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1 Introduction

The problems of periodic solutions for second order ordinary differential equations have been
extensively studied. In recent papers, some results on the existence of periodic solutions of
delay differential equations have appeared by applying the continuation theorem, see papers
[1–5]. These papers were devoted mainly to studying the following types of equations:

x′′(t) + g(x(t − τ )) = p(t), (1)

x′′(t) + ax′(t) + bx(t) + g(x(t − 1)) = p(t), (2)

and
x′′(t) = f(t, x(t), x(t − τ (t)))x′(t) + β(t)g(x(t − τ1(t))) + p(t). (3)

The growth condition imposed on the nonlinear function g(x) of papers [2–5] is as follows:

lim
|x|→∞

|g(x)|
|x| = r. (4)

But the work to get the existence of periodic solutions for the neutral functional differential
equation (NFDE) by using the continuation theorem of coincidence degree rarely appeared. As
far as we know, there were only two papers [6–7] devoted to studying the existence of periodic
solutions to the first order NFDE. The reason for it lies in the following two respects: The first
is that the criteria of the L-compactness of nonlinear operator N on the set Ω̄ is difficult to
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establish; the second is that the a priori bounds of periodic solutions is not easy to estimate.
In paper [7], Enrico Serra studied a kind of first order NFDE of the following form:

x′(t) + ax′(t − τ ) = f(t, x(t)).

Under the condition: |a| < 1, and

α(t) ≤ lim inf
|s|→∞

f(t, s)
s

≤ lim sup
|s|→∞

f(t, s)
s

≤ β(t), for a.e. t ∈ P, (5)

where α, β ∈ L∞, f : R × R → R is a Carathéodory function of period 2π in the first variable,
P is a subset of [0, 2π] with positive measure. The author obtained that the above equation
has at least one periodic solution (Theorem 3.1). This article investigates the existence of a
periodic solution for a kind of second order NFDE as follows:

d2

dt2
(u(t) − ku(t − τ )) = f(u(t))u′(t) + α(t)g(u(t)) +

n∑
j=1

βj(t)g(u(t − γj(t))) + p(t), (6)

where f, g ∈ C(R, R), α(t), p(t), βj(t), γj(t) (j = 1, 2, . . . , n) are continuous periodic functions
defined on R with period T > 0, k, τ ∈ R are constants such that |k| �= 1. By using the
continuation theorem of coincidence degree theory and some new analysis techniques, we obtain
some new results on the existence of the a periodic solution to Eq. (6). Even if for k = 0, the
methods to estimate the a priori bounds of a periodic solution and to find the conditions
imposed on g(x) are different from the corresponding ones of the recent literatures. Meanwhile,
we also obtain some other new results on the non-existence and unique existence of a periodic
solution to Eq. (6), respectively.

2 Main Lemmas

Let CT = {x|x ∈ C(R, R), x(t + T ) ≡ x(t)} with norm |ϕ|0 = maxt∈[0,T ] |ϕ(t)|, ∀ϕ ∈ CT , and
C1

T = {x|x ∈ C1(R, R), x(t + T ) ≡ x(t)} with norm ‖ϕ‖ = max{|ϕ|0, |ϕ′|0}. Clearly, CT and
C1

T are two Banach spaces. We also define operator A in the following form:

A : CT → CT , (Ax)(t) = x(t) − kx(t − τ ).

Lemma 1 If |k| �= 1, then A has a continuous bounded inverse on CT , and :

(1) ||A−1x|| ≤ ||x||
||k|−1| , ∀x ∈ CT ;

(2)
∫ T

0
|(A−1f)(t)|dt ≤ 1

|1−|k||
∫ T

0
|f(s)|ds, ∀f ∈ CT ;

(3)
∫ T

0
|(A−1f)(t)|2dt ≤ 1

(1−|k|)2
∫ T

0
|f(s)|2ds, ∀f ∈ CT .

Proof (1) According to paper [8], we get that ∀x ∈ CT ,

[A−1x](t) =

⎧⎪⎪⎨
⎪⎪⎩

∑
j≥0

kjx(t − jτ ), if |k| < 1,

−
∑
j≥1

k−jx(t + jτ ), if |k| > 1.

Thus A has a continuous inverse A−1 on CT , and

||A−1x|| ≤ 1
||k| − 1| ||x||.
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(2) If |k| < 1, we have∫ T

0

|[A−1f ](s)|ds ≤
∑
j≥0

|k|j
∫ T

0

|f(s − jτ )|ds =
∑
j≥0

|k|j
∫ T−jτ

−jτ

|f(s)|ds

=
∑
j≥0

|k|j
∫ T

0

|f(s)|ds =
1

1 − |k|
∫ T

0

|f(s)|ds.

Similarly, if |k| > 1, again we have∫ T

0

|[A−1f ](s)|ds ≤ 1
|k| − 1

∫ T

0

|f(s)|ds.

Thus, the statement of Case (2) holds.

(3) For f ∈ CT , f(t) =
∑

n∈Z fneiµnt, where fn = 1
T

∫ T

0
f(s)e−iµnsds, µn = 2nπ

T , n ∈ Z,
Z is the set of integers. Let x(t) = (A−1f)(t), i.e., x(t) − kx(t − τ ) = f(t). So (A−1f)(t) =∑

n∈Z
fn

1−ke−iµnτ eiµnt. Thus, by using Parseval’s inequality, we have

1
T

∫ T

0

|(A−1f)(s)|2ds =
∑
n∈Z

|fn|2
|1 − ke−iµnτ |2 =

∑
n∈Z

|fn|2
|1 − k cos µnτ − ik sin µnτ |2

=
∑
n∈Z

|fn|2
1 + k2 − 2k cos µnτ

≤ 1
(1 − |k|)2

∑
n∈Z

|fn|2

=
1

(1 − |k|)2
1
T

∫ T

0

|f(s)|2ds,

which implies that ∫ T

0

|(A−1f)(s)|2ds ≤ 1
(1 − |k|)2

∫ T

0

|f(s)|2ds.

Remark 1 By Hale’s terminology [9], a solution u(t) of Eq. (6) is u ∈ C1(R, R) such that
Au ∈ C2(R, R) and Equation (6) is satisfied on R. In general, u does not belong to C2(R, R).
But, under the condition |k| �= 1, we see from the first part of Lemma 1 that (Au)′′(t) = (Au′′)(t)
and (Au)′(t) = (Au′)(t). So a solution u of Eq. (6) must belong to C2(R, R).

Now, we define an operator L in the following form:

L : D(L) ⊂ C1
T → CT , Lx = (Ax)′′,

where D(L) = {x|x ∈ C2(R, R), x(t + T ) ≡ x(t)}. According to the first part of Lemma 1,
we can easily get that KerL = R, and ImL = {x|x ∈ CT ,

∫ T

0
x(s)ds = 0}. Therefore, L is

a Fredholm operator with index zero. Let P : C1
T → KerL, Q : CT → CT /Im L defined by

Px = x(0), Qx = 1
T

∫ T

0
x(s)ds and

LP = L|CT ∩KerP : CT ∩ KerP → Im L.

Then LP has a continuous inverse L−1
P on Im L defined by(

L−1
P y

)
(t) = (A−1Fy)(t), (7)
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where

[Fy](t) = −1
2

∫ T

0

sy(s)ds +
∫ T

0

t

T
sy(s)ds

+
∫ t

0

(t − s)y(s)ds − 1
T

∫ T

0

∫ u

0

(u − s)y(s)dsdu.

Lemma 2 Let g ∈ CT , τ ∈ C1
T with τ ′(t) < 1, ∀t ∈ [0, T ]. Then g(µ(t)) ∈ CT , where µ(t) is

the inverse function of t − τ (t).

Proof We need to prove only that µ(a + T ) = µ(a) + T , for arbitrary a ∈ R. By the condition
τ ′(t) < 1, ∀ t ∈ [0, T ], it is easy to see that the equation t − τ (t) = a has a unique solution t0,
and t − τ (t) = a + T has a unique solution t1. That is,

t0 − τ (t0) = a, t1 − τ (t1) = a + T,

i.e.,
µ(a) = t0 = a + τ (t0) and µ(a + T ) = t1. (8)

Since

T + a + τ (t0) − τ (T + a + τ (t0)) = T + a + τ (t0) − τ (a + τ (t0))

= T + a + τ (t0) − τ (t0)

= T + a,

it follows that t1 = T + a + τ (t0). So by (8), we have µ(a + T ) = µ(a) + T , ∀a ∈ R.

Lemma 3 [10] Let X and Y be two Banach spaces, L : D(L) ⊂ X → Y be a Fredholm
operator with index zero, Ω ⊂ X be an open bounded set, and N : Ω → Y be L-compact on Ω.
If all the following conditions hold :

(1) Lx �= λNx, ∀x ∈ ∂Ω ∩ D(L), ∀λ ∈ (0, 1) ;
(2) Nx /∈ ImL, ∀x ∈ ∂Ω ∩ KerL ;
(3) deg{QN, Ω ∩ KerL, 0} �= 0,

then equation Lx = Nx has a solution on Ω ∩ D(L).

3 Main Results

Throughout this paper, we assume that γj ∈ C1
T , and γ′

j(t) < 1, ∀t ∈ [0, T ], (j = 1, 2, . . . , n). So
the function t − γj(t) has a unique inverse denoted by µj(t), (j = 1, 2, . . . , n). We also denote

h̄ =
1
T

∫ T

0

h(s)ds, h̃ =
∫ T

0

|h(s)|ds, ∀ h ∈ CT ,

Γ(t) = α(t) +
n∑

j=1

β(µj(t))
1 − γ′

j(µj(t))
,

Γ1(t) = |α(t)| +
n∑

j=1

∣∣∣∣ β(µj(t))
1 − γ′

j(µj(t))

∣∣∣∣.
For the sake of convenience, we list the following conditions which will be used for us to

study Eq. (6) in this section:
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[H1] g(x) > 0, ∀ x ∈ R, limx→+∞ g(x) = +∞ and limx→−∞ g(x) = 0; or limx→+∞ g(x) = 0
and limx→−∞ g(x) = +∞.

[H2] p̄Γ(t) < 0, ∀ t ∈ [0, T ].
[H3] g(x) is a strictly monotonous function and satisfies

|g(x1) − g(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ R,

where L > 0 is a constant.

Theorem 1 If assumptions [H1]–[H2] hold, furthermore, supx∈R |f(x)| = σ1 < +∞ and

|k|σ1T

(1 − |k|)2 < 1,

then Eq. (6) has at least one T -periodic solution.

Proof It is easy to see that Eq. (6) has a T -periodic solution if and only if the following
operator equation:

Lu = Nu,

has a T -periodic solution, where L is defined in Section 2, N : C1
T → CT ,

(Nu)(t) = f(u(t))u′(t) + α(t)g(u(t)) +
n∑

j=1

βj(t)g(u(t − γj(t))) + p(t).

From (7), we see that N is L-compact on Ω, where Ω is any open, bounded subset of C1
T . Take

Ω1 = {x|x ∈ C1
T ∩ D(L), Lu = λNu, λ ∈ (0, 1)}. Then ∀u ∈ Ω1, u must satisfy

d2

dt2
(u(t) − ku(t − τ )) = λf(u(t))u′(t) + λα(t)g(u(t)) + λ

n∑
j=1

βj(t)g(u(t − γj(t))) + λp(t). (9)

Without loss of generality, we may assume that limx→+∞ g(x) = +∞ and limx→−∞ g(x) = 0.
By integrating the two sides of Eq. (9) on the interval [0, T ], we have∫ T

0

f(u(t))u′(t)dt +
∫ T

0

α(t)g(u(t))dt +
n∑

j=1

∫ T

0

βj(t)g(u(t − γj(t)))dt = −p̄T. (10)

Since ∫ T

0

βj(t)g(u(t − γj(t)))dt =
∫ T−γj(T )

−γj(0)

β(µj(s))
1 − γ′

j(µj(s))
g(u(s))ds,

by applying Lemma 2, we know that β(µj(t))
1−γ′

j
(µj(t))

∈ CT . It follows that

∫ T

0

βj(t)g(u(t − γj(t)))dt =
∫ T

0

βj(µj(s))
1 − γ′

j(µj(s))
g(u(s))ds, (j = 1, 2, . . . , n),

which together with
∫ T

0
f(u(t))u′(t)dt = 0 yields from (10) that∫ T

0

Γ(t)g(u(t))dt = −p̄T. (11)

So by using the integral mean value theorem, we have that there is t1 ∈ [0, T ] such that

g(u(t1))ΓT = −p̄ T,
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i.e.,

g(u(t1)) =
−p̄

Γ
.

By assumption [H1] and [H2], we obtain that there is a constant M > 0 such that |u(t1)| ≤ M.

Therefore,

|u|0 ≤ M +
∫ T

0

|u′(t)|dt. (12)

On the other hand, by multiplying the two sides of Eq. (9) by (Au)(t) and integrating them
on [0, T ], we get from Remark 1 that

−
∫ T

0

[(Au′)(t)]2dt = −
∫ T

0

[(Au)′(t)]2dt

= λ

∫ T

0

f(u(t))u′(t)[u(t) − ku(t − τ )]dt

+ λ

∫ T

0

α(t)g(u(t))[u(t)− ku(t − τ )]dt

+ λ
n∑

j=1

∫ T

0

βj(t)g(u(t − γj(t)))[u(t)− ku(t − τ )]dt

+ λ

∫ T

0

p(t)[u(t) − ku(t − τ )]dt. (13)

Since
∫ T

0
f(u(t))u′(t)u(t)dt = 0, it follows from (13) that∫ T

0

[(Au′)(t)]2dt ≤ |k|σ1|u|0
∫ T

0

|u′(t)|dt + (1 + |k|)|u|0p̃

+ (1 + |k|)|u|0
[ ∫ T

0

|α(t)|g(u(t))dt +
n∑

j=1

∫ T

0

|βj(t)|g(u(t − γj(t)))dt

]

= |k|σ1|u|0
∫ T

0

|u′(t)|dt + (1 + |k|)|u|0p̃

+ (1 + |k|)|u|0
[ ∫ T

0

|α(t)|g(u(t))dt +
n∑

j=1

∫ T

0

|βj(µj(t))|
1 − γ′

j(µj(t))
g(u(t))dt

]

= |k|σ1|u|0
∫ T

0

|u′(t)|dt + (1 + |k|)|u|0p̃ + (1 + |k|)|u|0
∫ T

0

Γ1(t)g(u(t))dt.

From (11), we have∫ T

0

(Au′(t))2dt ≤ |k|σ1|u|0
∫ T

0

|u′(t)|dt + (1 + |k|)|u|0
(

1 +
∣∣∣∣Γ1

Γ

∣∣∣∣
0

)
p̃. (14)

By (12), we obtain from (14) that∫ T

0

(Au′(t))2dt ≤ |k|σ1

(∫ T

0

|u′(t)|dt

)2

+
(
|k|σ1M + (1 + |k|)p̃

(
1 +

∣∣∣∣Γ1

Γ

∣∣∣∣
0

)) ∫ T

0

|u′(t)|dt
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+ (1 + |k|)p̃M

(
1 +

∣∣∣∣Γ1

Γ

∣∣∣∣
0

)

≤ |k|σ1T

∫ T

0

|u′(t)|2dt

+
(
|k|σ1M + (1 + |k|)p̃

(
1 +

∣∣∣∣Γ1

Γ

∣∣∣∣
0

))
T 1/2

( ∫ T

0

|u′(t)|2dt

)1/2

+ (1 + |k|)p̃M

(
1 +

∣∣∣∣Γ1

Γ

∣∣∣∣
0

)
. (15)

By applying the third part of Lemma 1, we get∫ T

0

|u′(t)|2dt =
∫ T

0

|(A−1Au′)(t)|2dt ≤
∫ T

0
|(Au′)(t)|2dt

(1 − |k|)2 .

So it follows from (15) that∫ T

0

|u′(t)|2dt ≤ |k|σ1T

(1 − |k|)2
∫ T

0

|u′(t)|2dt + C1

( ∫ T

0

|u′(t)|2dt

)1/2

+ C2,

where C1 = (|k|σ1M+(1+|k|)p̃(1+|Γ1
Γ |0))T 1/2

(1−|k|)2 , C2 = (1+|k|)p̃M(1+|Γ1
Γ |0)

(1−|k|)2 . Thus there is a constant
M1 > 0 such that ∫ T

0

|u′(t)|2dt ≤ M1.

It follows from (12) that

|u|0 ≤ M + T 1/2M
1/2
1 := M. (16)

By applying the second part of Lemma 1, we have from Remark 1 and (9) that∫ T

0

|u′′(t)|dt =
∫ T

0

|(A−1Au′′)(t)|dt

≤ 1
|1 − |k||

∫ T

0

|(Au′′)(t)|dt =
1

|1 − |k||
∫ T

0

|(Au)′′(t)|dt

≤ 1
|1 − |k||

[ ∫ T

0

|f(u(t))||u′(t)|dt +
∫ T

0

|α(t)|g(u(t))dt

+
n∑

j=1

|βj(t)|g(u(t − γj(t)))dt + p̃

]

≤ 1
|1 − |k||

[
fMT 1/2M

1/2
1 + |α|0gM

+
n∑

j=1

|βj |0gM
+ p̃

]

:= M1,

where g
M

= sup|x|≤M g(x), fM = sup|x|≤M |f(x)|. Since u(0) = u(T ), it follows that there is a
η ∈ [0, T ] such that u′(η) = 0. So

|u′|0 ≤
∫ T

0

|u′′(t)|dt ≤ M1.

Thus Ω1 is bounded.
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Let Ω2 = {x|x ∈ kerL, Nx ∈ ImL}. ∀x ∈ Ω2, obviously, u(t) ≡ C (C is a constant), and∫ T

0

[
α(t)g(C) +

n∑
j=1

g(C)
]
dt = −p̄T,

i.e.,

g(C)
(

ᾱ +
n∑

j=1

β̄

)
= −p̄.

By the substitution t = s − γj(s), i.e., s = µj(t), we have

βjT =
∫ T

0

βj(s)ds =
∫ T−γj(T )

−γj(0)

βj(µj(t))
1 − γ′

j(µj(t))
dt =

∫ T

0

βj(µj(t))
1 − γ′

j(µj(t))
dt (j = 1, 2, . . . , n).

So ᾱ+
∑n

j=1 β̄ = Γ �= 0. Thus g(C) = −p̄[ᾱ+
∑n

j=1 β̄]−1. From assumption [H1], we know that
there is a constant M2 > 0 such that |C| < M2. Thus Ω2 is also bounded. Let Ω ⊃ Ω1 ∪ Ω2

be open and bounded. So Ω satisfies the conditions (1) and (2) of Lemma 3. Now, for u ∈
∂Ω ∩ KerL, we take

H(u, µ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µu +
1 − µ

T

∫ T

0

[
α(t)g(u) +

n∑
j=1

βj(t)g(u) + p(t)
]
dt for

(
ᾱ +

n∑
j=1

β̄

)
> 0,

−µu +
1 − µ

T

∫ T

0

[
α(t)g(u) +

n∑
j=1

βj(t)g(u) + p(t)
]
dt for

(
ᾱ +

n∑
j=1

β̄

)
< 0.

Clearly,

H(u, µ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

µu +
1 − µ

T

[
g(u)

(
ᾱ +

n∑
j=1

β̄

)
+ p̄

]
for ᾱ +

n∑
j=1

β̄ > 0,

−µu +
1 − µ

T

[
g(u)

(
ᾱ +

n∑
j=1

β̄

)
+ p̄

]
for ᾱ +

n∑
j=1

β̄ < 0.

Hence,
H(u, µ) �= 0 for (u, µ) ∈ ∂Ω ∩ KerL × [0, 1].

Therefore,

deg{QN, Ω ∩ KerL, 0} = deg{H(u, 0), Ω ∩ KerL, 0} = deg{H(u, 1), Ω ∩ KerL, 0} �= 0.

By applying Lemma 3, we obtain that Eq. (6) has at least one T -periodic solution.

Theorem 2 If assumptions [H1]–[H2] hold and |k| < 1, then Eq. (6) has at least one T -
periodic solution.

Proof Consider the following equation:

d2

dt2
(u(t) − ku(t − τ )) = λf(u(t))u′(t) + λα(t)g(u(t))

+ λ
n∑

j=1

βj(t)g(u(t − γj(t))) + λp(t). (17)

Let u(t) be an arbitrary T -periodic solution of Eq. (17). Then, from the proof of Theorem 1,
we know that

|u|0 ≤ M +
∫ T

0

|u′(t)|dt. (18)
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Multiplying the two sides of Eq. (17) by u(t) and integrating them on the interval [0, T ], then∫ T

0

(u(t) − ku(t − τ ))′′u(t)dt = λ

∫ T

0

f(u(t)u(t)u′(t))dt

+ λ
n∑

j=1

∫ T

0

βj(t)g(u(t − γj(t)))u(t)dt + λ

∫ T

0

p(t)u(t)dt. (19)

Since ∫ T

0

(u(t) − ku(t − τ ))′′u(t)dt = −
∫ T

0

(u′(t))2dt + k

∫ T

0

u′(t)u′(t − τ )dt

and
∫ T

0
f(u(t)u(t)u′(t))dt = 0, it follows from (19) and (11) that∫ T

0

(u′(t))2dt = k

∫ T

0

u(t)u′(t − τ ) − λ

∫ T

0

α(t)g(u(t))u(t)dt

− λ
n∑

j=1

∫ T

0

βj(t)g(u(t − γj(t)))u(t)dt − λ

∫ T

0

p(t)u(t)dt

≤ |k|
[ ∫ T

0

(u′(t))2dt

∫ T

0

(u′(t − τ ))2dt

]1/2

+ |u|0
∫ T

0

Γ1(t)g(u(t))dt + |u|0
∫ T

0

|p(t)|dt

≤ |k|
∫ T

0

(u′(t))2dt + |u|0
(∣∣∣∣Γ1

Γ

∣∣∣∣
0

|p̄T + p̃

)
.

In view of |u|0 ≤ M +
∫ T

0
|u′(t)|dt and |k| < 1, one can easily find from the above formula that

there is a constant M̃ > 0 such that
∫ T

0
(u′(t))2dt ≤ M̃ . The remainder can be proved in the

same way as in Theorem 1.

In what follows, we will give another two results on the unique existence of T -periodic
solution to Eq. (6).

Theorem 3 Suppose that the assumptions of [H1]–[H3] hold, and f(x) ≡ a, where a ∈ R is
a constant. Then Eq. (6) has a unique T -periodic solution, if

|k| + LT

(
α̃ +

n∑
j=1

β̃j

)
< 1.

Proof By applying Theorem 2, we can easily obtain that Eq. (6) has a T -periodic solution.
We suppose that u1(t) and u2(t) are two T -periodic solutions of Eq. (6), and also denote
z(t) = u1(t) − u2(t). Then z(t) satisfies

d2

dt2
(z(t) − kz(t − τ )) = az′(t) + α(t)[g(u1(t)) − g(u2(t))]

+
n∑

j=1

βj(t)[g(u1(t − γj(t))) − g(u2(t − γj(t)))]. (20)

Integrating the two sides of Eq. (20), we have∫ T

0

Γ(t)[g(u1(t)) − g(u2(t))]dt = 0,
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which implies that there is a constant t̄ ∈ [0, T ] such that

[g(u1(t̄)) − g(u2(t̄))]ΓT = 0,

i.e.,
g(u1(t̄)) = g(u2(t̄)).

By [H3], we get that u1(t̄) = u2(t̄), i.e., z(t̄) = 0. It follows that

|z|0 ≤
∫ T

0

|z′(t)|dt. (21)

On the other hand, by multiplying the two sides of Eq. (20) by z(t), we have∫ T

0

(z(t) − kz(t − τ ))′′z(t)dt

= a

∫ T

0

z′(t)z(t)dt +
∫ T

0

α(t)[g(u1(t)) − g(u2(t))]z(t)dt

+
n∑

j=1

∫ T

0

βj(t)[g(u1(t − γj(t))) − g(u2(t − γj(t)))]z(t)dt. (22)

Since
∫ T

0
(z(t) − kz(t − τ ))′′z(t)dt = − ∫ T

0
(z′(t))2dt + k

∫ T

0
z′(t)z′(t − τ )dt,

∫ T

0
z(t)z′(t)dt = 0

and |g(u1(t))−g(u1(t))| ≤ L|z(t)|, |g(u1(t−γj(t)))−g(u2(t−γj(t))| ≤ L|z(t−γj(t))|, it follows
from (22) that∫ T

0

z′2(t)dt = k

∫ T

0

z(t)z′(t − τ )dt −
∫ T

0

α(t)[g(u1(t)) − g(u2(t))]z(t)dt

−
n∑

j=1

∫ T

0

βj(t)[g(u1(t − γj(t))) − g(u2(t − γj(t)))]z(t)dt

≤ |k|
[ ∫ T

0

(z′(t))2dt

∫ T

0

(z′(t − τ ))2dt

]1/2

+ L|z|20
∫ T

0

|α(t)|dt

+ L|z|20
n∑

j=1

∫ T

0

|βj(t)|dt

= |k|
∫ T

0

(z′(t))2dt +
[
α̃ +

n∑
j=1

β̃j

]
L|z|20. (23)

Considering (21), we see |z|20 ≤ T
∫ T

0
|z′(t)|2dt. So it follows from (23) that[

1 − |k| − LT

(
α̃ +

n∑
j=1

β̃j

)] ∫ T

0

z′2(t)dt ≤ 0. (24)

In view of 1−|k|−LT [α̃+
∑n

j=1 β̃j ] > 0, it follows from (24) that
∫ T

0
z′2(t)dt = 0, which together

with (21) yields that |z|0 ≤ ∫ T

0
|z′(t)|dt ≤ T 1/2

( ∫ T

0
z′2(t)dt

)1/2 = 0, i.e., |z|0 = 0, and then
u1(t) ≡ u2(t). Therefore, Eq. (6) has a unique T -periodic solution. Similarly, we have:

Theorem 4 Suppose that assumptions [H1], [H2] and [H3] hold, and f(x) ≡ a, where a ∈ R
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is a constant. Furthermore, we assume that

|k||a|T
(1 − |k|)2 +

LT (1 + |k|)(α̃ +
∑n

j=1 β̃j)
(1 − |k|)2 < 1.

Then Eq. (6) has a unique T -periodic solution.

Finally, we give a new result on the non-existence of periodic solution to Eq. (6).

Theorem 5 Suppose g(x) �= 0, ∀x ∈ R, Γ(t) ≤ 0, ∀t ∈ R or Γ(t) ≥ 0, ∀t ∈ R, and Γ �= 0. If
one of the following conditions holds :

(1) p̄ = 0; (2) sgn(g(x))Γp̄ > 0;

then Eq. (6) has no T -periodic solution.

Proof (1) If Eq. (6) has a T -periodic solution, by integrating the two sides of Eq. (6) on the
interval [0, T ], we have∫ T

0

α(t)g(u(t))dt +
n∑

j=1

∫ T

0

βj(t)g(u(t − γj(t)))dt = 0. (25)

From the proof of Theorem 1, we find that
∫ T

0
Γ(t)g(u(t))dt = 0. It follows that there is a

ξ ∈ [0, T ] such that g(u(ξ))ΓT = 0, i.e., g(u(ξ)) = 0, which contradicts g(x) �= 0, ∀x ∈ R. So
the conclusion holds.

(2) If Eq. (6) has a T -periodic solution, we can prove in the same way as in Case (1) that∫ T

0
Γ(t)g(u(t))dt = −p̄T, so there is ξ1 ∈ [0, T ] such that g(u(ξ1))ΓT = −p̄T, i.e., g2(u(ξ1)) =

− p̄T

Γ
g(u(ξ1)) < 0, which also leads to a contradiction. Thus, Eq. (6) has no T -periodic solution.

Example 1 Consider the following equation:

d2

dt2
(u(t) − ku(t − τ )) = (sin t)

[
(u′(t))2n + 1

]

+
(
1 +

1
2

sin t
) [(

u
(
t − 1

2
cos t

))2n

+ 1
]

+ 2 sin t, (26)

where n is a positive integer, k, τ are constants such that |k| �= 1. According to the definition
of Γ(t), we have

Γ(t) = sin t +
1 + 1

2 sin µ(t)
1 + 1

2 sin µ(t)
= 1 + sin t ≥ 0,

and Γ = 1 �= 0, g(x) = x2n + 1 ≥ 1, p̄ = 1
2π

∫ T

0
sin tdt = 0. So by applying Theorem 5, we

obtain that Eq. (26) has no 2π-periodic solution.

Example 2 Let us consider the following equation:

(u(t) − 9u(t + 3))′′ =
u2(t)u′(t)
1 + u2(t)

+
(1

2
sin t

)
eu(t) +

(
1 − 1

3
cos t

)
eu(t− 1

3 sin t) + cos t − 1. (27)

Clearly, T = 2π, k = 9, f(x) = x2

1+x2 , g(x) = ex, α(t) = 1
2 sin t, β1(t) = 1− 1

3 cos t, γ1(t) = 1
3 sin t,

p(t) = cos t − 1. So σ1 = 1, p̄ = −1, Γ(t) = 1
2 sin t + 1− 1

3 cos µ1(t)

1− 1
3 cos µ1(t)

= 1 + 1
2 sin t > 0, ∀t ∈

[0, 2π], where µ1(t) is the inverse of t − 1
3 sin t, and then p̄Γ(t) < 0, ∀t ∈ [0, 2π]. Furthermore,
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limx→+∞ g(x) = +∞, limx→−∞ g(x) = 0 and

|k|σ1T

(1 − |k|)2 =
18π

64
< 1.

Thus, by applying Theorem 1, we have that Eq. (27) has at least one 2π-periodic solution.

Remark 2 From Example 2, we see that assumption [H1], imposed on g(x) = ex, is different
from the corresponding ones of (4) and (5) which are needed by papers [2–5,7].

Remark 3 Since Eq. (6) contains multiple deviating arguments, even if k = 0, the methods
in papers [1–5] to estimate the a priori bounds of periodic solutions cannot be adapted for this
paper.
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