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Abstract The L?*(R") boundedness for the multilinear singular integral operators defined by
Qx —
Taf) = [ U (Aw) - Al) - VAW - ) )iy
Rn
is considered, where €2 is homogeneous of degree zero, integrable on the unit sphere and has vanishing
moment of order one, A has derivatives of order one in BMO(R"™). A sufficient condition based on the

Fourier transform estimate and implying the L2 (R™) boundedness for the multilinear operator T4 is
given.
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1 Introduction

We will work on R™, n > 2. For a point z € R", we denote by z; (1 < j <n) the j-th variable
of z. Let Q be homogeneous of degree zero, integrable on the unit sphere S”~! and satisfy the

vanishing condition
/ Q(x')z;dx’ =0, for each j with 1 < j < n. (1)
Snfl

Let A be a function on R™ having derivatives of order one in BMO(R"). Define the multilinear
singular integral operator T4 by
Qx—y

Tafa) = [ PO (4 - AG) ~ VAW @ — ) )y @)
A well-known result of Cohen [1] states that if 2 € Lip, (8™~ !), then T4 is a bounded operator
on LP(R") with bound C||VA|pmomn) for 1 < p < co. Hu [2] proved that Q € Lip,(S"~1)
is a sufficient condition such that T4 maps LlogL(R") to weak L'(R™) boundedly. Hofmann
3] improved the result of Cohen and showed that © € |J,, LY(S"") is a sufficient condition
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such that T4 is bounded on LP(R™) for 1 < p < co. The purpose of this paper is to present
a sufficient condition on Q that implies the L?(R"™) boundedness for T4, and this condition
is based on the Fourier transform estimate. We remark that in this paper we are very much
motivated by the work of Pérez [4], some ideas are from Hofmann’s papers [3], [5] and our

previous work [6]. Our main result in this paper can be stated as follows:

Theorem 1  Let 2 be homogeneous of degree zero, integrable on the unit sphere and satisfy
the vanishing condition (1), A have derivities of order one in BMO(R™). For 1< j <mn, set

; Q(x)x; Qx
k() = Tt iz (@), ho(o) = TExucpica) ().

Suppose that there exists a constant B > 3, such that

n ~

Bo(&)] + 3 [k)(€)] < Cmin {1, log™" (2 + |¢]) }. (3)

j=1

Then the operator Ty defined by (2) is bounded on L?*(R™) with bound C||V Allgmo®n)-
As an application of Theorem 1, we will have:

Theorem 2  Let ) be homogeneous of degree zero, integrable on the unit sphere and satisfy
the vanishing condition (1), A have derivatives of order one in BMO(R™). Suppose that for
some 3 > 3,

B
sup / Q(€)|<log ! ) df < . (4)
gesn—1)gn-1 10 ¢

Then the operator Ty defined by (2) is bounded on L*(R™) with bound C||V Allgmom®n)-

Remark 1  The size condition (4) for § > 1 was introduced by Grafakos and Stefanov [7] in

order to study the L?(R™) boundedness for the singular integral operator

Qz —y)
Tf(x :/ —=f(y)dy.
(z) AP (v)
It has been shown in [7] that there exist integrable functions on S™~1 which are not in H!(S"~1),
but satisfy (4) for all 5 > 1.

Remark 2 It is obvious that if Q € |J
holds for any 3 > 1.

g1 L(S™71), then the Fourier transform estimate (3)

2 Proof of Theorems

By the estimate of Grafakos and Stefanov [7], we see that if ) satisfies the size condition (4)
for some 8 > 1, then the Fourier transform estimate (3) holds for the same 8. Thus Theorem 2
can be obtained from Theorem 1 directly, and so it is enough to prove Theorem 1. To do this,

we begin with a preliminary lemma:

Lemma 1 [1] Let A be a function on R™ with derivatives of order one in LI(R™) for some
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q>n. Then
1 1/q
40) = A = Cle ol (e [ IVAGIGE)

where IY is the cube centered at x with sides parallel to the axes and having side length 2|z —y|.

Now we choose ¢ € C§°(R™) to be a radial function such that supp ¢ C {x:1/4 < |z| < 4}

and

Z¢(27lx) =1, for any |z| # 0.

leZ

Set

Qz —y)

K(z,y) = Tz — g+t

(Al2) = A(y) - VAW)(z — ), K*(z,y) = K(y, o)
and
Ki(z, y) = K(z, y)6(27'(z - y)).
Let T4,; be the integral operator whose kernel is K;. We then have the following size condition:

Lemma 2 Let Q be homogeneous of degree zero and integrable on S"~1, n < q < co. Then
there exists a positive constant C' = C,, 4 such that for each A > 0 and R > 0,

[ ] 1K @, )] + K (2, y)Jdydz < OO (1+ X" |V Allpriogen R
|z|<AR J R<|z—y|<2R
Proof Let B be the ball centered at the origin and having radius (1 + A\)R. Set
Az) = A(z) = Y_mp(0;4)z;,
j=1

where 0;A = 0A/(0x;), mp(0;A) is the mean value of 0;A on the ball B. It is easy to see that,
for any z, y € R”,

Az) = Aly) = VA(y)(z — y) = A(x) = Aly) = VA(y)(z — y).

and

A(z) = Aly) = VA(@)(z —y) = A(x) — A(y) — VA(z)( — p).
Note that if R < |z —y| < 2R and |z| < AR, I¥ C 10nB. Recall that n < ¢ < co. By Lemma
1, we know that for z, y € R™ such that R < |z — y| < 2R,

~ ~ n 1 . 1/q
) - A < Clo -3 (5= [ 10040) = ma(@; iraz)

|z —y|™

x

n g 1
<CR(L+N)7)° (W/l
j=1

< C(1+A)"4R.

1/q
|0, A(z) — mp(0;A) |qdz)

onB
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Let ﬁ(x) = Q(z)X{Rr<|z|<2r}- By the Young inequality we then have

/ 1K o )]+ 1K G, )y
2| <AR J R<|o—y|<2R

< CR_"(I-l-)\)n/Q/ / |§~2(x—y)|<1+2|6jA(y) —mB((’?jA)|>X{yS(A+2)R}dydx
n Jrn =

L)l 1+ A /

2| <AR

< O (1 + N)EHY/DO R,

(1 + ]il |0;A(z) — mB(ajA)D da

Lemma 3  Let Q be integrable on S™~! and satisfy the vanishing condition (1), A have
derivatives of order one in BMO(R™). Then the operator T4 defined by (2) satisfies the weak
boundedness property, that is, if m and 1y are C3°(R™) functions whose supports are contained

in a ball of radius r, then

‘/ m(x)Tanz(x)dz| < CIVA[smo@) 12/~ ([71llee + rIV01lloo) ([021l0e + V200 )-
This is Lemma 4.3 in [3].

Lemma 4  Let Q be integrable on S"~1 and satisfy the vanishing condition (3), A have
derivatives of order one in BMO(R™). Then the operator Ta defined by (2) satisfies T4l €
BMO(R") and

1QsTa: 1l < CIIV Allsarogen 120 (2~1s)°,
for s < 2! and some € > 0.
This is Lemmata 4.1 and 4.2 in [3].

Lemma 5 Let Q be the same as in Theorem 1, ¢ € C§°(R™) be a radial function such that
supp ¥ C {z : |z| < 1}, and

de = 227 _q.
o Y(x)de =0, /o [t (s)] . 1

For each s > 0, set s(x) = s (s~ x) and Qs to be the convolution operator with kernel 1.
Then for each | € Z and s < 2!,

1QsTasi fll2 < Clog "1 (2's ™" + 1)|Q]11 [V Allgao n)

fll2-

Proof By scale invariance, it suffices to consider the case [ = 0, and without loss of generality,
we may assume that |1 = [[VA[gmomr) = 1. As in the proof of Lemma 2.2 in [3], by
a standard localization argument, we may assume supp f C @ for some cube @ having side
length 1. Let ¢ € C§°(R™) such that 0 < ¢ < 1, ¢ is indentically one on 50Q) and vanishes
outside 100Q, ||[Ve|loo < C. Let 2o be a point on the boundary of 200Q. Set A(y) = A(y) —
> i mq(9;A)y; and
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Applying Lemma 1 again, we have that, for y € 20Q),
[Ap (y)| < [A(y) — A(zo)| < C. (5)

For each fixed integer j with 1 < j < n, set

ky(e) = (o) [t K@) = ole)
Denote by S; (resp. S) the convolution operator whose kernel is k; (resp. k). The Fourier
transform estimate (3) together with the trivial estimate \72(35)| < Cmin{l, |s&|} says that

Z [ (sE)k (€)] + 9 (sE)R(E)| < Clog™ (s~ +1).
This, via the Plancherel theorem, tells us that

1QsShll2 + > 11QsS;hll2 < Clog™* (s~ + 1) A2 (6)
j=1

Note that, for y € R",
Ta0f(y) = Ta,.0f(y).
Write
QsTa,:0f () = Qs(A,Sf) () — QsS( ZQS (f0;A,)(x)

=1I(z) + I(z) + II(x).
Combining estimates (5) and (6) leads to
L]z < Clog™ (57" + 1)[| Ay fll2 < Clog™ (5! + 1)[| -
Decompose the term I as
I(z) = Ap(2)QsS f(x) — / (Ap(z) = Ap () ¥s(z — y)(SF)(y)dy = Ti(z) + T2(2).
Obviously,

Lill2 < Clog™?(s™" + 1)]| fll2-

A familar argument involving Lemma 1 shows that, for z € 40Q),

VA, (2)] < [VA(2)] + ClA(2) = A(wo)| < Z 10;A(2) — mq(0;4)] (7)

n 1 1/q
#0301 =l gz [, 10:400) = mo(@s )
=1 z 1 JI°

< C(z: 10,A(2) — m(0;A)] + 1).

If y € 10Q and |z —y| < s < 1, then z € 12Q and ¥ C 40Q). Choosing ¢ > n, by Lemma 1 we
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1/q
2)| dz)

1/q
03A(2) ~ mo(@,A) s

have that, for y € 10Q and |z — y| < s,

Ay () — Ag(y)| <c|x—y|(

n

ccte- gy < /
4

j=1 1 740Q

< Clz -y
Recall that supp f C @. Thus supp Sf C 10Q and so
(@) < s [ e = lIS sl
This in turn implies that

L2l < Cs* /4 f]l2.

To estimate the term III, we will use a basic estimate for (Q4S;)*, the adjoint operator of @S},
that is,

(QsS;)"h(x) = A Vs * kj(y — x)h(y)dy.
We claim that there exists a positive constant ), such that, for supp h C 10Q) and b € BMOR",

/ [b(z) = mq(b)[*[(QsS))"h(z)*da < Clog? ™+ (s 4 1) Bl|Enso e 13- (8)

In fact, without loss of generality, we may assume that ||b|lgmo®n) = [|h]|2 = 1. Note that
®(t) = tlog®(2+1) is a Young function and its complementary Young function is W(t) ~ expt!/2.
By the general Holder inequality, it follows that

/Ib QB)P(QsS)) h(z)Pdz < ClIb — ma®) | (expryr/2, @ 1(QsS5) h)? [ Lgogry2, -

where

. b(y) — mq(b)]
H\b — mQ(b)|2H(expL)1/27Q = mf{/\ >0: /Qexp<T dy <2
and

P B A S e L
Q

see [4,p. 168]. The well-known John-Nirenberg inequality now states that
2
H|b —mq(b)] H(expL)l/Z,Q <C.
On the other hand, note that supp h C 10Q) and by the Young inequality,
1(Qs55) hlloe < CllQUNYslloc Al < Crs™.

Set Ag = Cplog? PV (571 1 1). A straightforward computation gives us that

SS, *h 2 Cn —2n .
/Q|(Q55j)*h(y)|210g2 <2+ W)dy < Clog? (2+ ;0 )|(Q55j) h|)3
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< Clog™ 2 (s + 1)log?(2 + s~ 1)
< Clog® At (571 1),

which means that

1((QsS))* W)l Lgogry2, @ < Clog” ™ F (s71 + 1),

and then we establish inequality (8).
The estimate for III follows from inequality (8) directly. In fact, for each 1 < j < n, by the

standard duality argument, we have

1QsS;(0; A0 f)ll2 = sup QsS;(0; A, f)(x)h(x)dz
supp hC20Q, ||h||2<1 20Q
= w00 A00@u)
supp hC20Q, ||h||2<1 | J20Q
< sup 1f11211((Qs55)"h)0; Ay |2

supp hC20Q, ||h||2<1
< Clog (s + 1)||fll2,

where in the last inequality, we have invoked the fact that supp(Q,S;)*h C 50Q and estimate
(7). Summing over all 1 < j < n gives the desired estimate for III, and then concludes the

proof of Lemma 5.

Proof of Theorem 1 Also, we may assume that ||V A|gyomn) = 1. By the Littlewood-Paley
theory, it suffices to prove that, for f, g € C5°(R"),

oo t d d
[T @ner@ewa S < el ()
0 0 JR»
and

o ds d
‘/0 /t | QTaQif(@)g(a)da —S% < Clfl2llgl2- (10)

By Lemma 2-Lemma 5, the same argument as in the proof of Theorem 3.1 in [3] shows that
the estimate (9) holds. Thus the proof of Theorem 1 can be reduced to proving (10). Note that

by a standard duality argument, the inequality (10) is equivalent to the estimate

oot . ds dt
[T [ @maeirwnnt § ] < il ()
o Jo Jre
Define the operator T;‘ by

Tafe) = [ U (Al) ~ AG) - VAW~ ) £y

and the operator W; by

W; f(x) = /n[ajA(x) — 0;A(y)]

for integer j with 1 < j < n. Write

Qz —y)(z; —
|z —y[nHt

95) £(y)dy,

Tif(x) =Taf(x +ZW fla
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Note that Q(z) = Q(—a) is also integrable on S™~! and enjoys the same Fourier transform

estimate (3). So by the same argument as that was used in the proof of the inequality, we have

ds d
[T [ ematrweent ) < cislalle
R"'L

The observation of Han and Sawyer [8] says that the kernel of the convolution operator

/ det

is a radial bounded function with bound C's™", supported on a ball of radius C's and having

integral zero. It follows from the Littlewood-Paley theory that
ds
[ imaS < g

On the other hand, note that, for 1 < j <n, Q(x)mj/|x|”+1 is homogeneous of degree zero and
has mean value zero. Theorem 1 of [6] tells us that for €2 satisfing the Fourier transform estimate
(3) for 3 > 2, then the commutator W; is bounded on L*(R™) with bound C||8;A|/smorn)-
Appling the Schwarz inequality twice, we finally obtain that, for each j with 1 < j <n,

o0 t
o Jo Jr» -

t S

dS 12
s( / W Q22 % ) ( / 1P ) < 0110, Allstogn |12l

where W is the adjoint operator of Wj. This shows that inequality (10) is a easy consequence

of inequality (9) and then concludes the proof of Theorem 1.
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