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1 Introduction
This paper is devoted to the study of the self-similar solution of Cauchy problem for nonlinear
integro-differential equation

⎧
⎨

⎩

∂u(t)
∂t

=
∫ t

0

Rα(t− s) � u(s)ds+
∫ t

0

Rα(t− s)f(u(s))ds, 0 < α < 1,

u(0) = ψ,

(1.1)

where u(t) = u(x, t), ψ = ψ(x), (x, t) ∈ R
n × R

+, Rα(t) = tα−1

Γ(α) and

f(u) = μ|u|ρu or f(u) = μuρ+1, ρ > 0. (1.2)
Formally, (1.1) is written as a fractional order evolution equation

∂1+αu

∂t1+α
=� u+ f(u), u = u(x, t),

u(0) = ψ, ψ = ψ(x),
(1.3)

and this equation interpolates nonlinear heat and wave equations.
For the linear case (f(u) = 0) for n = 1, (1.1) describes the heat conduction with mem-

ory [1, 2], and many authors studied the problem ([1–7]). Scheider, Wyss [5] and Fujita [3]
obtained the representation formula of fundamental solution for this linear equation for n = 1.
Furthermore, Fujita [3] proved that the fundamental solution of this linear equation has some
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properties which are similar to heat equation’s and one and other properties which are sim-
ilar to wave equation’s. For example, the points where the fundamental solution attains its
maximum propagate with finite speed. Fujita [4] also obtained the representation of the so-
lution of linear integro-differential equation including wave equation by probability methods.
Hirata and Miao in [8] gave the representation formula for linear integro-differential equation
with inhomogeneous term in multidimensional spaces and space-time estimates for the solu-
tions of linear integro-differential equations based on Laplace and Fourier transforms, Mittag–
Leffler’s functions, Mihlin–Hörmander’s multiple estimates. Moreover, they proved the well-
posedness of local mild solution of Cauchy problem for nonlinear integro-differential equation
in C([0, T );Lr(Rn)) or Lq(0, T ;Lp(Rn)) and the existence of global small solutions for nonlin-
ear intrgro-differential equations by using the space-time estimates and contraction mapping
principle.

Recently, many authors studied the self-similar solution for nonlinear evolution equations.
Cannone and Planchon [9–11] developed the Kato’s method [12] and established the existence
of self-similar solution and asympotic behavior of Navier–Stokes equations by the Littlewood–
Paley description of Besov spaces. In [13] Meyer gave an excellent analysis to self-similar solution
of nonlinear evolution equations and proved that the similarity results were also valid for the
heat equations. Miao and Zhang in [17] found a way based on space-time estimates which were
established in [14, 15, 16] and established self-similar solution for the general semi-linear heat
equations.

It is well known that

sup
t≥0

t−
s
2 ‖H(t)ψ‖p = ‖ψ‖Ḃs

p,∞
, H(t) = et�, s ≥ 0. (1.4)

But we can not use Schrödinger semigroup S(t) = eit� to give an equivalent norm such as the
above heat semigroup. Cazenave and Weissler [10, 18], Ribaud and Youssfi [19] introduced a
class of new function spaces

Es,p(Rn × R) =
{

u(x, t) ∈ S (Rn × R); ‖u‖Es,p
= sup

t>0
tσ‖u(t, x)‖Ḣs,p <∞

2 ≤ p <∞, 0 ≤ s <
n

p
, σ = σ(s, p) =

1
2

(
2
α
− n

p
+ s

) }

,

and established the global self-similar solution of (1.1) under condition ‖ψ;Es,p(Rn)‖ < ε, where

Es,p(Rn) = {ψ(x) ∈ Ḣs,p(Rn); ‖ψ‖Es,p
= sup

t>0
tσ‖S(t)ψ‖Ḣs,p <∞}.

On the other hand, Planchon [20, 21, 22] substituted classical critical space Ḣs2 with Ḃs2
2,∞,

s2 = n
2 − 2

α , and proved the global self-similar solution to Schrödinger equation in C∗(R; Ḃs2
2,∞)

under condition α ∈ 2N by using the generalized Strichartz-type estimates and Littlewood–
Paley decompositions theory. Miao and Zhang [17] extended Planchon’s results to generalize
nonlinear term by devoting to some equivalent description of Besov space. Using the above
different spaces, Ribaud and Youssfi [23], Planchon [21, 22] established the global self-similar
solution for semilinear wave equations, respectively, under suitable conditions. The purpose
of this paper is devoted to the study of the global self-similar solution for nonlinear integro-
differential Equation (1.1). Using the space-time estimates which were established by Hirata
and Miao in [8] we prove the global existence of self-similar solution for the nonlinear integro-
differential equation in C∗([0,∞); Ḃsp

p,∞(Rn)).
Before stating our main results, we first introduce some notations. According to scaling

principle (see the next section), one easily sees that uλ(t, x) = λ
2
ρu(λ

2
α+1 t, λx) with λ > 0 is

the solution of (1.1) or (1.3) with initial data ψ(x) replaced by λ
2
ρψ(λx) if u = u(t, x) satisfies

(1.1) or (1.3).
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Definition 1.1 u = u(t, x) is said to be a self-similar solution of (1.1) or (1.3) if

uλ(t, x) = λ
2
ρ u(λ

2
α+1 t, λx) ≡ u(t, x), ∀λ > 0. (1.5)

Remark 1.2 (1) It is well known that the self-similar solution to (1.1) or (1.3) is of the form

u(t, x) = t−
α+1

ρ U

(
x

t
α+1

2

)

. (1.6)

(2) As we know, self-similar solutions to nonlinear evolution equations can be studied by
semi-linear elliptic equations. But for (1.1) or (1.3) it seems difficult to study the self-similar
solution in this way.

(3) One important approach to the self-similar solutions of (1.1) or (1.3) is the study
of small global well-posedness of Cauchy problem (1.1) or (1.3) in Besov spaces or in some
nonstandard function spaces. These new global solutions to (1.1) or (1.3) admit a class of
self-similar solutions. In fact, let the initial data ψ(x) satisfy

ψ(x) = λ
2
ρψ(λx), λ > 0, (1.7)

for example, we can take

ψ(x) = κ
Ω(x′)

|x| 2ρ
, x′ =

x

|x| ,

where the function Ω(x) is defined on the unit sphere Σn−1 in R
n. If u(t, x) is the unique

solution of (1.1) or (1.3) with the data in (1.7), then u(t, x) is just a self-similar solution of (1.1)
or (1.3).

(4) Let u(t, x) be a self-similar solution to (1.1) or (1.3). Then the function u(0, x) = ψ(x)
is a homogeneous function with degree − 2

ρ . To obtain the self-similar solution of (1.1) or (1.3)
we have to choose a suitable homogeneous function space X with the degree − 2

ρ (see [16], [17]
or [24]) and prove that (1.1) or (1.3) generates a global flow in X.

Let Eα and Eα,β denote Mittag–Leffler’s function and generalized Mittag–Leffler’s function
[25, 26], that is,

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞∑

k=0

zk

Γ(αk + β)
, α, β > 0. (1.8)

For the detailed properties of Mittag–Leffler’s function, one can see [6–8, 13].
Definition 1.2 We call (q, r, p) the admissible triplet with respect to α if

1
q

=
n(1 + α)

2

(
1
p
− 1
r

)

, 1 < p ≤ r <

⎧
⎨

⎩

n(1 + α)p
n(1 + α) − 2

, if n ≥ 2,

∞, if n = 1.
(1.9)

Definition 1.3 The triplet (q, r, p) is called a generalized admissible triplet with respect to α
if

1
q

=
n(1 + α)

2

(
1
p
− 1
r

)

, 1 < p ≤ r <

⎧
⎨

⎩

n(1 + α)p
n(1 + α) − 2p

, n(1 + α) > 2p,

∞, n(1 + α) ≤ 2p.
(1.10)

Remark 1.4 (1) It is easy to see that (q, r, p) is an admissible triplet or generalized admissible
triplet, then q is uniquely determined by r and p. So we may write q = q(r, p).

(2) Clearly, r < q ≤ ∞ if (q, r, p) is an admissible triplet, and 1 < q ≤ ∞ if (q, r, p) is a
generalized admissible triplet.
Definition 1.5 (1) Let B be a Banach space and for σ > 0, I = [0, T ) and İ = (0, T ).
Define Cσ(I;B) and its homogeneous space Ċσ(I;B) as follows :

Cσ(I;B) = {f ∈ C (İ;B); ‖f ; Cσ(I;B)‖ = sup
t∈I

t
1
σ ‖f‖B <∞}, (1.11)

Ċσ(I;B) = {f ∈ Cσ(I;B); lim
t→0

t
1
σ ‖f(t)‖B = 0}.
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(2) C∗(I;B) = {v; v ∈ L∞(I;B) and v are continuous in the sense of distributions}.
Remark 1.6 It is easy to see that

(1) f ∈ Cσ(I;Lr) if and only if t
1
σ f ∈ Cb(I;Lr);

(2) if (q, r, p) is an admissible triplet then

Cq(r,p)(I;Lr) =
{
f ∈ C(İ;Lr), ‖f‖Cq(r,p)(I;Lr) = sup

t∈I
t

1
q ‖f‖r <∞

}
. (1.12)

In particular, Cq(r,p)(I;Lr) = Cb(I;Lp) if r = p.
(3) v ∈ C∗(I;B) means v is a bounded flow in B.

Definition 1.7 Let σ > 0, 1 < r <∞. Define Banach space Eσ,r(Rn) as

Eσ,r(Rn) =
{
ψ(x) ∈ S ′(Rn); ‖ψ‖Eσ,r

= sup
t>0

t
1
σ ‖W (t)ψ‖r <∞

}
, (1.13)

where W (t) = F−1Eα+1(−|ξ|2tα+1)∗ denotes the solution operator of free integro-differential
equation with respect to (1.1).

Our main results can be stated as follows.
Theorem 1.1 Let r ≥ p > p0 = nρ

2 , ρ > max(1, 2
n ). Let (q, r, p0) be any generalized

admissible triplet with
max(p0, 1 + ρ) < r < p0(1 + ρ). (1.14)

Let ψ(x) ∈ Ḃ
n
p − 2

ρ
p,∞ ∩ Eq(r,p0),r(Rn) with (1.7). Then there exists η(p) > 0 with the follow-

ing properties : If ‖ψ; Ḃ
n
p − 2

ρ
p,∞ ‖ + ‖ψ; Eq(r,p0),r(R

n)‖ < η(p), then there exists a unique solution

u(x, t) ∈ C∗([0,∞); Ḃ
n
p − 2

ρ
p,∞ ) ∩ Cq(r,p0)([0,∞);Lr(Rn)) to (1.1) or (1.3) which satisfies

u(x, t) = W (t)ψ + v(x, t) = W (t)ψ + t−
α+1

ρ V

(
x

t
α+1

2

)

= t−
α+1

ρ U

(
x

t
α+1

2

)

, (1.15)

‖v(x, t);L∞(R+;Lp0(Rn))‖ <∞, (1.16)

sup
t>0

t
1

q(r,p0) ‖u(x, t)‖r <∞. (1.17)

Moreover, its profile V (x) satisfies
U(x) = W (1)ψ + V (x) ∈ Lr(Rn). (1.18)

Corollary 1.2 Let r ≥ p > p0 = nρ
2 > 1, ρ > max(1, 2

n ). Let (q, r, p0) be any generalized

admissible triplet. Let ψ(x) ∈ Ḃ
n
p − 2

ρ
p,∞ ∩Eq(r,p0),r(Rn) with (1.7). Then there exists η(p) > 0 with

the following property : If
∥
∥
∥ψ; Ḃ

n
p − 2

ρ
p,∞

∥
∥
∥ + ‖ψ; Eq(r,p0),r(R

n)‖ < η(p), (1.19)

then there exists a unique self-solution u(x, t) ∈ C∗(R+; Ḃ
n
p − 2

ρ
p,∞ ) ∩ Cq(r,p0)(R

+;Lr(Rn)) to (1.1)
or (1.3) which satisfies (1.15)–(1.17) and its profile U(x) satisfies (1.18) for

p0 ≤ r <

⎧
⎨

⎩

n(1 + α)ρ
2(1 + α) − 2ρ

, ρ < 1 + α,

∞, ρ ≥ 1 + α.
(1.20)

Remark 1.7 (1) In Theorem 1.1 and Corollary 1.2, for generic data without restriction

condition (1.7), one also obtains the global well-posedness of (1.1) or (1.3) on C∗([0,∞); Ḃ
n
p − 2

ρ
p,∞ )∩

Cq(r,p0)([0,∞); Lr(Rn)) but the solutions u(x, t) has no structure of self-similar solutions (1.15)
and (1.18).

(2) When κ > 0 is suitably small, the initial data ψ(x) in (1.7) satisfies condition (1.19).
Remark 1.8 (1) If we take α = 0, Theorem 1.1 and Corollary 1.2 implies the known results
in heat equation in [13] and [17].
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(2) If we take α = 1 in (1.3) and add the initial condition about vt as ϕ satisfying

ϕ(x) = λ
2
ρ +1ϕ(λx), λ > 0,

and substitute

‖ψ; Ḃ
n
p − 2

ρ
p,∞ ‖ + ‖ψ; Eq(r,p0),r(Rn)‖ < η(p)

with a simpler condition

sup
t>0

tβ
∥
∥ cos[(−�)

1
2 t]ψ + (−�)−

1
2 sin[(−�)

1
2 t]ϕ

∥
∥

r
≤ η, β =

2
ρ
− n

r
,

where r ≥ max(2, nρ
2 ), one easily gets the global well-posedness for the wave equation in the

space C 1
β
(R;Lr(Rn)) by using the method in this paper. For more results on wave equations

see [27].

Remark 1.9 The self-similar solution in Theorem 1.1 is driving the large-scale behavior of
some global solution to (1.1) or (1.3). If u(x, t) is a global solution to (1.1) or (1.3) with (1.19)
and

lim
t→∞ t

α+1
ρ ‖u(tα+1

2 x, t) − V (x)‖r = 0, V (x) ∈ Lr(Rn),

then one easily concludes that v(x, t) = t−
α+1

ρ V (t−
α+1

2 x) is a self-similar solution to (1.1) and
(1.3). On the other hand, we have

u(x, t) = t−
α+1

ρ V (t−
α+1

2 x) + t−
α+1

ρ R(t−
α+1

2 x, t),
where V (x) ∈ Lr(Rn) and

lim
t→∞ ‖R(·, t)‖r = 0.

For the large-scale behavior of the solutions to other evolution equations, see [10], [13] and [11].

Remark 1.10 For the admissible triplet (q, r, p0) with (1.9), one easily conclude that u(x, t) ∈
Lq(R+;Lr(Rn)) by the space-time estimates which were established in [8].

Before concluding this section, we like to give some notations which we shall use in this
paper. Fv and F−1v denote the Fourier and Fourier inverse transforms of v in R

n respectively.
We also use the more abbreviated notations v̂ and v̌. Γ(·) and B(·, ·) denote the usual Gamma
and Beta functions respectively. Different positive constants might be denoted by the same
letter C.

Our plan in the present paper is as follows. In Section 2 we shall recall some well known
basic facts and some space-time estimates. Section 3 is devoted to the proof of our main results.

2 Preliminary and Some Lemmas

It is well known that

v(x, t) =
(
Ẽ1+α ∗ ψ)

(x, t) +
∫ t

0

(t− τ )α
(
Ẽ1+α,1+α(·, t− τ ) ∗ f(·, τ ))(x)dτ

�
=W (t)ψ + G f, (2.1)

satisfies the following Cauchy problem for linear integro-differential equation with nonhomoge-
neous term of the form⎧

⎪⎨

⎪⎩

∂v(t)
∂t

=
∫ t

0

Rα(t− s) � u(s)ds+
∫ t

0

Rα(t− s)f(·, s)ds,

v(0) = ψ, ψ = ψ(x),
(2.2)

where Ẽ1+α(x, t) = F−1
(
E1+α(−| · |2t1+α)

)
(x) and

Ẽ1+α,1+α(x, t) = F−1
(
E1+α,1+α(−| · |2t1+α)

)
(x).
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Remark 2.1 (i) Integro-differential equation (2.2) corresponds to a fractional order partial
differential equation

⎧
⎨

⎩

∂1+αv

∂t1+α
=� v + f(·, t), v = v(x, t), (x, t) ∈ R

n × R
+,

v(0) = ψ, ψ = ψ(x), x ∈ R
n,

(2.3)

formally. If we take α = 0, (2.3) is just as follows:
⎧
⎨

⎩

∂v

∂t
=� v + f(·, t), v = v(x, t), (x, t) ∈ R

n × R
+,

v(0) = ψ, ψ = ψ(x), x ∈ R
n.

(2.4)

In view of (2.2) and E1(−|ξ|2t) = e−|ξ|2t, we can easily see that the solution of (2.4) is

v(x, t) = (G(·, t) ∗ ψ)(x) +
∫ t

0

(
G(·, t− s) ∗ f(·, s))(x)ds,

where G(x, t) = (4πt)−
n
2 e−

|x|2
4t .

(ii) If we take α = 1 in (2.3) and add the initial condition about vt as ϕ, the equation is
just as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂2v

∂t2
=� v + f(·, t), v = v(x, t), (x, t) ∈ R

n × R
+,

v(0) = ψ, ψ = ψ(x), x ∈ R
n,

vt(0) = ϕ, ϕ = ϕ(x), x ∈ R
n.

(2.5)

In this case, the representation formula of the solution u changes as follows.

v(x, t) =
(
Ẽ2 ∗ ψ

)
(x, t) +

∫ t

0

(
Ẽ2 ∗ ϕ

)
(x, s)ds+

∫ t

0

(t− τ )α
(
Ẽ2,2(·, t− τ ) ∗ f(·, τ ))(x)dτ.

Using the formulas E2(−|ξ|2t2) = cos(|ξ|t) and

E2,2(−|ξ|2t2) =
1
|ξ|t

∞∑

k=0

(−1)k(|ξ|t)2k+1

Γ(2k + 2)
=

1
|ξ|t sin(|ξ|t),

one easily finds that the solution of (2.5) is

v(x, t) =
(
F−1(cos(| · |t)) ∗ ψ)

(x) +
(

F−1

(
sin(| · |t)

| · |
)

∗ ϕ
)

(x)

+
∫ t

0

(

F−1

(
sin(| · |(t− τ ))

| · |
)

∗ f(·, τ )
)

(x)dτ.

(iii) Let ψ ∈ S (Rn), f ∈ L1([0,∞); S (Rn)) and 0 < α < 1. Then, (2.2) admits a unique
solution v ∈ C1+α([0,∞); S (Rn)). For the proof see [8].

By Mihlin–Hörmander’s theorem, Marcinkiewicz’s interpolation theorem and other har-
monic analysis tool [28–32], one can verify the following propositions; for the detailed proof,
see [8].
Proposition 2.1 (Lp-Lr estimates) Let 1 < r < ∞ and n/2 < p ≤ r. Then, for any
ψ ∈ Lp(Rn), we have

‖W (t)ψ‖r = ‖Ẽ1+α(·, t) ∗ ψ‖r ≤ C‖ψ‖r, ∀ t ∈ R
+, (2.7)

and for any ψ ∈ Lp(Rn), we have

‖W (t)ψ‖r ≤ Ct−
n(1+α)

2

(
1
p− 1

r

)

‖ψ‖p, (2.8)

‖Ẽ1+α,1+α(·, t) ∗ ψ‖r ≤ Ct−
n(1+α)

2

(
1
p− 1

r

)

‖ψ‖p, (2.9)
where C is a constant independent of t and ϕ.
Proposition 2.2 (1) Let (q, r, p) be any admissible triplet such that p > n/2 and ψ ∈ Lp(Rn).
Then

W (t)ψ = Ẽ1+α ∗ ψ ∈ Cb(I;Lp) ∩ Cq(r,p)(I;Lr), (2.10)
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and
‖W (t)ψ‖Cq(r,p)(I;Lr) ≤ C‖ψ‖p, (2.11)

where I = [0, T ) or I = [0,∞) and C is a constant independent of I.
(2) Let (q, r, p) be any admissible triplet such that p > n/2 and ψ ∈ Lp(Rn). Then

W (t)ψ = Ẽ1+α ∗ ψ ∈ Cb(I;Lp) ∩ Lq(I;Lr), (2.12)
and

‖W (t)ψ‖Lq(I;Lr) ≤ C‖ϕ‖p, (2.13)

where I = [0, T ) or I = [0,∞) and C is a constant independent of I.

One easily sees that v(x, t) = W (t)ψ = Ẽ1+α ∗ ψ satisfies (2.1) with f(x, t) = 0 or the
Cauchy Problem to the fractional evolution equation

∂α+1v

∂tα+1
−�v = 0, v(0) = ψ(x). (2.14)

Proposition 2.3 For any initial data ψ satisfying (1.7), then v(x, t) = W (t)ψ is a self-similar
solution to (2.14) and its profile V (x) = (W (1)ψ)(x).
Proof In fact,

v(x, t) = W (t)ψ = W (t)ψρ
∼=

∫

Rn

eix·ξEα+1(−|ξ|2tα+1)λ
2
ρ ψ̂(λx)(ξ)dξ

∼= λ
2
ρ

∫

Rn

eix·ξEα+1(−|ξ|2tα+1)λ−nψ̂

(
ξ

λ

)

dξ

(

η =
ξ

λ

)

∼= λ
2
ρ

∫

Rn

eiλx·ηEα+1(−|η|2(λ 2
α+1 t)α+1)ψ̂(η)dη

= λ
2
ρ (W (λ

2
α+1 t)ψ)(λx) = vλ(x, t), (2.15)

where ∼= denotes the presence of a constant after =. Hence we get

v(x, t) = λ
2
ρ (W (λ

2
α+1 t)ψ)(λx) = λ

2
ρ v(λx, λ

2
α+1 t). (2.16)

Let λ = t−
α+1

2 in (2.16). It follows that

t−
α+1

ρ (W (1)ψ)
(

x

t
α+1

2

)

= t−
α+1

ρ v

(
x

t
α+1

2

, 1
)

= t−
α+1

ρ V

(
x

t
α+1

2

)

. (2.17)

So we get V (x) = W (1)ψ.
Remark 2.2 (1) From (2.15) we have

�vλ(x, t) = λ
2
ρ �v(λx, λ 2

α+1 t)

= λ
2
ρ �

{∫

Rn

eiλx·ηEα+1(−|η|2(λ 2
α+1 t)α+1)ψ̂(η)dη

}

= λ
2
ρ

{∫

Rn

eiλx·ηλ2(−|η|2)Eα+1(−|η|2(λ 2
α+1 t)α+1)ψ̂(η)dη

}

= λ2λ
2
ρ (�v)(λx, λ 2

α+1 t) = λ2(�v)λ. (2.18)
On the other hand, for any f(t) ∈ C2(R+), a simple computation yields

∂α+1

∂tα+1
f(λ

2
α+1 t) =

∫ t

0

(t− s)−α

Γ(1 − α)
· ∂

2f(λ
2

α+1 s)
∂s2

ds

= λ
2

α+1

∫ λ
2

α+1 t

0

(t− λ−
2

1+α τ )−α

Γ(1 − α)
· ∂

2f(τ )
∂τ2

dτ

= λ
2

α+1+ 2α
α+1

∫ λ
2

α+1 t

0

(λ
2

1+α t− τ )−α

Γ(1 − α)
· ∂

2f(τ )
∂τ2

dτ
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= λ2

(
∂α+1f

∂tα+1

)

(λ
2

α+1 t). (2.19)

This implies

λ
2
ρ
∂α+1

∂tα+1
v(λx, λ

2
α+1 t) = λ2λ

2
ρ

(
∂α+1v

∂tα+1

)

(λ
2

α+1 t). (2.20)

So vλ(x, t) satisfies (1.14) with data ψλ by (2.19) and (2.20).
(2) Notice that

∂

∂t
Eα+1(−|ξ|2tα+1) =

∞∑

k=1

(1 + α)k(−1)k|ξ|2kt(1+α)k−1

Γ((1 + α)k + 1)

= −|ξ|2
∞∑

k=0

(1 + α)(k + 1)(−1)k|ξ|2kt(1+α)k+α

Γ((1 + α)(k + 1) + 1)

= −|ξ|2
∞∑

k=0

(−1)k|ξ|2kt(1+α)k+α

Γ((1 + α)k + α+ 1)

= (−1)1−
α

α+1 |ξ|2− 2α
α+1

∞∑

k=0

(−1)k+ α
α+1 |ξ|2(k+ α

α+1 )t(1+α)(k+ α
α+1 )

Γ((1 + α)(k + α
α+1 ) + 1)

= (−1)
1

α+1 |ξ| 2
α+1

∞+ α
α+1∑

k̃= α
α+1

(−1)k̃|ξ|2k̃t(1+α)k̃

Γ((1 + α)k̃ + 1)

∼= (−|ξ|2) 1
α+1Eα+1(−|ξ|2tα+1). (2.21)

One can verify that
∂tW (t)ψ = (−�)

1
α+1W (t)ψ. (2.22)

Therefore we give another equivalent norm to Besov space by using Mittag–Leffler’s functions
or W (t).

By simple computations, one can prove the following results:
Proposition 2.4 (1) Let r ≥ p > p0 = nρ

2 , ρ > max(1, 2
n ). Let (q, r, p0) be any generalized

admissible triplet. Let ψ(x) ∈ Ḃ
n
p − 2

ρ
p,∞ ) ∩ E(q(r,p0),r) with (1.7). Then

v(x, t) = W (t)ψ = t−
α+1

ρ V

(
x

t
α+1

2

)

= Ẽα+1(−|ξ|2tα+1) ∗ ψ, (2.23)

satisfies

v(x, t) ∈ C∗
(
[0,∞); Ḃ

n
p − 2

ρ
p,∞

)
∩ Cq(r,p0)([0,∞);Lr(Rn)). (2.24)

Moreover, its profile V (x) ∈ Ḃ
n
p − 2

ρ
p,∞ (Rn) ∩ Lr(Rn).

(2) Let ψ(x) ∈ Ḃ
n
p − 2

ρ
p,∞ satisfy (1.7), (q, r, p) be any admissible triplet with r > p. Then

v(x, t) ∈ L q(R; Ḃsρ
r,∞) = Ḃ

sρ,∞
Lq

t Lr
x
, sρ =

n

p
− 2
ρ

(2.25)

and its profile V (x) ∈ Ḃ
n
p − 2

ρ
r,q .

Proof One easily checks that

sup
t∈I

t
1

q(r,p0) ‖W (t)ψ‖r � ‖ψ‖E(q(r,p0),r) , (2.26)
∥
∥
∥W (t)ψ;C∗

(
R

+, Ḃ
n
p − 2

ρ
p,∞

)∥
∥
∥ ≤

∥
∥
∥ψ; Ḃ

n
p − 2

ρ
p,∞

∥
∥
∥. (2.27)

As for the proof of other results, see Proposition 2.5.
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Proposition 2.5 Let r ≥ p > p0 = nρ
2 , ρ > max(1, 2

n ). Let ψ(x) ∈ Ḃ
n
p − 2

ρ
p,∞ ∩ E(q(r,p0),r) with

(1.7), and u(x, t) = t−
α+1

ρ U
(

x

t
α+1

2

)
be the self-similar solution to (1.1) or (1.3). Then we have

the following results :
(1) Let (q, r, p0) be any generalized admissible triplet. Then

u(x, t) = t−
α+1

ρ U

(
x

t
α+1

2

)

∈ C∗
(
[0,∞); Ḃ

n
p − 2

ρ
p,∞

)
∩ Cq(r,p0)([0,∞);Lr(Rn)) (2.28)

iff its profile U(x) ∈ Ḃ
n
p − 2

ρ
p,∞ (Rn) ∩ Lr(Rn).

(2) Let (q, r, p) be any admissible triplet with r > p. Then

u(x, t) = t−
α+1

ρ U

(
x

t
α+1

2

)

∈ L q(R; Ḃsα
r,∞) = Ḃsα,∞

Lq
t Lr

x
(2.29)

iff its profile U(x) ∈ Ḃ
n
p − 2

ρ
r,q , where Ḃs,∞

X is the generalized form of Besov space Ḃs
p,∞ in which

Lp is replaced by Banach space X.
Proof The proof of (1) comes from

α+ 1
ρ

+
α+ 1

2

(
n

p
− 2
ρ

)

− (α+ 1)n
2p

= 0,

and
−α+ 1

ρ
+

1
q(r, p0)

+
(α+ 1)n

2r
= 0.

Now we only need to prove (2.29). Let ψ̂0(ξ) ∈ C∞
c (Rn) with

⎧
⎪⎨

⎪⎩

ψ̂0(ξ) = 1,
1
2
≤ |ξ| ≤ 2,

ψ̂0(ξ) = 0, |ξ| ≤ 1
4

or |ξ| ≥ 4.
(2.30)

Define Littlewood–Paley operator as
�μf = F−1(ψ̂μ(ξ)f̂) = ψμ ∗ f, ψ̂μ(ξ) = ψ̂0(μ−1ξ), μ ∈ R

+. (2.31)
One easily checks that [17, 20]

‖f‖Ḃs
p,q

∼=
( ∫ ∞

0

(

μs‖�μf‖p

)q
dμ

μ

) 1
q

. (2.32)

By Fourier transforms one easily verifies

�μu ∼=
∫

Rn

eix·ξψ̂μ(ξ)û(ξ, t)dξ ∼= t−
α+1

ρ

∫

Rn

eix·ξψ̂μ(ξ)
̂

U

(
x

t
α+1

2

)

(ξ)dξ

∼= t−
α+1

ρ

∫

Rn

eix·ξψ̂μ(ξ)Û(t
α+1

2 ξ)dt
α+1

2 ξ

= t−
α+1

ρ

(
�

t
α+1

2 μ
U

)(
x

t
α+1

2

)

, (2.33)

and

‖�μu‖Lq
t Lr

x
=

( ∫ ∞

0

(

t−
α+1

ρ ‖(�
t

α+1
ρ μ

U)
(

x

t
α+1

2

)

‖r

)q

dt

) 1
q

=
( ∫ ∞

0

(

t
n(α+1)

2r −α+1
ρ ‖�

t
α+1

2 μ
U‖r

)q

dt

) 1
q

= μ
2
ρ−n

r − 2
(α+1)q

( ∫ ∞

0

(

(t
α+1

2 μ)
n
r − 2

ρ ‖�
t

α+1
2 μ

U‖r

)q

d(tμ
2

α+1 )
) 1

q

=
(

2
α+ 1

) 1
q

μ
2
ρ−n

r − 2
(α+1)q

( ∫ ∞

0

(

η
2
ρ−n

r ‖�ηU‖r)
)q

η
2

α+1−1dη

) 1
q
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=
(

2
α+ 1

) 1
q

μ
2
ρ−n

r − 2
(α+1)q

( ∫ ∞

0

(

η
2
ρ−n

r + 2
(α+1)q ‖�ηU‖r)

)q
dη

η

) 1
q

. (2.34)

Noting that sρ satisfies

sρ =
n

p
− 2
ρ

=
n

r
+

2
(α+ 1)q

− 2
ρ
, (2.35)

we have

sup
μ>0

μsρ‖�μu‖Lq
t Lr

x
=

(
2

α+ 1

) 1
q

sup
μ>0

( ∫ ∞

0

(

ηsρ‖�ηU‖r)
)q

dη

) 1
q ∼= ‖U‖Ḃ

sρ
r,q
. (2.36)

One easily sees that for any initial data f(x) with (1.7)

‖f ; Ḃ
n
p − 2

ρ
p,∞ ‖ = sup

t∈R+
t−

1
2 ( n

p − 2
ρ )t−

1
ρ

∥
∥
∥
∥H(1)f

(
x√
t

)∥
∥
∥
∥

p

= ‖H(1)f‖p, H(t) = et�, (2.37)

‖f ; E(q(r,p0),r)‖ = sup
t∈R+

t
1

q(r,p0) t−
α+1

ρ

∥
∥
∥
∥(W (1)f)

(
x

t
α+1

2

)∥
∥
∥
∥

r

= ‖W (1)f‖r. (2.38)

We now discuss the relation between ‖H(1)f‖p and ‖�0f‖p, ‖W (1)f‖r and ‖�0f‖r, for
1 < p, r <∞. Now we take ĥ(ξ) = ĥ(|ξ|) ∈ C∞

c with
{

supp ĥ(ξ) ⊂ {ξ, 2−2 ≤ |ξ| ≤ 22},
ĥ(ξ) = 1, 2−1 < |ξ| < 2.

(2.39)

Therefore we easily see that

‖�0f‖p = ‖F−1(ψ̂0(ξ)f̂(ξ))‖p = ‖F−1(ψ̂0(ξ)h(ξ)f̂(ξ))‖p

≤ ‖F−1(e|ξ|
2
h(ξ)ψ̂0(ξ)) ∗ F−1(e−|ξ|2 f̂(ξ))‖p

≤ ‖F−1(e|ξ|
2
h(ξ)ψ̂0(ξ))‖1‖F−1(e−|ξ|2 f̂(ξ))‖p

� ‖H(1)f‖p, (2.40)

or

‖�0f‖r = ‖F−1(ψ̂0(ξ)f̂(ξ))‖r = ‖F−1(ψ̂0(ξ)h(ξ)f̂(ξ))‖r

≤ ‖F−1(Eα+1(|ξ|2)h(ξ)ψ̂0(ξ)) ∗ F−1(Eα+1(−|ξ|2)f̂(ξ))‖r

≤ ‖F−1(Eα+1(|ξ|2)h(ξ)ψ̂(ξ))‖1‖F−1(Eα+1(−|ξ|2)f̂(ξ))‖r

� ‖W (1)f‖r, (2.41)

where � denotes the presence of a constant after ≤.
On the other hand, we decompose F = H(1)f or F = W (1)f as

F = H(1)f = H(1)((1 − ϕ) ∗ f) +H(1)ϕ ∗ f
= F−1(e−|ξ|2(1 − ϕ̂)f̂) + F−1(e−|ξ|2 ϕ̂f̂)
�

== F1 + F2, (2.42)

or

F = W (1)f = W (1)((1 − ϕ) ∗ f) +W (1)ϕ ∗ f
= F−1(Eα+1(−|ξ|2)(1 − ϕ̂)f̂) + F−1(Eα+1(−|ξ|2)ϕ̂f̂)
�

== F1 + F2, (2.43)

where ϕ̂ = 1 − ∑∞
k=1 ψ̂k(ξ). One easily verifies that

F̂1 ⊂ {ξ; |ξ| ≥ 1}, �j(F1) = 0, j ≤ −1, (2.44)

F̂2 ⊂ {ξ; |ξ| ≤ 2}, �j(F2) = 0, j ≥ 2. (2.45)
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Since f(x) satisfies the scaling condition (1.7), it follows that

�j(f) = F−1
(
ψ̂0

( ξ

2j

)
f̂
) ∼=

∫

Rn

ei2jx·ξψ̂0(ξ)2jnf̂(2jξ)dξ

∼=
∫

Rn

ei2jx·ξψ̂0(ξ)
̂
f
( x

2j

)
(ξ)dξ

∼=
∫

Rn

ei2jx·ξψ̂0(ξ)2j 2
ρ f̂(ξ)dξ

∼= 2j 2
ρ �0(f)(2jx). (2.46)

We first estimate ‖�j(F2)‖p or ‖�j(F2)‖r. Since

�j(F2) = F−1(ψ̂j(ξ)F̂2) = F−1(ψ̂j(ξ)
ˆ̃ψj(ξ)F̂2) = �j(f) ∗ �̃j(ϕ̃), ˆ̃ψj =

2∑

	=−2

ψ̂j+	, (2.47)

where
ˆ̃ϕ(ξ) = e−|ξ|2 ϕ̂, or ˆ̃ϕ(ξ) = Eα+1(−|ξ|2)ϕ̂, (2.48)

we obtain
‖�jF2‖	 � ‖�̃j(ϕ̃)‖1‖�j(f)‖	 � 2j( 2

ρ−n
� )‖�0f‖	, j ≤ 1, � = p, r (2.49)

where we have used ‖�̃j(ϕ̃)‖1 ≤ C‖ϕ̃‖1. For j ≥ 0, we have
‖�j(F1)‖	 = ‖H(1)�j(f1)‖	 (or ‖W (1)�j(f1)‖	)

� ‖�j(f1)‖1 � ‖�j(f)‖1 � 2( 2
ρ−n)j‖�0f‖1,

f̂1 = (1 − ϕ̂)f̂ , � = p, r (2.50)
by (2.46). So we have the following proposition:
Proposition 2.6 (1) Let f(x) ∈ Lp(Rn). Then ‖�0f‖p ≤ C‖H(1)f‖p.

(2) Let f(x) ∈ Lr(Rn). Then ‖�0f‖r ≤ C‖W (1)f‖r.

(3) Let f(x) ∈ Ḃ
n
p − 2

ρ
p,∞ satisfy (1.7) and �0f(x) ∈ L1 ∩ Lp. Then H(1)f ∈ Lp such that

‖f ; Ḃ
n
p − 2

ρ
p,∞ (Rn)‖ = ‖H(1)f(x)‖p � ‖�0f‖1 + ‖�0f‖p. (2.51)

(4) Let f(x) ∈ E(q(r,p0),r)(Rn) satisfy (1.7) and �0f(x) ∈ L1 ∩Lr. Then W (1)f ∈ Lr such
that

‖f ; E(q(r,p0),r)(Rn)‖ = ‖W (1)f(x)‖r � ‖�0f‖1 + ‖�0f‖r. (2.52)

3 Proof of Theorem 1.1 and Corollary 1.2
It is well known that (1.1) is equivalent to the following integral equation:

u(·, t) = Ẽ1+α(·, t) ∗ ψ +
∫ t

0

Ẽ1+α(·, t− s) ∗
∫ s

0

Rα(s− τ )f(u(τ ))dτds

= Ẽ1+α(·, t) ∗ ψ +
∫ t

0

(t− τ )αẼ1+α,1+α(·, t− τ ) ∗ f(u(τ ))dτ

�
= W (t)ψ + G f(u). (3.1)

Proof of Theorem 1.1 According to the equivalent norm of Besov spaces and Proposition 2.4,
we have

‖W (t)ψ; Cq(r,p0)([0,∞);Lr)‖ +
∥
∥
∥W (·)ψ;C∗

(
[0,∞); Ḃ

n
p − 2

ρ
p,∞

)∥
∥
∥

≤C
[∥
∥
∥ψ; Ḃ

n
p − 2

ρ
p,∞

∥
∥
∥ + ‖ψ; E(q(r,p0),r)(Rn)‖

]
(3.2)

for any generalized admissible triplet (q, r, p0), where C > 0 is independent of ψ, and (q, r, p0).
Denote by Λ the set of all generalized admissible triplets (q, r, p0) satisfying (1.14). Define

X :=
{
u ∈ C∗

(
R

+; Ḃ
n
p − 2

ρ
p,∞

)
∩ Cq(r,p0)(R+;Lr), (q, r, p0) ∈ Λ

}
(3.3)
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with the norm
‖u;X‖ := sup

(q,r,p0)∈Λ

sup
t∈R+

t
1

q(r,p0) ‖u‖r + sup
t∈R+

∥
∥
∥u; Ḃ

n
p − 2

ρ
p,∞

∥
∥
∥. (3.4)

Let us introduce the complete metric space

X =
{
u ∈ X, ‖u;X‖ ≤M(p), M(p) = 2C

[∥
∥
∥ψ; Ḃ

n
p − 2

ρ
p,∞

∥
∥
∥ + ‖ψ; E(q(r,p0),r)(Rn)‖

]}
, (3.5)

with the metric
d(u, v) = ‖u− v;X‖, (3.6)

and consider, in the metric space X , the operator T defined by the right side of (3.1), i.e.
T u :=W (t)ψ + G f(u), f(u) = μuρ+1, u ∈ X . (3.7)

By Lp-Lr estimate in Proposition 2.1–Proposition 2.2, it follows that

‖G f(u); Cq(r,p0)(I;Lr)‖ ≤ sup
t∈R+

t
1
q

∫ t

0

|t− τ |α−n(α+1)
2 ( 1+ρ

r − 1
r )‖u‖ρ+1

r dτ

≤
∫ 1

0

|1 − τ |α−nρ(α+1)
2r τ−

ρ+1
q dτ · ‖u; Cq(r,p0)([0,∞);Lr)‖ρ+1

≤ C‖u; Cq(r,p0)(I;L
r)‖ρ+1, (3.8)

where use has been made of the fact that nρ/(2r) < 1 and q > 1 + ρ. Moreover, noticing that

Lp0 ⊂ Ḃ
n
p − 2

ρ
p,∞ , we also obtain by Proposition 2.1–Proposition 2.2 that

∥
∥
∥G f(u);C∗

(
[0,∞); Ḃ

n
p − 2

ρ
p,∞

)∥
∥
∥ ≤ C‖G f(u);C∗([0,∞);Lp0)‖

≤ sup
t∈R+

∫ t

0

|t− τ |α−n(α+1)
2 ( 1+ρ

r − 1
p0

)‖u‖ρ+1
r dτ

≤ C sup
t∈R+

∫ t

0

|t− τ |α−n(α+1)
2 ( ρ+1

r − 1
p0

)τ−
ρ+1

q dτ‖u; Cq(r,p0)(I;L
r)‖ρ+1

≤ C

∫ 1

0

|1 − τ |α−n(α+1)
2 ( ρ+1

r − 1
p0

)τ−
ρ+1

q dτ‖u; Cq(r,p0)(I;L
r)‖ρ+1

≤ C‖u; Cq(r,p0)(I;L
r)‖ρ+1, (3.9)

for any (q, r, p0) ∈ Λ and u ∈ X .
Combining (3.2), (3.8) and (3.9), we obtain that for u ∈ X ,

‖T u;X‖ ≤ C‖ψ;X‖ + 2C‖u;X‖ρ+1. (3.10)
Similarly to what we do in deriving (3.8) and (3.9) we can easily obtain that for u, v ∈ X ,

d(T u,T v) ≤ C[‖u;X‖ρ + ‖v;X‖ρ]d(u, v). (3.11)
Then (3.8)–(3.11) imply that there exists η(p) > 0 with the following properties: If ‖ψ‖X < η(p),

then there exists a unique solution u(x, t) ∈ C∗([0,∞); Ḃ
n
p − 2

ρ
p,∞ )∩Cq(r,p0)([0,∞);Lr(Rn)) to (1.1)

which satisfies estimates (1.15)–(1.18) by Proposition 2.3–Proposition 2.5.

Proof of Corollary 1.2 Consider now the case r ≤ 1+ρ. By interpolation between C∗(R+;Lp0)
and any space Cq̃(r̃,p0)(R+;Lr̃) with (q̃, r̃, p0) ∈ Λ, the solution u obtained in Theorem 1.1 with
(q̃, r̃, p0) ∈ Λ satisfies that u ∈ Cq(r,p0)(R

+;Lr). It suffices to show that u ∈ Cq(r,p0)(R
+;Lr) for

any generalized admissible triplet (q, r, p0) with r ≥ p0(ρ+1). To this end, let r̃ = p0(1+ρ)− ε,
where ε > 0 is so small that

n(α+ 1)
2

(
ρ+ 1
r̃

− 1
r

)

< 1, (3.12)

which is guaranteed by the fact that r < np0(α+ 1)/(n(α+ 1) − 2p0) if n(α + 1) > 2p0 and
r < ∞ if n(α + 1) ≤ 2p0. Let 1

q̃ = n
2 ( 1

p0
− 1

r̃ ). Then (q̃, r̃, p0) ∈ Λ and a simple calculation
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yields that

‖G f(u)‖Cq(r,p0)(R+;Lr) ≤ sup
t∈R+

t
1
q

∫ t

0

|t− τ |α−n(α+1)
2 ( ρ+1

r̃ − 1
r )‖u‖ρ+1

r̃ dτ

≤
∫ 1

0

|1 − τ |α−n(α+1)
2 ( ρ+1

r̃ − 1
r )τ−

1+ρ
q̃ dτ · ‖u; Cq̃(r̃,p0)(R

+;Lr̃)‖ρ+1

≤ C‖u; Cq̃(r̃,p0)(R+;Lr̃)‖ρ+1, (3.13)
where use has been made of (3.12) and the fact that q̃ > 1 + ρ.

Remark 3.1 (1) Let Ω ∈ Ck(Σn−1), k > 0 and let

ψ(x) = κ
Ω(x′)
|x|d , x′ =

x

|x| , 0 < d < n. (3.14)

Lemma 4 in Ribaud and Youssfi [RY] assures that
|�0(ψ)(x)| ≤ Cκ‖Ω‖Ck(1 + |x|)−k−d. (3.15)

Therefore, when k ≥ n, we have ψ(x) ∈ Ḃ
n
p − 2

α
p,∞ ∩ E(q(r,p0),r)(Rn), in Theorem 1.1 and Corol-

lary 1.2.
(2) According to [15] and [16], one easily sees that the solution u(x, t) ∈ Lq(R+;Lr(Rn)

which is obtained in Theorem 1.1 for any admissible triplet (q, r, p0).
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