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1 Introduction

An interest in the equations or the functionals with a variable exponent p(x) arises not only
in analyzing variational problems with integrand of the form |Du|P(®) in [1-3] but also in
investigating various problems of mathematical physics (an electro-rheological fluid problem, a
thermistor problem, a nonlinear Stokes system, etc.) in [4-6].

Many authors have already studied these problems (See [1], [2], [4], [7], etc.) such as

min{/ | Du|P®) dac}7 or  —div(|DulP®~2Duy) = 0.
Q

In [1, 2, 7, 8, 9] they get an interior a priori estimate for the Hoélder norm of solutions to
elliptic equations with nonstandard growth conditions.

In this paper, we will study the corresponding problems for parabolic equations. However,
our problems are much harder and more complicated.

In the following, Q C R¥ is an open domain, N > 2,7 > 0,Q = Qx[0,7), S = 902 x[0,T),
I' = SU(Qx{0}), and «y will denote a positive constant whose value is not necessarily the same
on each occurrence.

We consider the following equation in @:

u; — div(|Dul|P®P =2 Du) = 0, (1.1)
where p(z,t) is a measurable function in @ satisfying
1<pr <p(z,t) <py < oo (1.2)
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and
O

<
< Soglle —9T+ Calt — a1

Ip(z,t) — p(y, s) (1.3)

for any (z,t), (y, s) € Q such that |z —y| < & and |t — s| < &, where py, p2, C1, Cs are positive
constant numbers.

In §2, we give our main results and some auxiliary lemmas. In §3, we consider the local
boundedness of local weak solutions by Moser iteration methods. Finally, in §4 we investigate
the local Holder continuity for local weak solutions by using a similar technique to that in
Chapter 3 in [10].

2 Main Results and Lemmas

We denote vy = max{v;0}; v— = max{—v;0}. The spaces
mﬂﬂ@gnz{few&%m:/ﬁuwmmm<m}
Q

with norm [|ul|1 p(z) = inf {A > 0: [, |D+(”J)‘p($)dac <1}+inf{A>0: [, ‘@‘pmdm <1},
and

whO(Q) = {f € L'(0,T;Wh( // | Dy fP davdt < oo}

D dudt

with norm ||ul|; ¢y = inf {A > 0: Io | B |P 0 qudt < 1} +inf{A > 0: I |)\|

< 1}, are two Banach spaces (See [8]).

Definition 2.1 A function u is a local weak sub(super)-solution of (1.1) in Q if u €
Wl’p(')(Q) NC([0,T]; LE .(Q)), and for every subinterval [t1,t3] of [0,T),

loc loc
/U‘Pdl" / /{ wps + | DulP@ 772Dy - Do}dedr < (>)0, (2.1)
Q

for any nonnegative function o € C([t1,t2]; C§(R2)). A function u is a local weak solution if
it is both a local weak subsolution and a local weak supersolution of (1.1).

ty

In this paper, our main results are:

Theorem 2.2 Let p; > max{l
locally bounded in Q.

Theorem 2.3  Let u be a bounded local weak solution of (1.1) in Q and p; > 2. Then the
function (z,t) — u(x,t) is locally Hélder continuous in Q.

Let v € L'(Q), and for 0 < h < T, we introduce the Steklov averages vy,(-,t) defined for all

0<t<Thy
t+h
te (0,T — hl;
h/ (7 ]

(,T)dT, t>T—h.

,N+2} hold. FEvery local weak solution u of (1.1) in @Q is

(1) =
h

Fix t € (0,7) and let h be a small positive number such that 0 <t <t+h <T. In (2.1)
take t1 = t,to = t+h and choose a testing function, ¢, independent of the variable 7 € (¢,t+h).
Dividing by h and recalling the definition of Steklov averages, we obtain

// { up, - @ + [| DuP @72 Dy, 'Dcp}dxd'rg (>)o0, (2.2)
Qx{t}

for any 0 < t < T — h and any nonnegative function ¢ € C§°(Q).
In order to prove our main results, we need the following auxiliary lemmas:
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Lemma 2.4 ([11, 10]) Let{Y,},n=0,1,2,..., be a sequence of positive numbers, satisfying
the recursive inequalities Y11 < CO"Y, 1T where C,b > 1 and o > 0 are given numbers. If
Yo < C~Yop=1/e" then {Y,} converges to zero as n — oc.

Lemma 2.5 ([11 10])  There exists a constant vy depending only on N,m,r such that for
every v € V" (Q) = L®(0,T; L™(Q)) N L™ (0, T; W, " (Q)),

// |v(x, t)|9dzdt < 1 (// |Dv(zx,t)|" da:dt) (esssup/ |U(a:,t)|mda:> ,
0<t<T Jo

where g = r ™,

Moveover, |v]|q,q < V[|[v]lym.r@)-
Lemma 2.6 ([10]) Let r > 1. There exists a constant vy depending only on N,r such that for
every v € V" (Q),

ollzg < Allel > 017 [[o] v -

Lemma 2.7 ([11,10]) Let v € WHY(B,(x0))NC(B,(x0)) for some p > 0 and some xo € RY,
and let k and | be any pair of real numbers such that k < I. Then, there exists a constant -y

depending only on N and independent of k, 1, v, xg, p such that
N+

1
p
I — k)| A( §'y—/ Doldz,
(=Rl 1By (o) \ A(E)| Jagpnaq D]
where A(k) = {z € B,(xo)|v(x) > k}, |A(k)| = meas(A(k)).
n [6], if p(z) satisfies (1.2) and |p(z) — p(y)| < ﬁ for |z —y| < 1, then, for any
e W, ’p(r)(Q), there exists ¢, € C*°(2) such that lim,, . |[¢n — @[lw1.1(0) = 0 and

loc

lim |D<p \p(x)dx—/ |DeP@dz, VO cc Q.
Q/

This result is true for I/Vlof( )(Q) under the condition that (1.2) and (1.3) hold.
Similarly to [8], we have:

Definition 2.8 A measurable function p : Q — R satisfies condition (H) in Q if there exists a
constant L > 0 such that R™1PQr} < I for any cylinder Qr C Q, where Qg = Bg x (0, RP2).

Clearly, if p(z,t) satisfies Condition (1.3), then p(x,t) satisfies condition (H).

3 Local Boundedness of Weak Solutions

In this section, we will prove Theorem 2.2. Thus, we will firstly show the following result:
Proposition 3.1  Let p; > max{1, N+2} hold. Every nonnegative local weak subsolution u of
(1.1) 4n Q is locally bounded in Q. Moreover, there exists a constant v = v(N,p*,p~, p) such
that for any [(zo,t0) + Q(p*", p)] C Q and any o € (0,1),

N+p~ pt

sup ugmax{l, y1—-0)" N s
[(20,t0)+Q(0p?™ ,op)]

1

1 // s }pT q—3 }
X u’dxdr , (3.1)
{ [[(zo,t0) + Q(Pp+aﬂ)]| [(z0,t0)+Q(pPT ,p)]

where Q, = B, x (0,pP?), p* = supg, p(z,t), p~ = infg, p(z,t) and max{pT,2} < § < q=

N+2, —
~N P

Note: The assumption that v is nonnegative is not essential and is used here only to deduce
that u is locally bounded above.
Suppose that u is a local weak solution of (1.1) in Q. Then, there exist Ry > 0 and

d(N,p1,p2, Ro) > 0 such that
[2)
/ / luldadr < +oo,
t1 Br
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for any sufficiently small R satisfying 0 < R < Ry, any 0 < § < 6(N,p1,p2, Ro), 0 <t; <ta <T
such that t9 — t; < CRP2.

Indeed, let p~ = ming, p(x,t), p* = maxg, p(z,t) and Qr = Bg x (0, RP?). Obviously, by
Young’s inequality

// |Du(z,t)|P drdt < |Qag| +// | Du(z, t)|P@) dadt,
2R

we have u € V2P (Qar) = L*°(0,T; L*(Bagr)) N LP (0, T; WYP (Bsg)). Moreover, ui) €

Vi (Qqr) for the cutoff function 1 € C§°(Qar). This result, together with Lemma 2.5,
implies the integrability of u(z,t) in Qg with the exponent § (§ = %p*). In order to satisfy

§ > pT, we choose only a sufficiently small R to fix Rg. Thus, the desired result is obtained.
Proof of Proposition 3.1  Fix a point (xg,to) of Q. Let Q(0, p) = B, x (—6,0), and let p and
0 be so small that [(zg,t0) + Q(0,p)] C Q. Let k> 0 and u be a nonnegatlve weak subsolution
of (1.1) in Q.

We may assume (zg,%p) = (0,0) (Otherwise, modulo a translation). Let Q, = B, x (0, pP?),
pt = supg, p(z,t) and p~ = infg p(x,t). Fix o € (0,1). Consider the sequences

1-0 l1-0
Pn=0p+ o P 0, =00 + 0
and the corresponding cylinders @, = Q(0,, pn), and also the sequence of increasing levels
kn = k — % We also introduce the sequences p, = M, 0, = m and Q,, =

Q(én,ﬁn). It follows from the definitions that Qo = Q(0, p), Qo = Q(J@,Up),ko =0,k =k
and Qn+1 CQnCQnforn=0,1,2,....

Then in (2.2) we take ¢ = (up — I<n+1)+77p+ (over @y,) as a testing function, and integrate
over (—0,,t), where t € (—6,,,0) and the cutoff function € [0,1] is to be determined later.
First, integrating by parts and letting h — 0, we have

/t / 2u d:chl/t / i(u —kni1)? " dwdr
—6,/B,, or e n or- " 1)+

- / — kny1 +77 (x,t)dx

2

__/ / — Epa1) 2 | ddr (3.2)

Then, in estimating the remaining parts, we obtaln

/ / |Du\p e *Duly, - D[(up — k‘n+1)+7]p+]d$d7'
Pn

a _/ (u— kns1) 10" ("T —0,)dzx

*/ / [ DulP@ =2 Du] - [D(u — k1) 40” +pt(u— knga) on? ' Dnldadr

/ / (= k1 )4 [P dwdr

-7 / / — k)4 PO (= kg )4 ! [ Drldadr. (3.3)

By Young’s mequahty, we have

/ / (4 — k)4 P Y (w — kgt ) 10? Doyl dadr
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/ / (U — kpy) 4 [P p dxdr
+.0) / / (1= o )57 | D7) dr
/ / — K1) [P P dadr
.9 / / (u—ker)?, | Dpf?" drdr
/ / [(w = kpg1)+ > 0]dzdr.

The nonnegative piecewise smooth cutoﬁ function 7 is taken to satisfy
n+2

_ =1 i O, < 2 d 0<m < ——
n=0 on I'(Qn), n=1 in Qn, |D77|_(1—U)p’ an O_Th_(l—a)e

2n+2

797

Let |Ap+1] = meas{(x,t) € Qnlu(z,t) > knt1}. Then, by estimating (3.2) and (3.3), we

have

—0,<t<0

< ’Y/ / — kng1 +77 1|7775|dxd7'
K’n

+ ’Y/ / (u— kn+1)§’r+ |Dn|p+da:d7' + 7| Apt1]

2n+2
1_0_0// — n+1 d(EdT

2n+2
+7[ } // — k) dadr + Y] Apgal.

1—0

Moreover, we observe that for all s > 0,

// Sdxdr > // n)Ex[u > kpy)dedr

ks

Y

Then, we get

pt

A

(knt+1 = kn)®|Anta| = WM"“"

sup / (u— kn+1)+"7 (z,t)dz +/ / n+1)+|p(£77—)77p+d$d7'
B,,

e
// (U_kn+1)?~_+dl'dT < (// —kny1) dxdT) |Apga|' ™5

IN

2(5 pHn
/4;5 s // dde

and

N

5 2
// (u = kny1)idadr < <// = k1) dfﬁdT) |Anta]' 75

52)n
< 7]652// d:ch

where § > p* is a positive number such that |u(z,t)| € L (Q).
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Then (3.4) yields
sup / (u— knﬂ (x,t)dx + // (u— n+1)+|p(I T dxdr
B;,

—0,<t<0

,YQné

(1 —o)P" (pzﬁk‘s Pt 0k5 2) // Ydudr
2(n+1)5

+y— = // (u—k d{EdT
7277,5

< Loy (e i 2> [, o= ot

By Young’s inequality,

// D= kpsa) s P dxd7-<// (1 = 1) 4 [PC T dadr + [ A .
Q'Vl

Therefore, we obtain

sup / (u—knﬂ)i(nt)dm—i—// |D(u — kpi1)s P dedr
—0,<t<0JB;

2n§
(1 _O_)p+ <pp+k5 pt ak_é 2) // dxd’r (35)

_ Then, the next step is to construct a nonnegative piecewise smooth cutoff function 7, in
Q., satistying

B - B B 2n+2
=0 on S(Qu), =1 on Qupi |Dil<
(I=o)p

For the function (u — kp41)7n, by (1.3), (3.5) and Lemma 2.5, we have

D

~
// — kny1) 008 dedr < A1 < 951?;0/ (u—kni1)2 dgc>
X (// |D(u — kpy1) |P dxdT—i—// — knt1 +|z> |D77n\p dacdr)
Qn
< ’}/2715 1 n 1 72716 1 . 1
=7 (1 _ O—)p+ pp+k67p+ 9k.672 (1 IR O’)p+ perk‘;*P* 9]@672
(n+2)p~  9(6—p7)n 142
+ / / ® dadr
(1—a)p pr= ko7P
1+ B~ 142
’72“6 N N
< |:(1 _o-)p+ <pp+k,5 pt 9[{6 2):| (// dl’d’f') s (36)

where max{p*,2} <6 < ¢ = 2p~.
Introduce the dimensionless quantities

Yo d:L‘dT n=0,1,...,
“tau [, -

and let 6 = pp+' we will derive an iterative inequality for Y,,, that is,

—knt1 +’I7nd£L‘dT
ol
A\
byt (Ve
<|Qn // +1)37 Q]

n+1
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y2nd 1 I R ol O UL et S
< nETYn ¢
“lator (e van=)] T (%) e
eik y, T (3.7)

—
M= pt

S I Fy S
ka0 (1 — g)a

where b = 29(1+5 %) > 1.
It follows from Lemma 2.4 that Y,, — 0 as n — oo, provided k is chosen to satisfy k =
max{k, 1}, where

1 7(q—6) Ntp— it
Yozi// wdrdr =~k (1—0) o= 7.
QU™ ) S Joiprt o)

This in turn implies

_pt @) 1 5 s
sup u<max{l,y(l—-0)" Fe | ——r—0 // u’dxdr .
Q(gpp+,gp) |Q<pp ’p)l Q(PervP)

Thus, we end the proof of Proposition 3.1.

Proof of Theorem 2.2  Similarly to Proposition 3.1, we have the corresponding results for the
local weak supersolution of (1.1) in Q. Thus, combining with Proposition 3.1, every local weak
solution of (1.1) in @ is locally bounded in @ under the same conditions. Therefore, we end
the proof.

Remark 3.2 Indeed, we may obtain similar results under weaker assumptions, that is, when
the conditions (1.2) and (1.3) are being replaced by the (p, ¢)-growth conditions.

4 Holder Continuity of Weak Solutions

Without loss of generality, (by Definition 2.1 and Theorem 2.2) we may assume that the local
weak solution u € L>(Q) of (1.1) in @ to study its interior Holder continuity. In the following,
we begin to prove our second main result (Theorem 2.3).

Fix a point (z,to) in @ and let p be small such that @, = B,(zo) % (to — pp+,t0) CQ,
where Q,(z0,t0) = Bp(xo) X (to — pP2, to), pt = supr(wmtO)p(m, t) and p~ = ianp(zo)tO)p(x, t).

Let u* = esssupg u, p~ = essinfg, u, and w = ess oscq, u = p* — p~. We may assume
that (zo,t0) = (0,0) (Otherwise, modulo a translation).

Fix w and 1 = (%)Tﬁ_g. Then we construct the cylinder Qo = Q(dp?",p) such that
Qo C Qg p), where § = (£)7" 2.

Lemma 4.1  There exists a number o € (0,1) independent of w, p such that if

Qo N [U<M+%HSU|Q0| (41)

() "o (12)

where A > 2, € € (0,1) are two numbers to be determined later, then

and

w
u(z,t) >p~ + = ae (x,t) € Qn,

4
where Qn = Q(d(£)P", £).

— +
Proof Let p, = § 4 g1, kn = 0~ + % + 525z and Q,, = Q(d(pn)? , pn)-
Similarly to the proof of Proposition 3.1, we choose a piecewise smooth cutoff function 7,
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in @, satisfying
n+1 8

M = 1 in Qpn+17 Tin = 0 on F(Qpn)v |D77n| <

and take (u — kn),nﬁ+ as a testing function. Then, we have

sup / (u— k)20 (2, t)da + // ID(u — k) [P e dudr
+ B

—dph’ <t<0

< d<72;+1> // u—k dxdTJrfy[TLH] // (u — k)P dadr
+7// — > 0]dzdr

il ( ) // _ > 0)dadr.

Moreover, we get

sup / (u—ky)? nn (z,t)dx + = // n) [P pdazdr
+ B,,

—dpl" <t<0

Vinp (“)p 1// _ > Odzdr. (4.3)

Pn

We introduce a change of the time-variable z = t/d which transforms Q,, into Q,, = B,, X
(—pﬁJr,O), set v(+, 2) = u(-, zd), N (+, 2) = nu (-, 2d) and |A,| = meas{(z, 2) € Qpn|v(x7z) < kn}t,

and then get
npt P+
T p~ 2" (W
0= W < e (5) Ml

By Lemma 2.6 and the above inequality, we have

L (v piA <k — k[P 1A, ] <
op~ (n+2) 5 | n+1| —| n n+1| | n+1‘ = ||(’U— )*Hp QPn+1
_ T L < _ =pT P~ S
<l =ka)-i 12 5 < 1w = k)i I ape QMIAW
< lw = k)= 117, AT < W2 (o |A N (4.4)
— nn (Qpn) n — pp+

Since (4.2) holds and € is so small, we have § > 4 > pp+:2 > p only if we choose € < p™ — 2.

Then, using (1.3) and Definition 2.8, we get (%)w’p < «. We also introduce the quantity
p— ‘A’V‘L‘
Qe I

use (4.4) and the above result, and then get

P+ -p~ 1+ P 1+ P
Vg1 < 4™ <%) Yo NPT <adnly, N
By Lemma 2.4, it follows that Y,, — 0 as n — oo, provided

_N+p— _p+(N+p7)2
o<~ v 45T <o

// _ > 0]dzdr — 0.

That is,
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Therefore,

|:U<,Ul + :|le

Thus, we have the desired result.

Next, we will exploit the fact that at the time level § = ( %)2_p+(§)p+, the function z —
u(x, —0) is strictly above the level p= + % in Bs.
Lemma 4.2  Let (4.1) and (4.2) hold. For every number o1 € (0,1), there exists a positive
integer s such that

’xeBg u(z, t) <,f+% <01|Bs|, Vte (-6,0). (4.5)
Proof Let Q(0,%) = By x (=0,0),k = p~ + 4, H; =esssupgp,z)(u—k)- < ¢ and ¥(u) =

H; .
In™ {H*—(u k) o } By virtue of Lemma 4.1, ¥(x, —¢) = 0 for any « € Bs. As before,

taking ¢ = 6uh [\PQ(uh)]nP as a testing function, we have

/ 2(x, )P dat<fy// )2 e | Dn|P dxd7+7// _ > 0]dzdr
By Q(o, ")

2

< “ nln2- < > } 0|Bs| < ynAP" ~2|By|, (4.6)
p

where we use ¥ < nln2, |[¥'| < 2, |Dp| < 2 5 and (%)

(
Since U2 > (n —1)2In*2 on the set {x € Belu(z,t) < p~ + 5521,
that for all ¢ € (—0,0),

€ (—6,0), (4.6) gives

< AP 2 n Bo|. (4.7)

(n—1)2 | 2
To prove the lemma we have only to choose n sufficiently large.

Lemma 4.3 Let (4.1) and (4.2) hold. The numbers o1 € (0,1) and s > 1 can be chosen a
priori such that

€ B iu(z,t) <p + 5

2n+2

w p
u(x,t) > p~ + eresulCES (z,t) € Q(G, §) (4.8)
Proof Let p, = §+5= and k,, = /f—|—2§+1 +2g+1+n. Owing to Lemma 4.1, (u—k,)_(x, —0) =
0 for any = € B,,,. As before, taking (u — nn as a testing function, we have

sup /(u—k: p do + — // D(u—k ),\p(w”)nf’l dxdr
—0<t<0 Q(e, Pn)

Bl’n
yorrt +
// [(u—kyp)_|P d.’EdT+’7// x[(u = kyn)— > O]dzdr
Q(Gypn) Q(@,pn)

72np+ w P+
— | o3 // x[(uw — kp)— > 0]dzdr. (4.9)
PP \2 Q60.01)

For all ¢t € (—0,0), by Definition 2.8 and the definition of 6,

2—p~
_ 0 _
[oamwrgez (g) [ wenr ez S [ sy g
B,, 2% B B,

Pn

if s is appropriately closen so large as to satisfy the result of Lemma 4.2.
+
We put this in (4.9), divide through by pi% and introduce a change of variable z = %

in Q(6, pr). This transforms Q(0, p,) into Q,, = B, x (—pP",0). Setting v(z,z) = u(z, ;ﬁ ),
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T (2, 2) = np(z, pzp—ﬂ) and |A,| =meas{z € B, |v(z,z) < kp}, by (4.9) and (1.3), we have
+ +
_ Qnp w p
_ = pt P < i _
0= ) I ) < o () Al (4.10)

By Lemma 2.6 and (4.10), we have

e s fflre
—— (=) [An] S// (v — k)P dxdz < //(v—kn)zi kP drdz
2p~ (n+2) \ 2s Qni1Nv<kpnyi] 0

+

= AP P =
A 7= <7 (w> | An| T (411

_ ~p+||P -
<Al = ko)) T

P~ ,Qn

D

142
Setting Y, = ;Szl‘ and using (1.3), (4.2) and (4.11), we get Y,41 < ~4mP'y, Nt By

Lemma 2.4, it follows that Y,, tends to zero as n — oo, provided

+p— N+p~ )2

X -t (
Yo<~ » 4 ' =0y, (4.12)
To prove the lemma, we fix o7 as in (4.12) and pick s according to Lemma 4.2.
We summarize the results obtained so far as in the following.

Proposition 4.4  There exist numbers o,v; € (0,1) and A1 > 1 such that if for some
eylinder of the type [(z0,to) + Q(dp?" ,p)],

. w
(@o:t0) + Qo] N [u < 1™ + 5] | < ol(o,to) + Qol, (4.13)
then either
w< Ay prt e (4.14)
or
ess osc U < nw. (4.15)

Qd(£)P" %)

Proof Assume that (4.14) is violated. By Lemma 4.3, we can determine a number s such that

Sap U T

Change the sign of this inequality and add ess SUPQ(g,2) U t0 the left-hand side and p™ to the
right-hand side. This gives
)w.

oy . . +
Therefore the proposition follows with v =1 — 54+, since Q(d(5)P",5) € Q(6, §).
If the assumptions of Proposition 4.4 are violated, that is, for every subcylinder [(zo,to) +

Q(dp™",p)] C Q(ap™", p), where L = ()" 2,
[(@0,to) + Qo] N [u < ™ + 5 ]| > ol(wo, o) + Qol.
Since = + 5§ < ut — 3, we rewrite this as
‘[(mo,to) + Qo N [u >t — g} ‘ < (1 - 0)|(zo0, to) + Qo- (4.16)

As before, we fix Qg and will have similar results.
Lemma 4.5 Let (4.16) and

1
essoscu < |1—
QU.5) ( AR

)

<A12)p s (4.17)
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hold. There exists a time level T € [—dpP" —%dpw], such that

1—
xEBp:u(x,ﬂ>u+—§ < <1 g)|Bp|.
)

- gt
Proof 1f not, for all t € [~dp?" , —ZdpP "]

)

1—
xGBP:U(I,t)>u+7E S — |B,l,
2| " \1-¢
and
w —5de w
(:c,t)EQo:u(x,t)>u+2‘2/ JZGBP:U(‘T,T)>ILL+7§dT>(1*O’)|Q0,
—dprt

contradicting (4.16).
Lemma 4.6 Let (4.16) and (4.17) hold. There exists a positive integer 3 > 2 such that

2
‘xGBP:u(x,t) >pt - %‘ < (1— (%) )|Bp|,

forallt e [—%dpp+70}.
Proof Consider the logarithmic inequalities over B, x (t,0) for the function (u — k)4 with

the level k = p* — %. As in Lemma 4.2, we take ¢ = 33} [\IIQ(uh)]np+ as a testing function,

H

where H; = ess supg, (u — k)4, ¥(u) = In"{ k - } and a cutoff function 7 is to be

determined later, and then get

/ U (z,t)dx
Bi-a)p
< / W2 (o, O (2)da
B,

_/ xf)dw—i—’y/ / )2 -»" | Dn|? da:dT—l—v/ / (w—Fk)_ > 0ldzdr

1—0 w .
§n21n22(1£>3p|+ﬁ-n1n2-2p (2> \Bp|+7-dpp+\Bp|
2

< [n’z(i_g) b )il < [n2<i_;) +(C;V;+}|Bp,

where we use ¥ < nln2, [V'| < Z, [Dn| < 45 and [f] < dpP” .
Since ¥2 > (n —1)2In*2 on the small set {z € Ba_q), s u(z,t) > pt — 555}, we obtain

- [(nn 1) G_Z) * (a;ﬁn} B,

for all ¢ € (£,0). Choose « so small and then n so large that

(nﬁ1>2<(1—%>(1+a) and (a; <Z2

Then for such a choice of n the lemma follows with § =n + 1.

Since (4.16) holds for all cylinders of the type @, the conclusion of Lemma 4.6 holds true
for all time levels satisfying t > —(a — d)pp+ =—(1- (%)f—?)a/ﬂﬁ. If A is chosen sufficiently
large, we deduce:

Corollary 4.7  Let (4.16) and (4.17) hold. For allt € [f%pw,()],

z € B, u(z,t) >pt — %‘ < (1 - (%)2>\BP|.

T € Ba_ay:u(z,t) > ut — TES
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Lemma 4.8 Let (4.16) and (4.17) hold. For every & € (0,1), there exists a positive integer
s* > 5 such that
<afe(ze )|

Proof Consider the local energy estimates over Q(a,op+ ,2p) for the function (u — k), with the
levels k = pt — &%, where § < s < s* and s* is to be chosen. We take (u — l<:)+777”+ as a testing
function, and then get

[/|DM“¢MT§/]’ D k)P dwdr + (A,
Q(%pP" ,p)

‘x € B, 1 u(z,t) > put —

25*

_r // (u— k)% dwdr (u — k)3 dadr + | A,
aplf’Jr 2p) Q(GPP+12P)
i
<
< 2(2) |e(30" )| (1.19
where A, = {(z,t) € Q(Qpp ,p) tu(w,t) > pt— 2} Let Ag(t) = {z € B, : u(z,t) > pt — 5=

Applying Lemma 2.7 for k = pt — 32, | = p* — 555, | — k = 5%+ and Corollary 4.7, we

have
N+1

w 4y p
FlAerl(t)l <

<= |Du|dzx,
o? |B,| A ()\Agy1 ()

for all t € (—%pp+,0), where we use |z € B, : u(xz,t) > pt — £| = |B,| — [As(t)] = (5)?|B,l.
From this, integrating over such a time interval, we get

w VP
o Asal < *// | Dul|dxdT
25+1 + 0-2 ANAL
-+ - _
< g(//,q |DudedT)p |AS\AS+1|pp*
<Pl O (Y v oL
<l % PP

L
~ a .+ -
0_2 Q<2pp 7p>
where we again use (1.3), (4.17) and (4.18). That is,

} TRV

< |A \AS+1| L

a g+ \|[7
Q57" o)A\ A,

P _ 2p—
[As41]r™ -1 <yo »7 1

for all 5 < s < s*. We add them for

5,5+1,54+2,...,8 —1.
The right-hand side can be majorized by a convergent series bounded above by [Q(§ o p)|-

Therefore,
a .+ »

To prove the lemma we divide by (s* — 5) and take s* so large that ———— <&
02(5*75)1’—7

Lemma 4.9 Let (4.16) and (4.17) hold. The number & (and hence s* and A) can be chosen
so that u(z,t) < p* — 2, ae Q(4(5)P",5).

e
(5" = &)l Adw [T <o 7
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Proof As in Lemma 4.1, applying the local energy estimates over Q(% pﬁ+ , Pn) to the function
(u - kn)-i—v where Pn = g + gn% and k, = ,u+ - 25*% - 25*+++717 we have

sup / (u—kn)in£+(ﬂc7t)dm+// . ID(u — k)4 [P ne " dudr
B, Q(5p% .pn)

a pt

—5pn <t<0
gn+1 pt
() L, bt
P Q(%0% son)
9 rgn+17p"
ﬂ{ } // + (ufk")TdIdTﬂ// o Xl ka)y > Odedr
a Q(%sz 7Pn) Q(%sz ;Pn)

,}/271;0Jr w P+
< —(— // X[(u—ky)— > 0]dxdr,
pP 2 Q(%pﬁ+7l)n

2 - |2 <2 271;1 L i (%)ﬁ_?, A =2°". As before, we introduce
a change of variable z = 2t which maps Q(Qpn ,Pn) into @Qn, = B, X (=pP",0), set v(-, 2) =
u(, §2), (-, 2) = (-, §2) and |A,| = meas{z € B, : v(x,z) > k,}, and then get

+

where we use |Dn| <

+ P
,72711[) w
10 = ket 1 g < aa (2) [Aa-

By Lemma 2.6, we have

1 w \* -
m<27> [Anta| = [kn = kna|” 2 (7,2) € Quialv(@, 2) > kpia

< 1w = kn)+lG,,, < 1w =Ko+ 15,
.

p_ 72”p+ w p 142"
<0 = kDT g 14077 < 0 () a7

We also introduce the quantity Y;, = |‘A"‘, using (1.3) and (4.17), and then get

+ = _ —
P e e
Yo P4 Y, r

Yn+1 < 74np+ (%

+(N+11 )2

_ N+4p—
By Lemma 2.4, it follows that Y, — 0 as n — oo, provided Yy < v~ »~ 477 <.

Thus, we have the desired result.
Proposition 4.10  There exist numbers o,vy € (0,1) and Az > 1 such that if for all cylinders

of the type [(xq,to) + Q(dpf,p)},

w
[(@0,t) + Qo] N [u >t = 5| < (1= o) (a0, t0) + Qol; (4.19)
then either .
w < Agprt—2 (4.20)
or
ess osc U < Vow. (4.21)
Qg (5Pt .5

We combine Proposition 4.4 and Proposition 4.10 into:
Proposition 4.11  There exist two positive constants v = max{vy,vs}, A = max{A;, Az}
that can be determined a priori such that either w < App+—2 0T €S8 0SCo gepypt o)l < vw.
8 '8
Similarly to proving Proposition 3.1 and Lemma 3.1 in Chapter 3 in [10] by using Propo-

sition 4.11, we have the desired result on Holder continuity. Therefore, we end the proof of
Theorem 2.3.
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Remark 4.12  Moreover, if the function p belongs to C1(Q) and the weak solution u is
sufficiently integrable, then Du is locally bounded under suitable assumptions (i.e. the constant
number s is so large that 4s+6 > py and 8(s+ 1) > 2N 4+ N(pa —p1)). The assumptions given
as above are weaker than those in ([12], Chapter 6, Theorem 3.4) when p is a constant number.

Acknowledgements The first author deeply thanks Prof. Shulin Zhou for his useful dis-
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