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Abstract Let Pi, 1 ≤ i ≤ 5, be prime numbers. It is proved that every integer N that satisfies

N ≡ 5 (mod 24) can be written as N = p2
1 + p2

2 + p2
3 + P 2

4 + p2
5, where

∣
∣
√

N5 − pi

∣
∣ ≤ N

1
2− 19

850+ε.
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1 Introduction
Among numerous results, Hua [1] proved that every sufficiently large integer satisfying n ≡
5 (mod 24) is equal to the sum of five prime squares. Liu and Zhan [2] could improve this result
by proving the following:
Theorem 1 Assume the Great Riemann Hypothesis. Then any sufficiently large integer n
satisfying n ≡ 5 (mod 24) can be written as

n = p2
1 + p2

2 + p2
3 + p2

4 + p2
5, (1.1)

where
∣
∣pi −

√
n
5

∣
∣ ≤ y, i = 1, 2, 3, 4, 5 for y = n

9
20+ε.

In [3] the same problem was investigated without assuming the Great Riemann Hypothesis.
It was proved that (1.1) holds for

y = n
1
2−δ, (1.2)

for a δ ≥ 0. The proof uses the ideas of Liu and Tsang ([4, 5]). The exact value of δ depends
on the existence of the Siegel zero of the Dirichlet series and is not exactly calculated. Liu and
Zhan ([6]) could further improve on this result by showing that (1.2) holds for δ = 1

50−ε, ∀ε > 0.
This result gives not only a fixed value for δ, but also a value for δ that does not depend on
the existence of the possible Siegel zero of the Dirichlet series. Here we will further improve on
this result by proving the following theorem:
Theorem Any sufficiently large positive integer n satisfying n ≡ 5 (mod 24) can be written
as

n = p2
1 + p2

2 + p2
3 + p2

4 + p2
5, (1.3)

where
∣
∣pi −

√
n
5

∣
∣ ≤ y, i = 1, 2, 3, 4, 5 for y = n

1
2− 19

850+ε.

2 Preliminaries and Outline of the Proof
(a, b) and [a, b] denote the greatest common divisor and the smallest common multiple of two
integers a and b, respectively. Let L = log x, e(x) = e2πix, N1 =

√
n
5 − y, N2 =

√
n
5 + y,

q
∑

a=1
(a,q)=1

=
q

∑

a=1

∗
,

∑

χ mod q
χ primitive

=
∑

χ mod q

∗
, S(α) =

∑

N1≤m≤N2

Λ(m)e(m2α),
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R(n) =
∑

n=m2
1
+m2

2
+m2

3
+m2

4
+m2

5
N1<mi≤N2

Λ(m1)Λ(m2)Λ(m3)Λ(m4)Λ(m5).

Define for a character χ mod q C(a, χ) =
∑q

h=1 χ(h)e(a
q h2), C(a, χ0) = C(a, q). Let c and

ε, ε1, ... > 0 denote constants that may take different values on different occasions. We shall
write xεLc � xε, xε1xε1 � xε1 . Set

P = n2+ε1y−4, Q = y7n− 5
2−2ε1 . (2.1)

We define the major arcs M and the minor arcs m by M = ∪q≤P ∪q
a=1

(a,q)=1
[a
q − 1

Qq , a
q + 1

Qq ],

m = [− 1
Q , 1 − 1

Q ] \ M. We have

R(n) =
∫

M

S5(α)e(−nα) dα +
∫

m

S5(α)e(−nα) dα =: R1(n) + R2(n). (2.2)

We will prove that R(n) > 0 for sufficiently large n that satisfy the congruence conditions in
(1.1). This proves Theorem 2.

For the treatment of the minor arcs we quote the following lemma due to Harman [7]:
Lemma 2.1 Suppose ε > 0 is given and |qα − a| < q−1 with (a, q) = 1. Then

∑

x≤n≤x+y

Λ(n) e(n2α) � y1+ε

(
1
q

+
x

1
2

y
+

x
4
3

y2
+

qx

y3

) 1
4

holds for 1 ≤ q ≤ xy.
Applying this to S(α) we find that

max
α∈m

|S(α)| � y1+ε

(

P−1/4 +
n

1
16

y
1
4

+
n

1
6

y
1
2

+
Q

1
4 n

1
8

y
3
4

)

� y2n− 1
2−ε1/8, (2.3)

by choosing ε1 ≥ 8ε. Using (2.3) we estimate the contribution of the minor arcs as

R2(n) ≤ sup
α∈m

|S(α)|
∫ 1

0

|S(α)|4 dα � y4n− 1
2 L−B, (2.4)

for any B > 0. In the following sections we shall first show that, for any B > 0

R1(n) =
1
32

P0

∑

q≤P

Y (q)
φ5(q)

+ O(y4x− 1
2 L−B), (2.5)

where
y4x−1/2 � P0 =

∑

m1+m2+m3+m4+m5=n

N2
1

<mi≤N2
2

1√
m1m2m3m4m5

� y4x−1/2, (2.6)

if n ∈]x/2, x]. We further define

Z(q, χ1, χ2, χ3, χ4, χ5) =
q

∑

a=1

∗
C(a, χ1)C(a, χ2)C(a, χ3)C(a, χ4)C(a, χ5)e

(

−a

q
n

)

,

Z(q, χ0, χ0, χ0, χ0, χ0) = Y (q), A(q) =
Y (q)
φ5(q)

, s(p) =
{

1 + A(p), p > 2,

1 + A(2) + A(4) + A(8), p = 2.

}

.

Finally we will derive

R1(n) =
1
32

P0

∏

p≥1

s(p) + O(y4x−1/2L−B), (2.7)

where
∏

p≥1 s(p) > c, from (2.5). The theorem follows from (2.2), (2.4), (2.6) and (2.7).

3 Treatment of the Major Arcs
We define

S(λ, χ) =
∑

N1<m≤N2

Λ(m)χ(m)e(m2λ), T (λ) =
∑

N1<m≤N2

e(m2λ),



Sums of Five Almost Equal Prime Squares 835

W (λ, χ) = S(λ, χ) − E0T (λ), E0 =

{

1, ifχ = χ0,

0, otherwise.

}

.

In the following we will appeal to the following lemma which is contained in Lemmas 5.1 and
5.2 in [8]:
Lemma 3.1 If (a, q) = 1, then C(a, χ) � q1/2+ε.

Splitting the summation over m in the rest of the classes modulo q we obtain

S

(
a

q
+ λ

)

=
C(a, q)
φ(q)

T (λ) +
1

φ(q)

∑

χ mod q

C(a, χ)W (λ, χ) + O(L2).

Thus we derive from (2.2) that

R1(n) = Rm
1 (n) + Re

1(n) + O
(

x
5
2+3ε1y−3

)

, (3.1)

where

Rm
1 (n) =

∑

q≤P

1
φ5(q)

q
∑

a=1

∗ C5(a, q)e
(

−a

q
n

) ∫ 1/Qq

−1/Qq

T 5(λ)e(−nλ)d λ,

Re
1(n) =

∑

q≤P

1
φ5(q)

q
∑

a=1

∗
∫ 1/Qq

−1/Qq

(
∑

χ

C(a, χ)W (λ, χ)
)5

e

(

− a

q
n − λn

)

d λ

+ 5
∑

q≤P

1
φ5(q)

q
∑

a=1

∗
∫ 1/Qq

−1/Qq

C(a, q)T (λ)
(

∑

χ

C(a, χ)W (λ, χ)
)4

e

(

−a

q
n − λn

)

d λ

+ 10
∑

q≤P

1
φ5(q)

q
∑

a=1

∗
∫ 1/Qq

−1/Qq

(C(a, q)T (λ))2
(

∑

χ

C(a, χ)W (λ, χ)
)3

e

(

−a

q
n − λn

)

d λ

+ 10
∑

q≤P

1
φ5(q)

q
∑

a=1

∗
∫ 1/Qq

−1/Qq

(C(a, q)T (λ))3
(

∑

χ

C(a, χ)W (λ, χ)
)2

e

(

−a

q
n − λn

)

d λ

+ 5
∑

q≤P

1
φ5(q)

q
∑

a=1

∗
∫ 1/Qq

−1/Qq

(C(a, q)T (λ))4
∑

χ

C(a, χ)W (λ, χ)e
(

−a

q
n − λn

)

d λ

=:
∑

1

+5
∑

2

+10
∑

3

+10
∑

4

+5
∑

5

. (3.2)

We first evaluate the main term Rm
1 . We will use the following lemmas:

Lemma 3.2 Let f(x), g(x) be monotonic functions in the interval [a, b] and |g(x)| � M.

(i) If |f ′(x)| 
 m > 0, then
∫ b

a
g(x) e(f(x)) dx � M/m.

(ii) If |f ′′(x)| 
 r > 0, then
∫ b

a
g(x) e(f(x)) dx � M/r

1
2 .

(iii) If |f ′(x)| ≤ θ < 1, g(x), g′(x) � 1,
∑

a<n≤b g(n)e(f(n)) =
∫ b

a
g(x) e(f(x)) dx+O( 1

1−θ ).
Proof See Lemma 4.8 in [9] and Chapter 21 in [10].

Lemma 3.3 |Z(q,χ0χ1,χ0χ2,χ0χ3,χ0χ4,χ0χ5)|
φ5(q) � r−3/2+ε(log P )c.

Proof Let I denote the left-hand side in Lemma 3.3 and write Z(q) = Z(q, χ0χ1, χ0χ2, χ0χ3).
Arguing as in Lemma 6.7, [11] we obtain I � ∑

u|a
|Z(ur)|
φ5(ur)

∑
q≤Q/ur
(q,r)=1

|A(q)|, where a � 1. Using

Lemma 3.1 we find that
∑

u|a
|Z(ur)|
φ5(ur) � r−3/2+ε. Thus Lemma 3.3 follows from

∑

q≤P

|A(q)| � (log P )c. (3.3)
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To prove (3.3) we argue as in Lemma 5.4 a) and the proof of Lemma 6.3 c) in [11] and get
∑

q≤P

|A(q)| �
∏

p≤P

(

1 +
c

p

)

� (log P )c.

Now we apply Lemma 3.2 to T (λ) and find

T (λ) =
∫ N2

N1

e(λu2)d u + O(1) =
1
2

∫ N2
2

N2
1

v−1/2e(λv)d v + O(1) =
1
2

∑

N2
1 <m≤N2

2

e(λm)√
m

+ O(1).

Substituting this in Rm
1 (n) we see

Rm
1 (n) =

1
32

∑

q≤P

Y (q)
φ5(q)

∫ 1/Qq

−1/Qq

(
∑

N2
1 <m≤N2

2

e(λm)√
m

)5

e(−nλ)d λ

+ O

(
∑

q≤P

|Y (q)|
φ5(q)

∫ 1/Qq

−1/Qq

∣
∣
∣
∣

∑

N2
1 <m≤N2

2

e(λm)√
m

∣
∣
∣
∣

4

d λ

)

.

(3.4)

Using
∑

N2
1 <m≤N2

2

e(λm)√
m

� min
(

y,
1√
x|λ|

)

(3.5)

and Lemma 3.3 with r = 1 we derive, from (3.4),

Rm
1 (n) =

1
32

∑

q≤P

Y (q)
φ5(q)

∫ 1/2

−1/2

(
∑

N2
1 <m≤N2

2

e(λm)√
m

)5

e(−nλ)d λ + O
(

y4x−1/2L−B
)

+O

(
∑

q≤P

∣
∣
∣
∣

Y (q)
φ5(q)

∣
∣
∣
∣

∫ 1/2

1/Qq

1
(
√

x|λ|)5 d λ

)

=
1
32

P0

∑

q≤P

Y (q)
φ5(q)

+ O
(

(PQ)4x−5/2
)

+ O
(

y4x−1/2L−B
)

=
1
32

P0

∑

q≤P

Y (q)
φ5(q)

+ O(y4x−1/2L−B),

(3.6)

∀B > 0, where P0 is defined as in (2.6). Applying Lemma 3.3 we can estimate
∑

1 in the
following way:

∣
∣
∣

∑

1

∣
∣
∣ =

∣
∣
∣
∣
∣

∑

q≤P

1
φ5(q)

∑

χ1 mod q

∑

χ2 mod q

∑

χ3 mod q

∑

χ4 mod q

∑

χ5 mod q

Z(q, χ1, χ2, χ3, χ4, χ5)
∫ 1/Qq

−1/Qq

5∏

j=1

W (λ, χj)e(−nλ)dλ

∣
∣
∣
∣
∣

≤
∑

r1≤P

∑

r2≤P

∑

r3≤P

∑

r4≤P

∑

r5≤P

[r1,r2,r3,r4,r5]≤P

∑

χ1 mod r1

∗ ∑

χ2 mod r2

∗

∑

χ3 mod r3

∗ ∑

χ4 mod r4

∗ ∑

χ5 mod r5

∗ ∫ 1/Q[r1,r2,r3,r4,r5]

−1/Q[r1,r2,r3,r4,r5]

5∏

j=1

|W (λ, χj)| d

×
∑

q≤P
[r1,r2,r3,r4,r5]|q

|Z(q, χ1χ0, χ2χ0, χ3χ0, χ4χ0, χ5χ0|
φ5(q)
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� Lc
∑

r1≤P

∑

r2≤P

∑

r3≤P

∑

r4≤P

∑

r5≤P

[r1, r2, r3, r4, r5]−
3
2+ε

∑

χ1 mod r1

∗ ∑

χ2 mod r2

∗ ∑

χ3 mod r3

∗

∑

χ4 mod r4

∗ ∑

χ5 mod r5

∗ ∫ 1/Q[r1,r2,r3,r4,r5]

−1/Q[r1,r2,r3,r4,r5]

5∏

i=1

|W (λ, χi)|dλ.

Using [r1, r2, r3, r4, r5]
3
2 ≥ (r1r2)

39
152 (r3r4r5)

25
76 we obtain

∑

1

� Lc max
|λ|≤1/Q

I3(λ)W 2, (3.7)

where

I(λ) =
∑

r≤P

r−25/76+ε
∑

χ

∗|W (λ, χ)|, W =
∑

r≤P

r−39/152+ε
∑

χ

∗
( ∫ 1/Qr

−1/Qr

|W (λ, χ)|2d λ

)1/2

.

Arguing similarly we obtain

5
∑

2

+10
∑

3

+10
∑

4

+5
∑

5

� LcW 2I2T + W 2IT 2 + W 2T 3 + WT 3S, (3.8)

where T = max|λ|≤1/Q |T (λ)| � y, and using (3.5) we get S = (
∫ 1/Q

−1/Q
|T (λ)|2 dλ)1/2 �

y1/2x−1/4. Thus we see from (3.1), (3.2), (3.6)–(3.8) that the proof of (2.5) reduces to the
proof of the following two lemmas:
Lemma 3.4 If P ≤ n

38
425−ε2 , then W �B y1/2x−1/4L−B for any B > 0.

Lemma 3.5 If P ≤ n
38
425−ε2 , then max|λ|≤1/Q I(λ) � yLA for a certain A > 0.

For the proof of these lemmas we will appeal to the following results:

Lemma 3.6 For any P ≥ 1, T ≥ 1 and k = 0, 1
∑

q≤P

∑

χ mod q

∗ ∫ T

−T

∣
∣
∣
∣
L(k)

(
1
2

+ it, χ

)∣
∣
∣
∣

4

dt � P 2T (log PT )4(k+1).

Lemma 3.7 For any P ≥ 1, T ≥ 1 and any complex numbers an

∑

q≤P

∑

χ mod q

∗ ∫ T

−T

∣
∣
∣
∣

M∑

n=M+N

anχ(n)n−it

∣
∣
∣
∣

2

dt �
M∑

n=M+N

(P 2T + n)|an|2.

Lemma 3.8 Let N∗(α, T, q) denote the number of zeros σ + it of all L-functions to primitive
characters modulo q within the region σ ≥ α, |t| ≤ T . Then

∑

q≤Q

N∗(α, T, q) � (Q2T )12(1−α)/5(log Q2T )c.

These three lemmas may be found in [8].

4 Proof of Lemma 3.4

Let
W =

∑

R≤P

WR, (4.1)

with WR =
∑

r∼R r−39/152+ε
∑

χ
∗(

∫ 1/Qr

−1/Qr
|W (λ, χ|2)1/2. To prove the lemma it is enough to

show that
WR � y1/2x−1/4L−B−1, ∀B > 0. (4.2)

Applying Lemma 1, [12] and setting X = max
(

t, N2
1

)

and X + Y = min
(

t + Qr, N2
2

)

, we get
∫ 1/Qr

−1/Qr

|W (λ, χ)|2 d λ � (QR)−2

∫ N2
2

N2
1−QR

∣
∣
∣
∣

∑

X≤m2≤X+Y

Λ(m)χ(m) − E0

∣
∣
∣
∣

2

dt. (4.3)
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In the following we will treat the cases R > LD and R ≤ LD separately for a sufficiently large
constant D > 0. In the first case we argue exactly as in part III, [13] and find that the inner
sum in (4.3) is a linear combination of O(Lc) terms of the form

SIa1,..,Ia2k+1
=

1
2πi

∫ T

−T

F

(
1
2

+ it, χ

)
(X + Y )

1
2 ( 1

2+iu) − X
1
2 ( 1

2+iu)

1
2 + iu

d u + O(T−1x
1
2+ε),

where 2 ≤ T ≤ x,

F (s, χ) =
10∏

j=1

fj(s, χ), fj(s, χ) =
∑

n∈Ij

aj(n)χnn−s, aj(n) =

⎧

⎪⎨

⎪⎩

log n or 1, j = 1,

1, 1 < j ≤ 10,

μ(n), 6 ≤ n ≤ 10.

⎫

⎪⎬

⎪⎭

,

√
x �

10∏

j=1

Nj � √
x, Nj ≤ x1/10, 6 ≤ j ≤ 10. (4.4)

We see (X+Y )
1
2 ( 1

2+iu)−X
1
2 ( 1

2+iu)

1
2+iu

d u � min
(

QRx−3/4, x1/4(|u| + 1)−1
)

. Taking T = x2εP 2 and
T0 = x

QR we derive from (4.3) that in order to prove (4.2) it is enough to show that

∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
F

(
1
2

+ it, χ

)∣
∣
∣
∣

dt � x1/4R39/152−εL−B−1−c, R ≤ P, (4.5)

∑

r∼R

∑

χ

∗ ∫ 2T1

T1

∣
∣
∣
∣
F

(
1
2

+ it, χ

)∣
∣
∣
∣

dt � T1QR191/152−εx−3/4L−B−1−c

for R ≤ P, T0 < |T1| ≤ T. (4.6)

For the proof of (4.5) and (4.6) we will first prove the following propositions:

Proposition 1 If there exist Nj1 and Nj2 (1 ≤ j1, j2 ≤ 5) such that Nj1Nj2 ≥ P 85/38+ε3

then (4.5) is true.

Proof Without loss of generality we suppose that j1 = 1, a1(n) = log n and j2 = 2, a2(n) = 1.
Arguing as in the proof of Proposition 1 in [13] and applying Lemma 3.6 we obtain

∑

r∼R

∑

χ mod r

∗ ∫ T0

0

∣
∣
∣
∣
f1

(
1
2

+ it, χ

)∣
∣
∣
∣

4

dt

� L4

∫ x1/2

−x1/2

dv

1 + |v|
∑

r∼R

∑

χ mod r

∗ ∫ T0+v

v

∣
∣
∣
∣
L′

(
1
2

+ it, χ

)∣
∣
∣
∣

4

dt + T0R
2L4

� L5 max
|N|≤T0

∫ N

N/2

dv

1 + |v|
∑

r∼R

∑

χ mod r

∗ ∫ T0+v

v

∣
∣
∣
∣
L′

(
1
2

+ it, χ

)∣
∣
∣
∣

4

dt + T0R
2L4

+ L5 max
|N|≤x1/2

N−1

∫ T0

0

dt
∑

r∼R

∑

χ mod r

∗ ∫ N+t

N
2 +t

∣
∣
∣
∣
L′

(
1
2

+ iv, χ

)∣
∣
∣
∣

2

dv + T0R
2L4

� R2T0L
10.

Using Lemma 3.7 and the last result we find
∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
F

(
1
2

+ it, χ

)∣
∣
∣
∣

dt

�
(

∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
f1

(
1
2

+ it, χ

)∣
∣
∣
∣

4

dt

)1/4( ∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
f2

(
1
2

+ it, χ

)∣
∣
∣
∣

4

dt

)1/4
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(
∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣

10∏

j=3

fj

(
1
2

+ it, χ

)∣
∣
∣
∣

2

dt

)1/2

� (R2T0)1/2

(

R2T0 +
x1/2

Nj1Nj2

)1/2

Lc � x1/4R
39
152 L−B−1−c,

due to the choice of T0 and P .

Proposition 2 Let J = {1, ..., 10}. If J can be divided into two non-overlapping subsets J1

and J2 such that max(
∏

j∈J1
Nj ,

∏

j∈J2
Nj) � x

1
2 P− 85

38−ε4 , then (4.5) is true.

Proof Let Fi(s, χ) =
∏

j∈Ji
fj(s, χ) =

∑

n�x1/2P− 85
38−ε4

bi(n)χ(n)n−s, bi(n) � dc(n), i =
1, 2, where Mi =

∏

j∈J1
Nj . Applying Lemma 3.7 and (4.4) we see

∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
F

(
1
2

+ it, χ

)∣
∣
∣
∣

dt

�
(

∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
F1

(
1
2

+ it, χ

)∣
∣
∣
∣
dt

)1/2( ∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
F2

(
1
2

+ it, χ

) ∣
∣
∣
∣
dt

)1/2

� (R2T0 + M1)1/2(R2T0 + M2)1/2 � R2T0 + x
1
4 RP− 85

76−
ε4
2 T

1/2
0 + x1/4Lc.

This proves the lemma because of R > LD. Now we can prove (4.5). In view of Proposition
1 and P = x

38
425−ε2 we assume NiNj ≤ P 85/38+ε5 ≤ x1/5, 1 ≤ i, j ≤ 5, i �= j, from which

we conclude that there is at most one Nj (1 ≤ j ≤ 10) satisfying Nj ≥ x1/10. Suppose this
Nj = Nj0 , otherwise Nj0 = 1. Re-order the Nj : Nj1 ≥ Nj2 ≥ · · · ≥ Njk

(k = 9 or 10). There
is an integer 1 ≤ l ≤ k − 1 such that Nj0Nj1 · · ·Njl−1 ≤ x1/5 and Nj0Nj1 · · ·Njl

≥ x1/5.

Set M1 = Nj0Nj1 · · ·Njl
and M2 = Njl+1 · · ·Njk

. We find M1 ≤ x1/5Njl
≤ x3/10 and M2 �

x1/2M−1
1 � x3/10. The sets M1 and M2 fulfill the conditions of Proposition 2 and therefore

(4.5) is proved. The proof of (4.6) goes along the same lines and is therefore omitted. (4.3)
therefore holds in the case q > LD. In the case q ≤ LD we can estimate the sum on the
right-hand side of (4.3) by using the zero expansion of the von Mangoldt function:

∑

X≤m2≤X+Y

Λ(m)χ(m) − E0

∑

X≤m2≤X+Y

1 �
∑

|Im ρ|≤x1/6

∣
∣
∣
∣

(X + Y )ρ/2

ρ
− Xρ/2

ρ

∣
∣
∣
∣
+ O(x1/3L2)

� QRx−1/2
∑

|Imρ|≤x1/6

x
β−1

2 + O(x1/3L2),

where ρ runs over the non-trivial zeros of the L-function corresponding to χ with |Im p| ≤ xδ

and β = Im ρ. Now applying Lemma 3.8 and the fact that the L-functions to moduli Q ≤ LD

have no zeros σ + it in the region σ ≥ 1 − δ(T ) : 1 − c0
log q+(log(T+2))4/5 , |t| ≤ T, we choose

T = x1/6 and thus obtain, from (4.3),
∫ 1/Qr

−1/Qr

|W (λ, χ)|2 d λ � yx−1/2

(
∑

|Im ρ|≤x1/6

x
β−1

2

)2

+ (QR)−2x
7
6 yL4

� yx−1/2Lc

(

max
1
2≤β≤1−δ(T )

x
2
5 (1−β)x

1
2 (β−1)

)2

+ x
37
6 +4ε1y−13Lc � yx−1/2 exp(−cL1/5),

for any B > 0. This proves (4.1) for R ≤ LD.

5 Proof of Lemma 3.5

To prove the lemma it is enough to show that maxR≤P/2

∑

r∼R

∑

χ
∗|W (λ, χr)| � yLA−1R

25
76−ε,
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where r ∼ R denotes R < r ≤ 2R. Arguing as in the section before we find that

W (χ, λ) � Lc max
Ia1 ,..,Ia2k+1

∣
∣
∣
∣

∫ T

−T

F

(
1
2

+ it, χ

)

d t

∫ N2
2

N2
1

u−3/4e

(
t

4π
log u + λu

)

d u

∣
∣
∣
∣
+ yx−εP−2,

if
T = x

1
2+2εy−1P 2(1 + |λ|x). (5.1)

Estimating the inner integral by Lemma 3.2 we obtain
∫ N2

2

N2
1

u−3/4

(
t

4π
log u + λu

)

du| � x−3/4 min
(

yx1/2,
x

√|t| + 1
,

x

min
N1<u≤N2

|t + 4πλu|
)

.

Taking and T0 = xy−2 and T1 = 1 + 8π|λ|u we conclude that in order to prove the lemma it is
enough to prove that

∑

r∼R

∑

χ

∗ ∫ T0

0

∣
∣
∣
∣
F

(
1
2

+ it, χ

)∣
∣
∣
∣

dt � x1/4R
25
76−εLc, R ≤ P/2,

∑

r∼R

∑

χ

∗ ∫ T1

T0

∣
∣
∣
∣
F

(
1
2

+ it, χ

)∣
∣
∣
∣

dt � yx−1/4T
1
2
1 R

25
76−εLc, R ≤ P/2,

∑

r∼R

∑

χ

∗ ∫ 2T1

T1

∣
∣
∣
∣
F

(
1
2

+ it, χ

)∣
∣
∣
∣

dt � yx−1/4T1R
25
76−εLc, T0 ≤ |T1| ≤ 2T, R ≤ P/2.

These estimates can be shown in the same way as the estimates (4.5) and (4.6). Because of
A > 0 the proof works here for all q ≥ 1.

6 Proof of Theorem 1
We now derive (2.7) from (2.5). We use
Lemma 6.1

∑

q≤P A(q) =
∏

p≤P s(p) + O
(

P−1/2+ε
)

, where
∏

p≤P s(p) > c > 0.

Proof This is Lemma 4.2 in [2]. Applying Lemma 6.1 to (2.5) yields (2.7).
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