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Abstract The L2(Rn) boundedness for the multilinear singular integral operators defined by

TAf(x) =

∫
Rn

Ω(x − y)

|x − y|n+1
(A(x)− A(y)−∇A(y)(x− y))f(y)dy

is considered, where Ω is homogeneous of degree zero, integrable on the unit sphere and has vanishing

moment of order one, A has derivatives of order one in BMO(Rn). A sufficient condition based on the

Fourier transform estimate and implying the L2(Rn) boundedness for the multilinear operator TA is

given.
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1 Introduction

We will work on R
n, n ≥ 2. For a point x ∈ R

n, we denote by xj (1 ≤ j ≤ n) the j-th variable
of x. Let Ω be homogeneous of degree zero, integrable on the unit sphere Sn−1 and satisfy the
vanishing condition ∫

Sn−1
Ω(x′)xjdx

′ = 0, for each j with 1 ≤ j ≤ n. (1)

Let A be a function on R
n having derivatives of order one in BMO(Rn). Define the multilinear

singular integral operator TA by

TAf(x) =
∫

Rn

Ω(x− y)
|x− y|n+1

(
A(x)−A(y)−∇A(y)(x− y))f(y)dy. (2)

A well-known result of Cohen [1] states that if Ω ∈ Lip1(S
n−1), then TA is a bounded operator

on Lp(Rn) with bound C‖∇A‖BMO(Rn) for 1 < p < ∞. Hu [2] proved that Ω ∈ Lip1(S
n−1)

is a sufficient condition such that TA maps LlogL(Rn) to weak L1(Rn) boundedly. Hofmann
[3] improved the result of Cohen and showed that Ω ∈ ⋃

q>1 L
q(Sn−1) is a sufficient condition
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such that TA is bounded on Lp(Rn) for 1 < p < ∞. The purpose of this paper is to present
a sufficient condition on Ω that implies the L2(Rn) boundedness for TA, and this condition
is based on the Fourier transform estimate. We remark that in this paper we are very much
motivated by the work of Pérez [4], some ideas are from Hofmann’s papers [3], [5] and our
previous work [6]. Our main result in this paper can be stated as follows:

Theorem 1 Let Ω be homogeneous of degree zero, integrable on the unit sphere and satisfy
the vanishing condition (1), A have derivities of order one in BMO(Rn). For 1 ≤ j ≤ n, set

kj
0(x) =

Ω(x)xj

|x|n+1
χ{1<|x|≤2}(x), k0(x) =

Ω(x)
|x|n+1

χ{1<|x|≤2}(x).

Suppose that there exists a constant β > 3, such that

|k̂0(ξ)|+
n∑

j=1

|k̂j
0(ξ)| ≤ Cmin

{
1, log−β

(
2 + |ξ|)}. (3)

Then the operator TA defined by (2) is bounded on L2(Rn) with bound C‖∇A‖BMO(Rn).

As an application of Theorem 1, we will have:

Theorem 2 Let Ω be homogeneous of degree zero, integrable on the unit sphere and satisfy
the vanishing condition (1), A have derivatives of order one in BMO(Rn). Suppose that for
some β > 3,

sup
ξ∈Sn−1

∫
Sn−1

|Ω(θ)|
(
log

1
|θ · ξ|

)β

dθ <∞. (4)

Then the operator TA defined by (2) is bounded on L2(Rn) with bound C‖∇A‖BMO(Rn).

Remark 1 The size condition (4) for β ≥ 1 was introduced by Grafakos and Stefanov [7] in
order to study the Lp(Rn) boundedness for the singular integral operator

Tf(x) =
∫

Rn

Ω(x− y)
|x− y|n f(y)dy.

It has been shown in [7] that there exist integrable functions on Sn−1 which are not inH1(Sn−1),
but satisfy (4) for all β > 1.

Remark 2 It is obvious that if Ω ∈ ⋃
q>1 L

q(Sn−1), then the Fourier transform estimate (3)
holds for any β > 1.

2 Proof of Theorems

By the estimate of Grafakos and Stefanov [7], we see that if Ω satisfies the size condition (4)
for some β > 1, then the Fourier transform estimate (3) holds for the same β. Thus Theorem 2
can be obtained from Theorem 1 directly, and so it is enough to prove Theorem 1. To do this,
we begin with a preliminary lemma:

Lemma 1 [1] Let A be a function on R
n with derivatives of order one in Lq(Rn) for some
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q > n. Then

|A(x)−A(y)| ≤ C|x− y|
(

1
|Iy

x |
∫

Iy
x

|∇A(z)|qdz
)1/q

,

where Iy
x is the cube centered at x with sides parallel to the axes and having side length 2|x−y|.

Now we choose φ ∈ C∞
0 (Rn) to be a radial function such that suppφ ⊂ {x : 1/4 ≤ |x| ≤ 4}

and ∑
l∈Z

φ(2−lx) ≡ 1, for any |x| �= 0.

Set

K(x, y) =
Ω(x− y)
|x− y|n+1

(
A(x) −A(y)−∇A(y)(x− y)), K∗(x, y) = K(y, x)

and

Kl(x, y) = K(x, y)φ
(
2−l(x− y)).

Let TA; l be the integral operator whose kernel is Kl. We then have the following size condition:

Lemma 2 Let Ω be homogeneous of degree zero and integrable on Sn−1, n < q < ∞. Then
there exists a positive constant C = Cn, q such that for each λ > 0 and R > 0,∫

|x|≤λR

∫
R≤|x−y|≤2R

[|K∗(x, y)|+ |K(x, y)|]dydx ≤ C‖Ω‖1(1 + λ)n(2+1/q)‖∇A‖BMO(Rn)R
n.

Proof Let B be the ball centered at the origin and having radius (1 + λ)R. Set

Ã(z) = A(z) −
n∑

j=1

mB(∂jA)zj ,

where ∂jA = ∂A/(∂xj), mB(∂jA) is the mean value of ∂jA on the ball B. It is easy to see that,
for any x, y ∈ R

n,

Ã(x)− Ã(y)−∇Ã(y)(x− y) = A(x) −A(y)−∇A(y)(x− y),
and

Ã(x)− Ã(y)−∇Ã(x)(x− y) = A(x) −A(y)−∇A(x)(x− y).

Note that if R ≤ |x− y| ≤ 2R and |x| ≤ λR, Iy
x ⊂ 10nB. Recall that n < q < ∞. By Lemma

1, we know that for x, y ∈ R
n such that R ≤ |x− y| ≤ 2R,

|Ã(x)− Ã(y)| ≤ C|x− y|
n∑

j=1

(
1

|x− y|n
∫

Iy
x

|∂jA(z) −mB(∂jA)|qdz
)1/q

≤ CR(1 + λ)n/q
n∑

j=1

(
1

|10nB|
∫

10nB

|∂jA(z) −mB(∂jA)|qdz
)1/q

≤ C(1 + λ)n/qR.
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Let Ω̃(x) = Ω(x)χ{R≤|x|≤2R}. By the Young inequality we then have∫
|x|≤λR

∫
R≤|x−y|≤2R

[|K∗(x, y)|+ |K(x, y)|]dydx

≤ CR−n(1 + λ)n/q

∫
Rn

∫
Rn

|Ω̃(x− y)|
(
1 +

n∑
j=1

∣∣∂jA(y)−mB(∂jA)
∣∣)χ{|y|≤(λ+2)R}dydx

+ C‖Ω‖1(1 + λ)n/q

∫
|x|≤λR

(
1 +

n∑
j=1

∣∣∂jA(x)−mB(∂jA)
∣∣)dx

≤ C‖Ω‖1(1 + λ)n(2+1/q)Rn.

Lemma 3 Let Ω be integrable on Sn−1 and satisfy the vanishing condition (1), A have
derivatives of order one in BMO(Rn). Then the operator TA defined by (2) satisfies the weak
boundedness property, that is, if η1 and η2 are C∞

0 (Rn) functions whose supports are contained
in a ball of radius r, then∣∣∣ ∫

Rn

η1(x)TAη2(x)dx
∣∣∣ ≤ C‖∇A‖BMO(Rn)‖Ω‖1r

−n
(‖η1‖∞ + r‖∇η1‖∞

)(‖η2‖∞ + r‖∇η2‖∞
)
.

This is Lemma 4.3 in [3].

Lemma 4 Let Ω be integrable on Sn−1 and satisfy the vanishing condition (3), A have
derivatives of order one in BMO(Rn). Then the operator TA defined by (2) satisfies TA1 ∈
BMO(Rn) and

‖QsTA; l1‖∞ ≤ C‖∇A‖BMO(Rn)‖Ω‖1(2−ls)ε,

for s ≤ 2l and some ε > 0.

This is Lemmata 4.1 and 4.2 in [3].

Lemma 5 Let Ω be the same as in Theorem 1, ψ ∈ C∞
0 (Rn) be a radial function such that

suppψ ⊂ {x : |x| ≤ 1}, and ∫
Rn

ψ(x)dx = 0,
∫ ∞

0

|ψ̂(s)|2 ds
s

= 1.

For each s > 0, set ψs(x) = s−nψ(s−1x) and Qs to be the convolution operator with kernel ψs.
Then for each l ∈ Z and s ≤ 2l,

‖QsTA; lf‖2 ≤ Clog−β+1(2ls−1 + 1)‖Ω‖1‖∇A‖BMO(Rn)‖f‖2.

Proof By scale invariance, it suffices to consider the case l = 0, and without loss of generality,
we may assume that ‖Ω‖1 = ‖∇A‖BMO(Rn) = 1. As in the proof of Lemma 2.2 in [3], by
a standard localization argument, we may assume supp f ⊂ Q for some cube Q having side
length 1. Let ϕ ∈ C∞

0 (Rn) such that 0 ≤ ϕ ≤ 1, ϕ is indentically one on 50Q and vanishes
outside 100Q, ‖∇ϕ‖∞ ≤ C. Let x0 be a point on the boundary of 200Q. Set Ã(y) = A(y) −∑n

j=1mQ(∂jA)yj and

Aϕ(y) =
(
Ã(y)− Ã(x0)

)
ϕ(y).
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Applying Lemma 1 again, we have that, for y ∈ 20Q,

|Aϕ(y)| ≤ |Ã(y)− Ã(x0)| ≤ C. (5)

For each fixed integer j with 1 ≤ j ≤ n, set

kj(x) = φ(x)
Ω(x)xj

|x|n+1
, k(x) = φ(x)

Ω(x)
|x|n+1

.

Denote by Sj (resp. S) the convolution operator whose kernel is kj (resp. k). The Fourier
transform estimate (3) together with the trivial estimate |ψ̂(sξ)| ≤ Cmin{1, |sξ|} says that

n∑
j=1

|ψ̂(sξ)k̂j(ξ)|+ |ψ̂(sξ)k̂(ξ)| ≤ Clog−β(s−1 + 1).

This, via the Plancherel theorem, tells us that

‖QsSh‖2 +
n∑

j=1

‖QsSjh‖2 ≤ Clog−β(s−1 + 1)‖h‖2. (6)

Note that, for y ∈ R
n,

TA; 0f(y) = TAϕ; 0f(y).

Write

QsTAϕ; 0f(x) = Qs(AϕSf)(x)−QsS(Aϕf)(x)−
n∑

j=1

QsSj(f∂jAϕ)(x)

= I(x) + II(x) + III(x).

Combining estimates (5) and (6) leads to

‖II‖2 ≤ Clog−β(s−1 + 1)‖Aϕf‖2 ≤ Clog−β(s−1 + 1)‖f‖2.

Decompose the term I as

I(x) = Aϕ(x)QsSf(x)−
∫

Rn

(
Aϕ(x)−Aϕ(y)

)
ψs(x− y)(Sf)(y)dy = I1(x) + I2(x).

Obviously,

‖I1‖2 ≤ Clog−β(s−1 + 1)‖f‖2.

A familar argument involving Lemma 1 shows that, for z ∈ 40Q,

|∇Aϕ(z)| ≤ |∇Ã(z)|+ C|Ã(z)− Ã(x0)| ≤
n∑

j=1

|∂jA(z)−mQ(∂jA)| (7)

+ C
n∑

j=1

|z − x0|
(

1
|Ix0

z |
∫

I
x0
z

|∂jA(w)−mQ(∂jA)|qdw
)1/q

≤ C
( n∑

j=1

|∂jA(z) −mQ(∂jA)|+ 1
)
.

If y ∈ 10Q and |x− y| ≤ s < 1, then x ∈ 12Q and Iy
x ⊂ 40Q. Choosing q > n, by Lemma 1 we
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have that, for y ∈ 10Q and |x− y| ≤ s,

|Aϕ(x)−Aϕ(y)| ≤ C|x− y|
(

1
|x− y|n

∫
Ix

y

|∇Aϕ(z)|qdz
)1/q

≤ C|x− y|1−n/q
n∑

j=1

(∫
40Q

|∂jA(z)−mQ(∂jA)|qdz
)1/q

≤ C|x− y|1−n/q.

Recall that supp f ⊂ Q. Thus suppSf ⊂ 10Q and so

|I2(x)| ≤ Cs1−n/q

∫
Rn

|ψs(x− y)||Sf(y)|dy.

This in turn implies that

‖I2‖2 ≤ Cs1−n/q‖f‖2.

To estimate the term III, we will use a basic estimate for (QsSj)∗, the adjoint operator of QsSj ,
that is,

(QsSj)∗h(x) =
∫

Rn

ψs ∗ kj(y − x)h(y)dy.

We claim that there exists a positive constant Cn such that, for supph ⊂ 10Q and b ∈ BMOR
n,∫

Q

|b(x)−mQ(b)|2|(QsSj)∗h(x)|2dx ≤ Clog2(−β+1)(s−1 + 1)‖b‖2
BMO(Rn)‖h‖2

2. (8)

In fact, without loss of generality, we may assume that ‖b‖BMO(Rn) = ‖h‖2 = 1. Note that
Φ(t) = tlog2(2+t) is a Young function and its complementary Young function is Ψ(t) ≈ expt1/2.
By the general Hölder inequality, it follows that∫

Q

|b(x)−mQ(b)|2|(QsSj)∗h(x)|2dx ≤ C‖|b−mQ(b)|2‖(expL)1/2, Q‖((QsSj)∗h)2‖L(logL)2, Q,

where ∥∥|b−mQ(b)|2∥∥
(expL)1/2, Q

= inf
{
λ > 0 :

∫
Q

exp
( |b(y)−mQ(b)|

λ1/2

)
dy ≤ 2

}
and

‖((QsSj)∗h)2‖L(logL)2, Q = inf
{
λ > 0 :

∫
Q

|(QsSj)∗h(y)|2
λ

log2

(
2 +

|(QsSj)∗h(y)|2
λ

)
dy ≤ 1

}
,

see [4, p. 168]. The well-known John-Nirenberg inequality now states that∥∥|b−mQ(b)|2∥∥
(expL)1/2, Q

≤ C.
On the other hand, note that supp h ⊂ 10Q and by the Young inequality,

‖(QsSj)∗h‖∞ ≤ C‖Ω‖1‖ψs‖∞‖h‖1 ≤ Cns
−n.

Set λ0 = Cnlog2(−β+1)(s−1 + 1). A straightforward computation gives us that∫
Q

|(QsSj)∗h(y)|2log2

(
2 +

|(QsSj)∗h(y)|2
λ0

)
dy ≤ Clog2

(
2 +

Cns
−2n

λ0

)
‖(QsSj)∗h‖2

2
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≤ Clog−2β(s−1 + 1)log2(2 + s−n+1)

≤ Clog2(−β+1)(s−1 + 1),

which means that

‖((QsSj)∗h)2‖L(logL)2, Q ≤ Clog2(−β+1)(s−1 + 1),

and then we establish inequality (8).

The estimate for III follows from inequality (8) directly. In fact, for each 1 ≤ j ≤ n, by the
standard duality argument, we have

‖QsSj(∂jAϕf)‖2 = sup
supp h⊂20Q, ‖h‖2≤1

∣∣∣∣
∫

20Q

QsSj(∂jAϕf)(x)h(x)dx
∣∣∣∣

= sup
supp h⊂20Q, ‖h‖2≤1

∣∣∣∣
∫

20Q

f(y)∂jAϕ(y)(QsSj)∗h(y)dy
∣∣∣∣

≤ sup
supp h⊂20Q, ‖h‖2≤1

‖f‖2‖((QsSj)∗h)∂jAϕ‖2

≤ Clog−β+1(s−1 + 1)‖f‖2,

where in the last inequality, we have invoked the fact that supp(QsSj)∗h ⊂ 50Q and estimate
(7). Summing over all 1 ≤ j ≤ n gives the desired estimate for III, and then concludes the
proof of Lemma 5.

Proof of Theorem 1 Also, we may assume that ‖∇A‖BMO(Rn) = 1. By the Littlewood-Paley
theory, it suffices to prove that, for f, g ∈ C∞

0 (Rn),∣∣∣∣
∫ ∞

0

∫ t

0

∫
Rn

Q2
sTAQ

2
tf(x)g(x)dx

ds

s

dt

t

∣∣∣∣ ≤ C‖f‖2‖g‖2 (9)

and ∣∣∣∣
∫ ∞

0

∫ ∞

t

∫
Rn

Q2
sTAQ

2
tf(x)g(x)dx

ds

s

dt

t

∣∣∣∣ ≤ C‖f‖2‖g‖2. (10)

By Lemma 2–Lemma 5, the same argument as in the proof of Theorem 3.1 in [3] shows that
the estimate (9) holds. Thus the proof of Theorem 1 can be reduced to proving (10). Note that
by a standard duality argument, the inequality (10) is equivalent to the estimate∣∣∣∣

∫ ∞

0

∫ t

0

∫
Rn

Q2
sT

∗
AQ

2
tf(x)g(x)dx

ds

s

dt

t

∣∣∣∣ ≤ C‖f‖2‖g‖2. (11)

Define the operator T̃A by

T̃Af(x) =
∫

Rn

Ω(y − x)
|x− y|n+1

(
A(x) −A(y)−∇A(y)(x− y))f(y)dy

and the operator Wj by

Wjf(x) =
∫

Rn

[∂jA(x)− ∂jA(y)]
Ω(x− y)(xj − yj)

|x− y|n+1
f(y)dy,

for integer j with 1 ≤ j ≤ n. Write

T ∗
Af(x) = T̃Af(x) +

n∑
j=1

Wjf(x).
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Note that Ω̃(x) = Ω(−x) is also integrable on Sn−1 and enjoys the same Fourier transform
estimate (3). So by the same argument as that was used in the proof of the inequality, we have∣∣∣∣

∫ ∞

0

∫ t

0

∫
Rn

Q2
sT̃AQ

2
tf(x)g(x)dx

ds

s

dt

t

∣∣∣∣ ≤ C‖f‖2‖g‖2.

The observation of Han and Sawyer [8] says that the kernel of the convolution operator

Ps =
∫ ∞

s

Q2
t

dt

t

is a radial bounded function with bound Cs−n, supported on a ball of radius Cs and having
integral zero. It follows from the Littlewood-Paley theory that∫ ∞

0

‖Psh‖2
2

ds

s
≤ C‖h‖2

2.

On the other hand, note that, for 1 ≤ j ≤ n, Ω(x)xj/|x|n+1 is homogeneous of degree zero and
has mean value zero. Theorem 1 of [6] tells us that for Ω satisfing the Fourier transform estimate
(3) for β > 2, then the commutator Wj is bounded on L2(Rn) with bound C‖∂jA‖BMO(Rn).
Appling the Schwarz inequality twice, we finally obtain that, for each j with 1 ≤ j ≤ n,∣∣∣∣

∫ ∞

0

∫ t

0

∫
Rn

Q2
sWjQ

2
tf(x)g(x)dx

ds

s

dt

t

∣∣∣∣ =
∣∣∣∣
∫ ∞

0

∫ ∞

s

∫
Rn

W ∗
j Q

2
sg(x)Q

2
tf(x)dx

dt

t

ds

s

∣∣∣∣
≤

( ∫ ∞

0

‖W ∗
j Q

2
sg‖2

2

ds

s

)1/2(∫ ∞

0

‖Psf‖2
2

ds

s

)1/2

≤ C‖∂jA‖BMO(Rn)‖f‖2‖g‖2,

where W ∗
j is the adjoint operator of Wj . This shows that inequality (10) is a easy consequence

of inequality (9) and then concludes the proof of Theorem 1.
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