k=1 EX2

k .

Lemma 3.2 Assume {Xi}i≥1 is a sequence of random variables with EXi = 0, E|Xi|p < ∞,
for some p ≥ 2 and every i ≥ 1. For some 0 ≤ r < ( 1

6p )
p
2 , assume ρ−1 ≤ r (or for a positive

integer N, ρ−N ≤ r). Then for all n ≥ 1, there is a positive constant D
′
= D

′
(p, r) such that

E|Sn|p ≤ D
′
( n∑

i=1

E|Xi|p +
( n∑

i=1

EX2
i

) p
2
)

and

E max
1≤i≤n

|Si|p ≤ D
′
[(

E max
1≤i≤n

|Si|
)p

+
n∑

i=1

E|Xi|p +
( n∑

i=1

EX2
i

) p
2
]
.

Proof of Lemma 3.2 The proof of the first inequality is similar to the proofs of Lemma 3.3
in [2] and Theorem 2.1 in [1] with only some changes. The proof of the second inequality is
similar to the proof of Lemma A.2 in [11].
Lemma 3.3 For some p ≥ 2, let 0 ≤ r < ( 1

6p )
p
2 be fixed. Suppose {Yi}i≥1 is a sequence of

square integrable centered random variables with ρ−1 ≤ r. Then for all n ≥ 1, there is a positive

constant K = K(p, r) such that E max1≤i≤n |∑i
j=1 Yj | ≤ K

√∑n
j=1 EY 2

j .

Proof of Lemma 3.3 When
∑n

j=1 EY 2
j = ∞ or 0, the inequality is obvious.

Define

an = sup
Y

(
E max

1≤i≤n

∣∣∣∣
i∑

j=1

Yj

∣∣∣∣�
[ n∑

j=1

EY 2
j

] 1
2
)

,

where the supremum is taken over all sequences Y := {Yi} of square integrable centered random
variables with ρ−1 ({Yi}) ≤ r and

∑n
j=1 EY 2

j < ∞.

Fix such a random sequence {Yi} and with loss of generality assume that
∑n

j=1 EY 2
j = 1.

By using Lemma 3.1, we have

an = E max
1≤i≤n

∣∣∣∣
i∑

j=1

Yj

∣∣∣∣ ≤
n∑

i=1

E

∣∣∣∣
i∑

j=1

Yj

∣∣∣∣ ≤
n∑

i=1

(
E

∣∣∣∣
i∑

j=1

Yj

∣∣∣∣
2)1/2

≤ C
n∑

i=1

( i∑
j=1

EY 2
j

)1/2

≤ Cn

( n∑
j=1

EY 2
j

)1/2

< ∞.

Let M be a positive integer that will be specified later. For 1 ≤ j ≤ n, define

Y
(n)
j = (−M−1/2) ∨ (Yj ∧ M−1/2), Y

(n1)
j = Y

(n)
j − EY

(n)
j , Y

(n2)
j = Yj − Y

(n1)
j ,

so
i∑

j=1

Yj =
i∑

j=1

Y
(n1)
j +

i∑
j=1

Y
(n2)
j .
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Since

E max
1≤i≤n

∣∣∣∣
i∑

j=1

Y
(n2)
j

∣∣∣∣ ≤
n∑

j=1

E|Y (n2)
j | ≤ 3M1/2

n∑
j=1

EY 2
j = 3M1/2,

we get

E max
1≤i≤n

∣∣∣∣
i∑

j=1

Yj

∣∣∣∣ ≤ E max
1≤i≤n

∣∣∣∣
i∑

j=1

Y
(n1)
j

∣∣∣∣ + 3M1/2.

To estimate E max1≤i≤n |∑i
j=1 Y

(n1)
j |, we shall use a blocking procedure.

Take m0 = 0 and define the integers mk recursively by

mk = min
{

m : m > mk−1,

m∑
j=mk−1

E(Y (n1)
j )2 >

1
M

}
.

Note that, if we denote by l the number of integers produced by this procedure, i.e.: m0, m1,
. . . , ml−1, we have

1 ≥
l−1∑
k=1

mk∑
j=mk−1+1

E(Y (n1)
j )2 >

l − 1
M

,

so that l ≤ M .
We partition the sum

∑n
j=1 Y

(n1)
j into partial sums

∑n
j=1 Y

(n1)
j =

∑l
k=1 Xk, where Xk =∑mk

j=mk−1+1 Y
(n1)
j , for 1 ≤ k ≤ l − 1 and Xl =

∑n
j=ml−1+1 Y

(n1)
j , for ml ≥ n.

Obviously

E max
1≤i≤n

∣∣∣∣
i∑

j=1

Y
(n1)
j

∣∣∣∣ ≤ E max
1≤k≤l

∣∣∣∣
k∑

j=1

Xj

∣∣∣∣ + E max
1≤k≤l

(
max

mk−1<j<mk

∣∣∣∣
j∑

t=mk−1+1

Y
(n1)
t

∣∣∣∣
)

= I1 + I2.

We evaluate the I1 and I2 above.

I1 ≤
l∑

k=1

E|Xk| ≤
l∑

k=1

(EX2
k)1/2.

Since ρ−1 ({Yi}) ≤ r < 1, by Property P2 we have ρ−1 ({Y (n1)
i }) ≤ r < 1. By Lemma 3.1, let

K1 ≥ (1 + r)/(1 − r), for all 1 ≤ k ≤ l, we have

EX2
k = E

( mk∑
j=mk−1+1

Y
(n1)
j

)2

≤ K1

mk∑
j=mk−1+1

E(Y (n1)
j )2.

By Cauchy–Schwarz inequality for sequences, we obtain

I1 ≤ K
1/2
1

l∑
k=1

( mk∑
j=mk−1+1

E(Y (n1)
j )2

)1/2

≤ (K1M)1/2

[ n∑
j=1

E(Y (n1)
j )2

]1/2

≤ (K1M)1/2.

To estimate I2 we notice that

(I2)4 ≤
l∑

k=1

E max
mk−1<j<mk

∣∣∣∣
j∑

t=mk−1+1

Y
(n1)
t

∣∣∣∣
4

.

By Lemma 3.2, we obtain

E max
mk−1<j<mk

∣∣∣∣
j∑

t=mk−1+1

Y
(n1)
t

∣∣∣∣
4

≤ K2

[
E4 max

mk−1<j<mk

∣∣∣∣
j∑

t=mk−1+1

Y
(n1)
t

∣∣∣∣ +
mk−1∑

j=mk−1+1

E(Y (n1)
j )4 +

( mk−1∑
j=mk−1+1

E(Y (n1)
j )2

)2]
.

We estimate each term on the right-hand side of above inequality.
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By the definition of mk, we have
mk−1∑

j=mk−1+1

E(Y (n1)
j )2 ≤ 1

M
.

By using the definition of Y
(n1)
k , we obtain

mk−1∑
j=mk−1+1

E(Y (n1)
j )4 ≤ 4

M

mk−1∑
j=mk−1+1

E(Y (n1)
j )2 ≤ 4

M2
.

To fixed {Yi}i≥1, let {Y ′
i }i≥1 be a new random variable so that for i = mk−1+1, . . . , mk−1, Y

′
i =

Yi, otherwise Y
′
i = 0; so by Property P1 we have ρ1{Y ′

1} ≤ r. By the definition of an, we get

E4 max
mk−1<j<mk

∣∣∣∣
j∑

t=mk−1+1

Y
(n1)
t

∣∣∣∣ ≤ a4
n

( mk−1∑
j=mk−1+1

E(Y (n1)
j )2

)2

≤ a4
n

M2
.

Overall, by the above considerations, we obtain

(I2)4 ≤ K2

[
a4

n

M
+

4
M

+
1
M

]
.

Now let K3 = max{K1, K2}; by our estimates for I1 and I2, we get

E max
1≤i≤n

∣∣∣∣
i∑

j=1

Yj

∣∣∣∣ ≤ E max
1≤i≤n

∣∣∣∣
i∑

j=1

Y
(n1)
j

∣∣∣∣ + 3M1/2

≤ [(K3M)1/2 + (K3/M)1/4an + (5K3/M)1/4] + 3M1/2.

Therefore, by the definition of an, we obtain
an ≤ (K3/M)1/4an + (K1/2

3 + 3)M1/2 + (5K3/M)1/4.

Now we select M = M(r) to be M = M(r) = [16K3] + 1; and since K3 ≥ 1, we obtain

an ≤ an

2
+ K

1/2
3 (1 + 3K

−1/2
3 )4K

1/2
3 (1 + K

−1/2
3 /4) + 1 ≤ an

2
+ 21K3,

which implies the desired result.
Proof of Theorem 2.1 The conclusion of Theorem 2.1 is an easy consequence of Lemma 3.1
after a standard reduction procedure. Let M be the integer mentioned in Theorem 2.1 such
that ρ−N ≤ r. We consider now N sequences of a random variable {Yij : i ≥ 0}, 1 ≤ j ≤ N,
defined by Yij = XiN+j .

Notice that for each i, the first interlaced mixing coefficient ρ−1 (Y ) for the sequence {Yij :
i ≥ 0} is smaller than ρ−N ≤ r.

It is easy to see that

max
1≤m≤n

|Sm| ≤
N∑

j=1

max
1≤k≤n/N

∣∣∣∣
k∑

i=0

XiN+j

∣∣∣∣.
By using Lemma 3.3 and Cauchy–Schwarz inequality, we obtain

E max
1≤m≤n

|Sm| ≤
N∑

j=1

E max
1≤k≤n/N

∣∣∣∣
k∑

i=0

XiN+j

∣∣∣∣ ≤ K
N∑

j=1

( n/N∑
i=0

EX2
iN+j

)1/2

≤ KN1/2

( N∑
j=1

n/N∑
i=0

EX2
iN+j

)1/2

= KN1/2

( n∑
m=1

X2
m

)1/2

,

which implies the desired result in Theorem 2.1 by Lemma 3.2.
Proof of Corollary 2.1 Let Sn =

∑n
i=1(Xi − EXi) for n ≥ 1. Without loss of generality,

setting b0 = 0, we have

Sk =
k∑

i=1

bi
Xi − EXi

bi
=

k∑
i=1

( i∑
j=1

(bj − bj−1)
Xi − EXi

bi

)
=

k∑
j=1

(bj − bj−1)
k∑

i=j

Xi − EXi

bi
.
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Note that 1
bk

∑k
j=1(bj − bj−1) = 1, so{∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε

}
⊂

{
max

1≤j≤k

∣∣∣∣
k∑

i=j

Xi − EXi

bi

∣∣∣∣ ≥ ε

}
.

Therefore{
max

1≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε

}
⊂

{
max

1≤k≤n
max

1≤j≤k

∣∣∣∣
k∑

i=j

Xi − EXi

bi

∣∣∣∣ ≥ ε

}

=
{

max
1≤j≤k≤n

∣∣∣∣
k∑

i=1

Xi − EXi

bi
−

j−1∑
i=1

Xi − EXi

bi

∣∣∣∣ ≥ ε

}

⊂
{

max
1≤j≤k

∣∣∣∣
j∑

i=1

Xi − EXi

bi

∣∣∣∣ ≥ ε/2
}

.

By Theorem 2.1 we get

P

(
max

1≤k≤n

∣∣∣∣Sk

bk

∣∣∣∣ ≥ ε

)
≤ C

n∑
i=1

σ2
i

b2
i

,

which implies the result in Corollary 2.1.
Proof of Theorem 2.2 By condition (ii), there exists a sequence of positive numbers εn → 0
such that 1

σ2
n

∑n
i=1 EX2

i I(|Xi| > εnσn) → 0, as n → ∞.

In the following proving process we take C as a positive number and define

ηni = (−εn) ∨
(

Xi

σn
∧ εn

)
− E

[
(−εn) ∨

(
Xi

σn
∧ εn

)]
and ϕni =

Xi

σn
− ηni.

Denote W ′
n(t) =

∑νn(t)
i=1 ηni and W ′′

n (t) =
∑νn(t)

i=1 ϕni, where νn(t) is defined as above. Notice
that Wn(t) = W ′

n(t) + W ′′
n (t). By Property P2, we can find that {ηni : i ≤ n}n≥1, {ϕni :

i ≤ n}n≥1 are also sequences of ρ−-mixing centered square integrable random variables, so by
Theorem 2.1 and condition (ii) of Theorem 2.2, we can get

E
[
sup

t
|W ′′

n (t)|]2 ≤ E max
1≤i≤n

( i∑
j=1

ϕni

)2

≤ C

n∑
i=1

X2
i

σ2
n

I

( |Xi|
σn

> εn

)
→ 0, as n → ∞.

Therefore W ′′
n (t) converges weakly to 0 and the limiting distribution of Wn(t) is the same as

the limiting distribution of W ′
n(t) if the last one exists (i.e., Wn(t) − W ′

n(t) D⇒ 0 as n → ∞).
It’s easy to verify that:
(i)′ lim supn→∞

∑
|i−j|≥r,i,j≤n Cov(ηni, ηnj)− −→ 0, as r → ∞;

(ii)′ For every ε > 0,
∑n

i=1 Eη2
niI(|ηni| > ε) −→ 0, n → ∞;

(iii)′ supn

∑n
i=1 Var(ηni) < ∞.

By limn→∞ Var(
∑n

i=1 ηni) = limn→∞ Var(
∑n

i=1
Xi
σn

) = 1 and Theorem 3.2 of Reference [3],
we get W ′(1) → N(0, 1).

In order to prove that W ′(t) → N(0, t), from the above analysis, we have to show only
that limn→∞ E

(∑νn(t)
i=1 ηni

)2 = t, which is equivalent to limn→∞ E(
∑νn(t)

i=1
Xi

σn
)2 = t. Let ||X||

= (EX2)1/2. Since ∥∥∥∥
νn(t)∑
i=1

Xi

σn

∥∥∥∥ ≤
∥∥∥∥

νn(t)−1∑
i=1

Xi

σn

∥∥∥∥ +
∥∥∥∥Xνn(t)

σn

∥∥∥∥,

by the definition of νn(t), this relation gives
√

t ≤ ‖∑νn(t)
i=1

Xi

σn
‖ ≤ √

t + ‖Xνn(t)

σn
‖. By the

condition (ii), we get limn→∞ ||Xνn(t)

σn
|| = 0. Then we get limn→∞ E(

∑νn(t)
i=1

Xi

σn
)2 = t.

Next, we have to show that W ′
n(t) has asymptotically uncorrelated increments, that is,

lim
n→∞Cov(W ′

n(t), W ′
n(t + δ) − W ′

n(t)) = 0.
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By condition (iii)′ and Theorem 2.1,

Var
( νn(t+δ)∑

j=νn(t)+1

ηnj

)
≤ C

νn(t+δ)∑
j=νn(t)+1

Eη2
nj ≤ C

n∑
j=1

Eη2
nj ≤ C.

Since εn → 0, we can take in → ∞, such that εnin → 0. Then

|Cov(W ′
n(t), W ′

n(t + δ) − W ′
n(t))|

≤
∣∣∣∣Cov

( νn(t)−in∑
i=1

ηni,

νn(t+δ)∑
j=νn(t)+1

ηnj

)∣∣∣∣ +
∣∣∣∣Cov

( νn(t)∑
i=νn(t)−in+1

ηni,

νn(t+δ)∑
j=νn(t)+1

ηnj

)∣∣∣∣

≤ Cρ−(in) + Cov
( νn(t)−in∑

i=1

ηni,

νn(t+δ)∑
j=νn(t)+1

ηnj

)−
+

νn(t)∑
i=νn(t)−in+1

||ηni||
∥∥∥∥

νn(t+δ)∑
j=νn(t)+1

ηnj)
∥∥∥∥

≤ Cρ−(in) +
∑

|i−j|≥in,i,j≤n

Cov(ηni, ηnj)− + εnin

∥∥∥∥
νn(t+δ)∑

j=νn(t)+1

ηnj

∥∥∥∥
≤ Cρ−(in) +

C

σ2
n

∑
|i−j|≥in,i,j≤n

Cov(Xi, Xj)− + Cεnin → 0,

as n → ∞ uniformly in t, δ, with 0 ≤ t ≤ t + δ ≤ 1. So it’s easy to know that, uniformly in t,
δ, with 0 ≤ t ≤ t + δ ≤ 1,

lim
n→∞E

( νn(t+δ)∑
i=νn(t)

ηni

)2

= lim
n→∞ E

( νn(t+δ)∑
i=νn(t)

Xi

σn

)2

= δ.

Then, by condition (iii), we can get

lim
n→∞

νn(t+δ)∑
i=νn(t)

Eη2
ni = lim

n→∞

∑νn(t+δ)
i=νn(t) EX2

i

σ2
n

≤ C lim
n→∞

E(
∑νn(t+δ)

i=νn(t) Xi)2

σ2
n

≤ Cδ.

Finally, we prove that W ′
n, n ≥ 1 is tight to finish the proof. According to [13, Theorem 7.3],

we have to prove only that

I1 = lim
δ→0

lim sup
n→∞

P
(

max
|s−t|≤δ

|W ′
n(s) − W ′

n(t)| > ε
)
→ 0.

In order to prove it, we shall use Theorem 2.1 with p = 4 and the property of ηni. Then

I1 = lim
δ→0

lim sup
n→∞

P

( [ 1δ ]⋃
i=0

max
iδ≤s≤(i+1)δ

|W ′
n(s) − W ′

n(iδ)| > ε

)

≤ lim
δ→0

lim sup
n→∞

[ 1δ ]∑
i=0

P
(

max
iδ≤s≤(i+1)δ

|W ′
n(s) − W ′

n(iδ)| > ε
)

≤ C lim
δ→0

lim sup
n→∞

[ 1δ ]∑
i=0

E

(
max

k≤νn((i+1)δ)

k∑
j=νn(iδ)

ηnj

)4

≤ C lim
δ→0

lim sup
n→∞

[ 1δ ]∑
i=0

[ νn((i+1)δ)∑
j=νn(iδ)

Eη4
nj +

( νn((i+1)δ)∑
j=νn(iδ)

Eη2
nj

)2]

≤ C lim
δ→0

lim sup
n→∞

[ 1δ ]∑
i=0

[
εn

νn((i+1)δ)∑
j=νn(iδ)

Eη2
nj +

( νn((i+1)δ)∑
j=νn(iδ)

Eη2
nj

)2]
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≤ C lim
δ→0

lim sup
n→∞

[ 1δ ]∑
i=0

(εnδ + δ2) ≤ C lim
δ→0

lim sup
n→∞

(εn + δ) = 0.

Proof of Corollary 2.2 For the sequence is weakly stationary, then

σ2
n

n
=

1
n

( n∑
i=1

EX2
i + 2

n−1∑
i=1

n∑
j=i+1

EXiXj

)
= EX2

1 + 2
n−1∑
i=1

n∑
j=i+1

1
n

EXiXj

= EX2
1 + 2

n∑
i=2

n − i

n
EX1Xi = EX2

1 + 2
n∑

i=2

EX1Xi − 2
n∑

i=2

i

n
EX1Xi.

Since
∑∞

k=2 |Cov(X1, Xk)| < ∞, then we have
∑∞

k=2 Cov(X1, Xk) < ∞. By the Kronecker
lemma, we get

∑n
i=2

i
nEX1Xi → 0, as n → ∞. So σ2

n/n → σ2.
Now, in order to prove this corollary, it’s enough to verify that the three conditions of

Theorem 2.2 are satisfied.
It’s obvious that

∑∞
k=2 Cov(X1, Xk)− < ∞, then

1
σ2

n

∑
|i−j|≥r,i,j≤n

Cov(Xi, Xj)− ≤ C

n

n−r∑
k=0

(n − r + 1 − k)Cov(X1, Xk+r)− → 0, as n → ∞.

For every ε > 0, by EX2
1 < ∞, it’s easy to get Condition (ii).

For the sequence is stationary, so it’s enough to show lim supn→∞
�n

i=1 Var(Xi)

Var(
�n

i=1 Xi)
< ∞, which

is obvious by limn→∞
σ2

n

n = σ2.
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application. Statist. Probab. Lett., 99–105 (1999)

[11] Zhang, L. X., Wen, J. W.: A weak convergence for negatively associated fields. Statist. Probab. Lett., 53,

259–267 (2001)

[12] Su, C., Zhao, L. C., Wang, Y. B.: The moment inequality for the NA random variables and the weak

convergence. Sci. China, Ser. A, 26, 1091–1099 (in Chinese)

[13] Patrick, B.: Convergence of Probability Measures, Wiley, New York, 1999


