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Abstract In this paper, we consider a vibrating beam with one segment made of viscoelastic material

of a Kelvin–Voigt (shorted as K–V) type and other parts made of elastic material by means of the

Timoshenko model. We have deduced mathematical equations modelling its vibration and studied the

stability of the semigroup associated with the equation system. We obtain the exponential stability

under certain hypotheses of the smoothness and structural condition of the coefficients of the system,

and obtain the strong asymptotic stability under weaker hypotheses of the coefficients.
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1 Introduction
In recent years, there has been much interest in the problems of exponential stability for elastic
systems with locally distributed damping (the damping is distributed only in a subdomain).
Most of the works were devoted to the viscous damping, i.e., damping is proportional to the
velocity (see, such as [1, 2, 3]). Structures with local viscoelasticity arise from use of smart
material or passive stabilization of structures. However, very little is known about exponential
stability for elastic systems with local viscoelastic damping, although there is a fairly deep
understanding when the damping is distributed over the entire domain, see [4] for a review.
To our knowledge, the first paper in this direction was published in 1998 by Liu and Liu [5]
where they obtained exponential stability for the Euler–Bernoulli beam equation with local K-V
damping. They [5] also gave the surprising result that the energy of the solution to the string
equation with local K-V damping and piecewise constant coefficients does not exponentially
decay. This suggests that the geometric optics condition given in [6] may be insufficient for
the exponential stability of elastic systems with the local viscoelastic damping. Then, the
exponential decay of the energy of a vibrating string with local viscoelasticity of both K-V and
Boltzmann types is established in [4] under certain hypotheses of smoothness of the coefficients.
We also refer the readers to Rivera et al. [7, 8] for wave equations with local Boltzmann
damping. Zero initial history data were assumed in both [7] and [8]. In this paper, we consider
the Timoshenko beam with local K-V viscoelasticity.
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Consider a nonhomogeneous cantilever beam. Suppose that its motion is in the X-Z plane
(no torsion). Furthermore, we assume that the cross-section being perpendicular to the centroid
trace before deformation is still in a plane after deformation, and there is no strain in it during
deformation [9, 10]. Thus we have

σy = σz = τyz = τyx = 0.

Let u,w be the longitudinal and transverse displacements of the median plane of the beam
and ϕ be the total rotatory angle of the fiber on the centroid trace (it is positive from positive
direction of x-axis to positive direction of y-axis). Under the above assumptions, all u,w and
ϕ are functions of the spatial coordinate x only, and the displacement vector is

u = (u− zϕ, 0, w). (1.1)

Under the linear strain-displacement assumption, the nonzero strains are

εx = u′ − zϕ′, γxz = w′ − ϕ. (1.2)

Hereafter, the prime denotes the derivative with respect to the spatial variable x. Assume
that the beam is made of viscoelastic material [11] with K-V constitutive relations (damping is
proportional to strain rate). Then we have

σx = Eεx + E1ε̇x, τxz = Gγxz +G1γ̇xz, (1.3)

where E = E(x) ≥ E0 > 0, G = G(x) ≥ G0 > 0, E1 = E1(x) ≥ 0, G1 = G1(x) ≥ 0. E0 and G0

are constants. Here and after, the dot denotes the derivative with respect to the time variable
t. By the principle of virtual work (see [10]), the work done by the stress through virtual strain
equals the work done by the external force through the virtual displacement, i.e.,∫ ∫ ∫

σ · δεdV =
∫ ∫ ∫

(F −mr̈) · δrdV +
∫ ∫

Fs · δrdS,
where σ and ε are stress and strain tensors, m denotes density, F and Fs are volume and area
distributions of external forces. In our case, F=Fs=0. The deformation vector r = (x, y, z)+u
and the virtual displacement δr = δu satisfy geometric constraint conditions. Thus we have

0 =
∫ ∫ ∫

(mr̈ · δr + σ · δε)dV

=
∫ ∫ ∫

{m(ü− zϕ̈)(δu− zδϕ) +mẅδw

+ (Eεx + E1ε̇x)δεx + (Gγxz +G1γ̇xz)δγxz}dV
=
∫ ∫ ∫

{m(ü− zϕ̈)(δu− zδϕ) +mẅδw

+ [E(u′ − zϕ′) + E1(u̇′ − zϕ̇′)](δu′ − zδϕ′)
+ [G(w′ − ϕ) +G1(ẇ′ − ϕ̇)](δw′ − δϕ)}dV

=
∫ ∫ ∫

{müδu+mz2ϕ̈δϕ+mẅδw

+ (Eu′ + E1u̇
′)δu′ + (Eϕ′ + E1ϕ̇

′)z2δϕ′

+ [G(w′ − ϕ) +G1(ẇ′ − ϕ̇)]δw′ − [G(w′ − ϕ) +G1(ẇ′ − ϕ̇)]δϕ}dV

=
∫ L

0

{ρüδu+ Iρϕ̈δϕ+ ρẅδw + (pu′ +Deu̇
′)δu′ + (EIϕ′ +Dbϕ̇

′)δϕ′

+ [K(w′ − ϕ) +Ds(ẇ′ − ϕ̇)]δw′ − [K(w′ − ϕ) +Ds(ẇ′ − ϕ̇)]δϕ}dx.
In the fourth equality, we have used the symmetry of the centroid trace with respect to the
spatial coordinate z. Here, ρ =

∫ ∫
S(x)

mdydz is the line density, S(x) is the cross-section at x,
Iρ =

∫ ∫
S(x)

mz2dydz is the rotatory inertia, P = E|S(x)|, De = E1|S(x)| with |S(x)| being the
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area of S(x), I =
∫ ∫

S(x)
z2dydz is the moment of inertia, Db = E1I,K = G|S(x)| is the shear

modulus, Ds = G1|S(x)|. Then we have⎧⎪⎨
⎪⎩

∫ L

0

[ρüδu+ (pu′ +Deu̇
′)δu′]dx = 0,

u(0, t) = δu(0, t) = 0,
(1.4)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ L

0

{ρẅδw + Iρϕ̈δϕ+ (EIϕ′ +Dbϕ̇
′)δϕ′

+[K(w′ − ϕ) +Ds(ẇ′ − ϕ̇)](δw′ − δϕ)}dx = 0,

w(0, t) = δw(0, t) = ϕ(0, t) = δϕ(0, t) = 0.

(1.5)

Integrating by parts in (1.4) and (1.5) and by the arbitrariness of δu, δw and δϕ, we have{
ρü− (pu′ +Deu̇

′)′ = 0,
u|x=0 = 0, (pu′ +Deu̇

′)′|x=L = 0,
(1.6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρẅ − [K(w′ − ϕ) +Ds(ẇ′ − ϕ̇)]′ = 0,
Iρϕ̈− (EIϕ′ +Dbϕ̇

′)′ − [K(w′ − ϕ) +Ds(ẇ′ − ϕ̇)] = 0,

w|x=0 = 0, ϕ|x=0 = 0,
[K(w′ − ϕ) +Ds(ẇ′ − ϕ̇)]|x=0 = 0, (EIϕ′ +Dbϕ̇

′)|x=L = 0.

(1.7)

System (1.6) describes the longitudinal vibration of the beam, and system (1.7) describes the
transverse and the shearing vibrations; (1.7) is called the Timoshenko cantilever beam equation
with K-V damping.

In Section 2, we consider the well-posedness and asymptotic stability of system (1.7). In
Section 3, we will show that the energy of system (1.7) decays exponentially when the coefficient
functions are smooth and satisfy a certain structural condition.

2 Semigroup Setting, Well-Posedness and Strong Asymptotic Stability

First, we assume that the coefficient functions of system (1.7) satisfy
(H1) ρ, Iρ,K,EI,Db, Ds ∈ L∞(0, L), ρ, Iρ,K,EI ≥ C0 > 0, Db, Ds ≥ 0.
The energy of the system (1.7), with initial conditions

w(x, 0) = w0, ẇ(x, 0) = w1, ϕ(x, 0) = ϕ0, ϕ̇(x, 0) = ϕ1, (2.1)

is defined by

E(t) =
1
2

∫ L

0

(K|w′ − ϕ|2 + EI|ϕ′|2 + ρ|ẇ|2 + Iρ|ϕ̇|2)dx. (2.2)

Let

H0(0, L) = {w ∈ H1(0, L) | w(0) = 0}, H = L2(0, L) × L2(0, L), V = H0(0, L) ×H0(0, L),

‖(w,ϕ)‖2
H =

∫ L

0

(ρ|w|2 + Iρ|ϕ|2)dx, ‖(w,ϕ)‖2
V =

∫ L

0

(K|w′ − ϕ|2 + EI|ϕ′|2dx),
and

b((w1, ϕ1), (w2, ϕ2)) =
∫ L

0

[Ds(w′
1 − ϕ1)(w̄′

2 − ϕ̄2) +Dbϕ
′
1ϕ̄

′
2]dx,

where H1(0, L) is the Sobolev space [12]. Then we have:
(C1) V,H are Hilbert spaces with norms ‖(·, ·)‖V and ‖(·, ·)‖H ;
(C2) V ↪→ H is a continuous, dense and compact embedding;
(C3) b(·, ·) is a continuous, nonnegative, symmetric sesquilinear form on V [13].
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Let H = V × H, ‖(w,ϕ, v, ψ)‖2
H = ‖(w,ϕ)‖2

V + ‖(v, ψ)‖2
H , H being a Hilbert space. We

define a linear operator A in H as follows:

D(A) =

{
(w,ϕ, v, ψ) ∈ H

∣∣∣∣∣
(v, ψ) ∈ V, T := K(w′ − ϕ) +Ds(v′ − ψ) ∈ H1(0, L),
R := EIϕ′ +Dbψ

′ ∈ H1(0, L), T (L) = R(L) = 0,

}
, (2.3)

and

A(w,ϕ, v, ψ) =
(
v, ψ,

1
ρ
T ′,

1
Iρ

(R′ + T )
)
. (2.4)

Thus (1.7) can be rewritten as an abstract evolution equation on H:{
(ẇ(t), ϕ̇(t), v̇(t), ψ̇(t)) = A(w(t), ϕ(t), v(t), ψ(t)),
(w(0), ϕ(0), v(0), ψ(0)) = (w0, ϕ0, w1, ϕ1).

(2.5)

Lemma 2.1 A is the infinitesimal generator of a C0-semigroup of contractions on H, eAt.

Proof Since, for every z = (w,ϕ, v, ψ) ∈ D(A),

Re〈Az, z〉H = −b((v, ψ), (v, ψ)) ≤ 0,

A is dissipative, it is easy to verify that kerA = {0}. For any (f, α, g, β) ∈ H, taking v = f,
ψ = α,

ϕ = −
∫ x

0

1
EI

[∫ L

x

(
Iρβ +

∫ L

x

ρgdx

)
dx+Dbα

′
]
dx,

w = −
∫ x

0

[
1
K

∫ L

x

ρgdx+
Ds

K
(f ′ − α) − ϕ

]
dx,

then (w,ϕ, v, ψ) ∈ D(A), A(w,ϕ, v, ψ) = (f, α, g, β) and ‖(w,ϕ, v, ψ)‖H ≤ M‖(f, α, g, β)‖H,
for some M > 0 independent of (f, α, g, β). Therefore, A−1 ∈ L(H), 0 ∈ ρ(A), and A is closed.
Since ρ(A) is an open set on the complex plane, we see that R(λ−A) = H for sufficiently small
λ > 0. By Theorem 1.4.6 in [14], D(A) = H, and we can employ the Lumer–Phillips theorem
to finish our proof.

Theorem 2.1 Let (w0, ϕ0, w1, ϕ1) ∈ H, (w(t), ϕ(t), v(t), ψ(t)) = eAt(w0, ϕ0, w1, ϕ1). Then
(w(·), ϕ(·)) ∈ C([0,∞);V ) ∩ C1([0,∞);H) satisfies (ẇ(·), ϕ̇(·)) = (v(·), ψ(·)) and
d

dt
{〈(ẇ(t), ϕ̇(t)), (ξ, θ)〉H+b((w(t), ϕ(t)), (ξ, θ))}+〈(w(t), ϕ(t)), (ξ, θ)〉V = 0, ∀(ξ, θ) ∈ V, t > 0,

with initial conditions in (2.5). Moreover, if (w0, ϕ0, w1, ϕ1) ∈ D(A), then (w(·), ϕ(·)) ∈
C1([0,∞);V ) ∩ C2([0,∞);H) and satisfies

〈(ẅ(t), ϕ̈(t)), (ξ, θ)〉H + b((ẇ(t), ϕ̇(t)), (ξ, θ)) + 〈(w(t), ϕ(t)), (ξ, θ)〉V = 0, ∀(ξ, θ) ∈ V, t > 0.

Proof The proof is the same as in Theorem 2.2 in [15].
For asymptotic stability, we assume that:
(H2) ρ,EI,K, Iρ are piecewise continuous on [0, L];
(H3) int{x ∈ [0, L]|Db > 0 or Ds > 0} �= ∅.

Lemma 2.2 Suppose that hypotheses (H1), (H2) and (H3) are satisfied and W = (w,ϕ) ∈ V .
For every ω ∈ R, if

〈W ,Y 〉V − ω2〈W ,Y 〉H = 0, ∀Y = (v, ψ) ∈ V (2.6)

and
b(W ,W ) = 0, (2.7)

then W = 0 in V .
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Proof If ω = 0, then (2.6) becomes 〈W ,Y 〉V = 0, ∀Y ∈ V, which implies W = 0 in V .
If ω �= 0, then (2.6) and (2.7) can be rewritten as∫ L

0

[
K(w′ − ϕ)(v̄′ − ψ̄) + EIϕ′ψ̄′] dx− ω2

∫ L

0

(ρwv̄ + Iρϕψ̄)dx = 0, ∀Y ∈ V, (2.8)

and ∫ L

0

(Ds|w′ − ϕ|2 +Db|ϕ′|2)dx = 0. (2.9)

From (2.8) we can deduce that W satisfies{
[K(w′ − ϕ)]′ + ω2ρw = 0,
(EIϕ′)′ +K(w′ − ϕ) + ω2Iρϕ = 0,

on [0, L]. (2.10)

We denote

P =

(
K 0

0 EI

)
, R =

(
0 −K
0 0

)
, Q =

(
ω2ρ 0

0 ω2ρ−K

)
.

Then (2.10) can be written as

(PW ′ +RW )′ − (RT W ′ −QW ) = 0, (2.11)

where RT denotes the transposition of R. Let Z = PW ′ +RW . Then (2.11) is equivalent to(
W

Z

)′

=

(
−P−1R P−1

Q−RTP−1R RTP−1

)(
W

Z

)
. (2.12)

From [16] we know that, for every x0 ∈ [0, L] and every W 0,Z0 ∈ R
2, the initial-value problem

(2.12) with (
W

Z

) ∣∣∣∣∣ x=x0

=

(
W 0

Z0

)
(2.13)

has a unique solution (W ,Z)T ∈ C[0, L].
If int{x ∈ [0, L]|Db > 0} �= ∅, then there exists an interval

(x1, x2) ⊂ int{x ∈ [0, L]|Db > 0}.
From (2.9) we obtain that ϕ = 0 in (x1, x2); from the second equation of (2.10) we have w′ = 0
in (x1, x2). Therefore from the first equation of (2.10) we have w = 0 in (x1, x2).

If int{x ∈ [0, L]|Ds > 0} �= ∅, then there exists an interval

(x1, x2) ⊂ int{x ∈ [0, L]|Ds > 0}.
From (2.9) we obtain that w′ − ϕ = 0 in (x1, x2); from the first equation of (2.10) we have
w = 0 in (x1, x2). Therefore ϕ = w′ = 0 in (x1, x2).

Thus for ω �= 0, by (H3) we conclude that there exists a subinterval (x1, x2) of [0, L] such
that W = 0 in (x1, x2), therefore Z = 0 in (x1, x2). By the uniqueness of solutions, (2.12),
(2.13) has only zero solution W = 0,Z = 0, which completes the proof.

By Theorem 4.4 in [15] and Lemma 2.2 we can obtain:

Theorem 2.2 Under hypotheses (H1), (H2) and (H3), the semigroup eAt of system (1.7) is
strongly asymptotically stable.

Corollary 2.1 Under hypotheses (H1), (H2) and (H3), iR ⊂ ρ(A).

Proof By Lemma 4.1 in [15] we have that all nonreal spectrum points of A belong to the point
spectrum, but, by Theorem 3.1 in [17], a pure imaginary number can only be a continuous
spectrum point, since 0 ∈ ρ(A), iR ⊂ ρ(A).
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3 Exponential Stability
For the exponential stability, we assume that:

(H1)′ ρ, Iρ,K,EI ∈ C0,1[0, L]; Ds, Db ∈ C1,1[0, L], ρK, IρEI ∈ C1,1[0, L], Ds, Db ≥ 0,
ρ, Iρ,K,EI ≥ C0 > 0, where C0 > 0 is a constant;

(H3)′ Ds(·) �≡ 0 on [0, L], Db(·) �≡ 0 on [0, L];
(H4) Ds(L) > 0 or Ds(L) = D′

s(L) = 0; and Db(L) > 0 or Db(L) = D′
b(L) = 0;

(H5) ∃C > 0, s.t. Ds ≤ CDb on [0, L].

Theorem 3.1 Under hypotheses (H1)′, (H3)′, (H4) and (H5), eAt is exponentially stable.

Proof By Theorem 3 in [18] and Corollary 2.1 in Section 2, we need to prove only that there
exists some δ > 0 such that, for every α ∈ R,

‖(iα−A)z‖H ≥ δ‖z‖H, ∀z ∈ D(A). (3.1)

Otherwise, there exist αn ∈ R, zn = (wn, ϕn, vn, ψn) ∈ D(A), n = 1, 2, . . ., such that

‖zn‖H = 1, |αn| → ∞ (3.2)

and
(iαn −A)zn =: (fn, gn, hn, ln) → 0 in H, (3.3)

i.e.,
(iαnwn − vn, iαnϕn − ψn) = (fn, gn) → 0 in V, (3.4)(

iαnvn − 1
ρ
T ′

n, iαnψn − 1
Iρ

(R′
n + Tn)

)
= (hn, ln) → 0 in H, (3.5)

where
Tn := K(w′

n − ϕn) +Ds(v′n − ψn), Rn := EIϕ′
n +Dbψ

′
n.

Lemma 3.1 The sequence (wn, ϕn, vn, ψn) satisfies that

lim
n→∞

∫ L

0

(Ds|v′n − ψn|2 +Db|ψ′
n|2)dx = 0, (3.6)

lim
n→∞α2

n

∫ L

0

(Ds|w′
n − ϕn|2 +Db|ϕ′

n|2)dx = 0, (3.7)

lim
n→∞

∫ L

0

(K|w′
n − ϕn|2 + EI|ϕ′

n|2)dx =
1
2
, (3.8)

and ∫ L

0

ρDs|αnvn|2dx+
∫ L

0

IρDb|αnψn|2dx ≤M, (3.9)

where M is a positive constant independent of n.

Proof From (3.3) we obtain that∫ L

0

(Ds|v′n − ψn|2 +Db|ψ′
n|2)dx = Re〈(iαn −A)zn, zn〉H → 0.

This and (3.4) imply (3.7). For (3.8), we take the sum of the inner products of (3.4) with
(vn, ψn) and (3.5) with (wn, ϕn) in H to get

‖(wn, ϕn)‖2
V − ‖(vn, ψn)‖2

H = Re
(
〈(fn, gn), (vn, ψn)〉H + 〈(hn, ln), (wn, ϕn)〉H

−
∫ L

0

(Ds(v′n − ψn)(w̄n
′ − ϕ̄n) +Dbψ

′
nϕ̄n)dx

)

→ 0,
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where we have used (3.2), (3.4)–(3.7). This and (3.2) imply (3.8).
Now we prove (3.9). First, from (3.2) and (3.6) we obtain that

∫ L

0

|Tn|2dx = O(1),
∫ L

0

|Rn|2dx = O(1). (3.10)

Next, we point out that if Ds(L) > 0, then

|vn(L)|2 = O(1); (3.11)

and if Db(L) > 0, then

|ψn(L)|2 = O(1). (3.12)

Indeed, Ds(L) > 0 and (H5) imply that there exists α ∈ [0, L), such that Ds(x) ≥ C1 > 0,
Db(x) ≥ C1 > 0 in [α,L], where C1 is a constant. Therefore, by the embedding theorem, (3.2)
and (3.6), we obtain (3.11). If Db(L) > 0, there exists α ∈ [0, L), such that Db(x) ≥ C1 > 0
in [α,L], where C1 is a constant. Therefore, by the embedding theorem, (3.2), and (3.6), we
obtain (3.12).

Finally, taking the inner product of (3.5) with (iαnDsvn, iαnDbψn) in H and taking the
real parts, we have

I :=
∫ L

0

ρDs|αnvn|2dx+
∫ L

0

IρDb|αnψn|2dx

= − Re
∫ L

0

T ′
niαnDsv̄ndx− Re

∫ L

0

(R′
n + Tn)iαnDbψ̄ndx− Re

∫ L

0

ρhniαnDsv̄ndx

− Re
∫ L

0

IρlniαnDbψ̄ndx

= Re
∫ L

0

TniαnD
′
sv̄ndx+ Re

∫ L

0

TniαnDsv̄
′
ndx+ Re

∫ L

0

RniαnD
′
bψ̄ndx

+ Re
∫ L

0

RniαnDbψ̄′
ndx− Re

∫ L

0

TniαnDbψ̄ndx− Re
∫ L

0

ρhniαnDsv̄ndx

− Re
∫ L

0

IρlniαnDbψ̄ndx (integrating by parts)

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

Since

I1 = Re
∫ L

0

K(w′
n − ϕn)iαnD

′
sv̄ndx+ Re

∫ L

0

Ds(v′n − ψn)iαnD
′
sv̄ndx

= Re
∫ L

0

K(v′n + f ′n − ψn − gn)D′
sv̄ndx+ Re

∫ L

0

Ds(v′n − ψn)iαnD
′
sv̄ndx (by(3.4))

≤ Re
∫ L

0

KD′
sv

′
nv̄ndx+O(1) +

1
2ε

∫ L

0

1
ρ
|D′

s|2Ds|v′n − ψn|2dx

+
ε

2

∫ L

0

ρDs|αnvn|2dx, (by (3.2) and (3.4))

=
1
2
KD′

s|vn|2
∣∣L
0 − 1

2

∫ L

0

(KD′
s)

′|vn|2 +O(1) +
ε

2

∫ L

0

ρDs|αnvn|2dx
(integrating by parts and (3.6))

≤ O(1) +
ε

2

∫ L

0

ρDs|αnvn|2dx, (by (3.2), (3.11) and (H4))
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I2 = Re
∫ L

0

TniαnDs(v̄′n − ψ̄n)dx+ Re
∫ L

0

TniαnDsψ̄ndx

= Re
∫ L

0

K(w′
n − ϕn)iαnDs(v̄′n − ψ̄n)dx+ Re

∫ L

0

TniαnDsψ̄ndx

≤
∫ L

0

K|αn(w′
n − ϕn)|Ds|v′n − ψn|dx+

∫ L

0

|Tn|CDb|αnψn|dx, (by (H5))

≤ 1
2

∫ L

0

K2α2
nDs|w′

n − ϕn|2dx+
1
2

∫ L

0

Ds|v′n − ψn|2dx+
1
2ε

∫ L

0

1
Iρ
C2Db|Tn|2dx

+
ε

2

∫ L

0

IρDb|αnψn|2dx

= O(1) +
ε

2

∫ L

0

IρDb|αnψn|2dx, (by (3.6), (3.7) and (3.10))

I3 = Re
∫ L

0

EIϕ′
niαnD

′
bψ̄ndx+ Re

∫ L

0

Dbψ
′
niαnD

′
bψ̄ndx

= Re
∫ L

0

EI(ψ′
n + g′n)D′

bψ̄ndx+ Re
∫ L

0

Dbψ
′
niαnD

′
bψ̄ndx, (by (3.4))

≤ Re
∫ L

0

EID′
bψ

′
nψ̄ndx+ o(1) +

1
2ε

∫ L

0

1
Iρ

|D′
b|2Db|ψ′

n|2dx

+
ε

2

∫ L

0

IρDb|αnψn|2dx (by (3.2) and (3.4))

=
1
2
EID′

b|ψn|2
∣∣L
0 − 1

2

∫ L

0

(EID′
b)

′|ψn|2 +O(1) +
ε

2

∫ L

0

IρDb|αnψn|2dx
(integrating by parts and (3.6))

≤ O(1) +
ε

2

∫ L

0

IρDb|αnψn|2dx, (by (3.2), (3.12) and (H4))

I4 + I5 = Re
∫ L

0

EIϕ′
niαnDbψ̄n

′
dx− Re

∫ L

0

TniαnDbψ̄ndx

≤ Re
∫ L

0

EI(ψ′
n + g′n)Dbψ̄n

′
dx+

1
2ε

∫ L

0

1
Iρ
Db|Tn|2dx+

ε

2

∫ L

0

IρDb|αnψn|2dx

= O(1) +
ε

2

∫ L

0

IρDb|αnψn|2dx, (by (3.4), (3.6) and (3.10))

I6 + I7 ≤ 1
2ε

∫ L

0

ρ|hn|2Dsdx+
ε

2

∫ L

0

ρDs|αnvn|2dx+
1
2ε

∫ L

0

IρDb|hn|2dx

+
ε

2

∫ L

0

IρDb|αnψn|2dx

= o(1) +
ε

2
I, (by (3.5))

where ε is some positive constant to be determined below, then we have

I ≤ O(1) + 2εI,

which will immediately give (3.9) if we take ε = 1
4 .

Now we return to the proof of Theorem 3.1. By (3.4), (C1) and (3.2),

wn → 0, ϕn → 0 in L2(0, L). (3.13)
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Taking q ∈ C2([0, L],R) with q(0) = q(L) = 0, it follows from the inner product of (3.5) with
(qTn, qRn) in H that

Re
∫ L

0

{(ρiαnvn − T ′
n)qT̄n + [Iρiαnψn − (R′

n + Tn)]qR̄n}dx = o(1), (3.14)

where we have used the boundedness of Tn and Rn in L2(0, L). Since

Re
∫ L

0

ρiαnvnqT̄ndx = Re
∫ L

0

ρiαnvnqK(w̄n
′ − ϕ̄n)dx+ o(1) (by (3.6) and (3.9))

= Re
∫ L

0

−ρKqα2
nwnw̄n

′dx+ Re
∫ L

0

−ρKqiαnfnw̄n
′dx+ Re

∫ L

0

ρKqα2
nwnϕ̄ndx

+ Re
∫ L

0

ρKqiαnfnϕ̄ndx+ o(1), (by (3.4))

=
1
2

∫ L

0

(ρKq)′|αnwn|2dx+ Re
∫ L

0

(ρqfn)′iαnw̄ndx+ Re
∫ L

0

ρKqα2
nwnϕ̄ndx

+ Re
∫ L

0

ρKqfniαnϕ̄ndx+ o(1), (integrating by parts)

=
1
2

∫ L

0

(ρKq)′|αnwn|2 + Re
∫ L

0

ρKqα2
nwnϕ̄ndx+ o(1), (by (3.4) and (3.2))

≥ 1
2

∫ L

0

(ρKq)′|αnwn|2dx− 1
2

∫ L

0

ρK|q||αnwn|2dx− 1
2

∫ L

0

ρK|q||αnϕn|2dx+ o(1),

Re
∫ L

0

IρiαnψnqR̄ndx =
1
2

∫ L

0

(IρEIq)′|αnϕn|2dx+ Re
∫ L

0

(IρEIqgn)′iαnϕ̄ndx

=
1
2

∫ L

0

(IρEIq)′|αnϕn|2dx+ o(1), (by (3.4))

Re
∫ L

0

−qT ′
nT̄ndx =

1
2

∫ L

0

q′|Tn|2dx =
1
2

∫ L

0

q′K2|w′
n − ϕn|2dx+ o(1), (by (3.6))

Re
∫ L

0

−q(R′
n + Tn)R̄ndx =

1
2

∫ L

0

q′(EI)2|ϕ′
n|2dx+ o(1) − Re

∫ L

0

qTnR̄ndx

=
1
2

∫ L

0

q′(EI)2|ϕ′
n|2dx− Re

∫ L

0

qK(w′
n − ϕn)EIϕ̄′

ndx+ o(1), (by (3.6) and (3.7))

≥ 1
2

∫ L

0

q′(EI)2|ϕ′
n|2dx− 1

2

∫ L

0

|q|K2|w′
n − ϕn|2dx− 1

2

∫ L

0

|q|(EI)2|ϕ′
n|2dx

+ o(1),

from (3.14) we obtain∫ L

0

[(ρKq)′ − ρK|q|]|αnwn|2dx+
∫ L

0

[(IρEIq)′ − ρK|q|]|αnϕn|2dx

+
∫ L

0

(q′ − |q|)K2|w′
n − ϕn|2dx+

∫ L

0

(q′ − |q|)(EI)2|ϕ′
n|2dx

≤ o(1). (3.15)

Let us take the inner product of (3.5) with ([(ρKq)′ − ρK|q|]wn, [(IρEIq)′ − ρK|q|]ϕn) in
L2(0, L) × L2(0, L). Then we obtain

−
∫ L

0

[(ρKq)′ − ρK|q|]|αnwn|2dx−
∫ L

0

[(IρEIq)′ − ρK|q|]|αnϕn|2dx
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+Re
∫ L

0

−1
ρ
[(ρKq)′ − ρK|q|]T ′

nw̄ndx+ Re
∫ L

0

− 1
Iρ

[(IρEIq)′ − ρK|q|]R′
nϕ̄ndx

+Re
∫ L

0

− 1
Iρ

[(ρKq)′ − ρK|q|]Tnϕ̄ndx = o(1). (3.16)

We should point out that{
1
ρ
[(ρKq)′ − ρK|q|]

}′
∈ L∞,

{
1
Iρ

[(IρEIq)′ − ρK|q|]
}′

∈ L∞.

Since

Re
∫ L

0

−1
ρ
[(ρKq)′ − ρK|q|]T ′

nw̄ndx

= Re
∫ L

0

1
ρ
[(ρKq)′ − ρK|q|]Tnw̄n

′dx+ Re
∫ L

0

{
1
ρ
[(ρKq)′ − ρK|q|]

}′
Tnw̄ndx

= Re
∫ L

0

1
ρ
[(ρKq)′ − ρK|q|]Tn(w̄n

′ − ϕ̄n)dx+ Re
∫ L

0

1
ρ
[(ρKq)′ − ρK|q|]Tnϕ̄ndx

+Re
∫ L

0

{
1
ρ
[(ρKq)′ − ρK|q|]

}′
Tnw̄ndx

= Re
∫ L

0

1
ρ
[(ρKq)′ − ρK|q|]K|w′

n − ϕn|2 + o(1), (by (3.7) and (3.13))

Re
∫ L

0

− 1
Iρ

[(IρEIq)′ − ρK|q|]R′
nϕ̄ndx

= Re
∫ L

0

1
Iρ

[(IρEIq)′ − ρK|q|]Rnϕ̄n
′dx+ Re

∫ L

0

{
1
Iρ

[(IρEIq)′ − ρK|q|]
}′
Rnϕ̄ndx

= Re
∫ L

0

1
Iρ

[(IρEIq)′ − ρK|q|]EI|ϕ′
n|2dx+ o(1), (by (3.7) and (3.13))

Re
∫ L

0

1
Iρ

[(IρEIq)′ − ρK|q|]Tnϕ̄ndx = o(1), (by (3.13)),

(3.16) can be rewritten as

−
∫ L

0

[(ρKq)′ − ρK|q|]|αnwn|2dx−
∫ L

0

[(IρEIq)′ − ρK|q|]|αnϕn|2dx

+
∫ L

0

1
ρ
[(ρKq)′ − ρK|q|]K|w′

n − ϕn|2dx+
∫ L

0

1
Iρ

[(IρEIq)′ − ρK|q|]EI|ϕ′
n|dx

= o(1). (3.17)

From (3.15) and (3.17) we obtain
∫ L

0

{
1
ρ
[(ρKq)′ − ρK|q|] + (q′ − |q|)K

}
K|w′

n − ϕn|2dx

+
∫ L

0

{
1
Iρ

[(IρEIq)′ − ρK|q|] + (q′ − |q|)EI
}
EI|ϕ′

n|dx
≤ o(1),

i.e., ∫ L

0

{
2Kq′ +

(ρK)′

ρ
q − 2K|q|

}
K|w′

n − ϕn|2dx



Stability for the Timoshenko Beam System with Local Kelvin–Voigt Damping 665

+
∫ L

0

{
2EIq′ +

(IρEI)′

Iρ
q −

(
ρK

Iρ

)
|q|
}
EI|ϕ′

n|dx
≤ o(1). (3.18)

If
Ds ≥ C1 > 0 and Db ≥ C1 > 0 on [0, L], (3.19)

for some constant C1, then from (3.7) we have

lim
n→∞

∫ L

0

(K|w′
n − ϕn|2 + EI|ϕ′

n|2)dx = 0,

which is in contradiction to (3.8).
If (3.19) does not hold, by (H3)′ and (H5), there exists a subinterval [x1, x2] ⊂ [0, L] s.t.

Ds ≥ C2 > 0 and Db ≥ C2 > 0, for some positive constant C2. Therefore by (3.7) we have∫ x2

x1

(K|w′
n − ϕn|2 + EI|ϕ′

n|2)dx = o(1). (3.20)

We choose q = γ(eηx − 1), where η is a positive constant to be determined soon and γ ∈
C2[0, L], 0 ≤ γ ≤ 1, satisfying

γ(x) =

{
1, x ∈ [0, x1 + ε0],

0, x ∈ [x2 − ε0, L],

for some ε0 ∈ (0, (x2 − x1)/2); then q ≥ 0. From (3.18) and (3.20) we have∫ x1

0

{
J1K|w′

n − ϕn|2 + J2EI|ϕ′
n|
}
dx ≤ o(1), (3.21)

where

J1 =
(

2Kη +
(ρK)′

ρ
− 2K

)
eηx − (ρK)′

ρ
+ 2K,

J2 =
[
2EIη +

(IρEI)′

Iρ
− ρK

Iρ
+ EI

]
eηx − (IρEI)′

Iρ
+
ρK

Iρ
− EI.

Now we can choose η large enough such that J1 ≥ 1 and J2 ≥ 1. Then from (3.21) we obtain
that ∫ x1

0

{
K|w′

n − ϕn|2 + EI|ϕ′
n|
}
dx = o(1). (3.22)

If we choose q = γ(1 − eη(L−x)), where η is a positive constant and γ ∈ C2[0, L], 0 ≤ γ ≤ 1,
satisfying

γ(x) =

{
0, x ∈ [0, x1 + ε0],

1, x ∈ [x2 − ε0, L],

then q ≤ 0. Similarly, for η large enough, from (3.18) and (3.20) we can also obtain that∫ L

x2

{
K|w′

n − ϕn|2 + EI|ϕ′
n|
}
dx = o(1). (3.23)

(3.20), (3.22) and (3.23) are contradictory to (3.8). The proof of Theorem 3.1 is completed.
Remark 3.1 For local damping, namely, suppDb ⊂ [0, L) and suppDs ⊂ [0, L), the hypoth-
esis (H4) holds automatically.
Remark 3.2 For a clamped beam, (H4) can be dropped. In this case, we can prove Theorem
3.1 with the same method as above.
Remark 3.3 The structural condition (H5) can be explained from the physical property of
viscoelasticity.
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