Acta Mathematica Sinica, English Series April, 2003, Vol.19, No.2, pp. 397–404

Acta Mathematica Sinica, English Series © Springer-Verlag 2003

$L^2(\mathbb{R}^n)$ Boundedness for a Class of Multilinear Singular Integral Operators

Guo En HU

Department of Applied Mathematics, University of Information Engineering, P. O. Box 1001-747, Zhengzhou 450002, P. R. China E-mail: huquoen@eyou.com

Abstract The $L^2(\mathbb{R}^n)$ boundedness for the multilinear singular integral operators defined by

$$T_A f(x) = \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x-y)) f(y) dy$$

is considered, where Ω is homogeneous of degree zero, integrable on the unit sphere and has vanishing moment of order one, A has derivatives of order one in BMO(\mathbb{R}^n). A sufficient condition based on the Fourier transform estimate and implying the $L^2(\mathbb{R}^n)$ boundedness for the multilinear operator T_A is given.

Keywords Multilinear singular integral operator, $BMO(\mathbb{R}^n)$, Fourier transform estimate **MR(2000)** Subject Classification 42B20

1 Introduction

We will work on \mathbb{R}^n , $n \ge 2$. For a point $x \in \mathbb{R}^n$, we denote by x_j $(1 \le j \le n)$ the *j*-th variable of x. Let Ω be homogeneous of degree zero, integrable on the unit sphere S^{n-1} and satisfy the vanishing condition

$$\int_{S^{n-1}} \Omega(x') x_j dx' = 0, \text{ for each } j \text{ with } 1 \le j \le n.$$
(1)

Let A be a function on \mathbb{R}^n having derivatives of order one in BMO(\mathbb{R}^n). Define the multilinear singular integral operator T_A by

$$T_A f(x) = \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} \big(A(x) - A(y) - \nabla A(y)(x-y) \big) f(y) dy.$$
(2)

A well-known result of Cohen [1] states that if $\Omega \in \operatorname{Lip}_1(S^{n-1})$, then T_A is a bounded operator on $L^p(\mathbb{R}^n)$ with bound $C \| \nabla A \|_{\operatorname{BMO}(\mathbb{R}^n)}$ for $1 . Hu [2] proved that <math>\Omega \in \operatorname{Lip}_1(S^{n-1})$ is a sufficient condition such that T_A maps $L \log L(\mathbb{R}^n)$ to weak $L^1(\mathbb{R}^n)$ boundedly. Hofmann [3] improved the result of Cohen and showed that $\Omega \in \bigcup_{q>1} L^q(S^{n-1})$ is a sufficient condition

Received March 5, 2000, Accepted June 15, 2000

Supported by the NSF of China, Grant No. 19701039

such that T_A is bounded on $L^p(\mathbb{R}^n)$ for 1 . The purpose of this paper is to present $a sufficient condition on <math>\Omega$ that implies the $L^2(\mathbb{R}^n)$ boundedness for T_A , and this condition is based on the Fourier transform estimate. We remark that in this paper we are very much motivated by the work of Pérez [4], some ideas are from Hofmann's papers [3], [5] and our previous work [6]. Our main result in this paper can be stated as follows:

Theorem 1 Let Ω be homogeneous of degree zero, integrable on the unit sphere and satisfy the vanishing condition (1), A have derivities of order one in BMO(\mathbb{R}^n). For $1 \leq j \leq n$, set

$$k_0^j(x) = \frac{\Omega(x)x_j}{|x|^{n+1}} \chi_{\{1 < |x| \le 2\}}(x), \ k_0(x) = \frac{\Omega(x)}{|x|^{n+1}} \chi_{\{1 < |x| \le 2\}}(x).$$

Suppose that there exists a constant $\beta > 3$, such that

$$|\hat{k}_{0}(\xi)| + \sum_{j=1}^{n} |\hat{k}_{0}^{j}(\xi)| \le C \min\left\{1, \log^{-\beta}\left(2 + |\xi|\right)\right\}.$$
(3)

Then the operator T_A defined by (2) is bounded on $L^2(\mathbb{R}^n)$ with bound $C \|\nabla A\|_{BMO(\mathbb{R}^n)}$.

As an application of Theorem 1, we will have:

Theorem 2 Let Ω be homogeneous of degree zero, integrable on the unit sphere and satisfy the vanishing condition (1), A have derivatives of order one in BMO(\mathbb{R}^n). Suppose that for some $\beta > 3$,

$$\sup_{\xi \in S^{n-1}} \int_{S^{n-1}} |\Omega(\theta)| \left(\log \frac{1}{|\theta \cdot \xi|} \right)^{\beta} d\theta < \infty.$$
(4)

Then the operator T_A defined by (2) is bounded on $L^2(\mathbb{R}^n)$ with bound $C \|\nabla A\|_{BMO(\mathbb{R}^n)}$.

Remark 1 The size condition (4) for $\beta \ge 1$ was introduced by Grafakos and Stefanov [7] in order to study the $L^p(\mathbb{R}^n)$ boundedness for the singular integral operator

$$Tf(x) = \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) dy.$$

It has been shown in [7] that there exist integrable functions on S^{n-1} which are not in $H^1(S^{n-1})$, but satisfy (4) for all $\beta > 1$.

Remark 2 It is obvious that if $\Omega \in \bigcup_{q>1} L^q(S^{n-1})$, then the Fourier transform estimate (3) holds for any $\beta > 1$.

2 Proof of Theorems

By the estimate of Grafakos and Stefanov [7], we see that if Ω satisfies the size condition (4) for some $\beta > 1$, then the Fourier transform estimate (3) holds for the same β . Thus Theorem 2 can be obtained from Theorem 1 directly, and so it is enough to prove Theorem 1. To do this, we begin with a preliminary lemma:

Lemma 1 [1] Let A be a function on \mathbb{R}^n with derivatives of order one in $L^q(\mathbb{R}^n)$ for some

Multilinear Singular Integral Operators

q > n. Then

$$|A(x) - A(y)| \le C|x - y| \left(\frac{1}{|I_x^y|} \int_{I_x^y} |\nabla A(z)|^q dz\right)^{1/q},$$

where I_x^y is the cube centered at x with sides parallel to the axes and having side length 2|x-y|.

Now we choose $\phi \in C_0^\infty(\mathbb{R}^n)$ to be a radial function such that $\operatorname{supp} \phi \subset \{x : 1/4 \le |x| \le 4\}$ and

$$\sum_{l \in \mathbb{Z}} \phi(2^{-l}x) \equiv 1, \text{ for any } |x| \neq 0.$$

Set

$$K(x, y) = \frac{\Omega(x - y)}{|x - y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x - y)), \ K^*(x, y) = K(y, x)$$

and

$$K_l(x, y) = K(x, y)\phi(2^{-l}(x-y)).$$

Let $T_{A;l}$ be the integral operator whose kernel is K_l . We then have the following size condition:

Lemma 2 Let Ω be homogeneous of degree zero and integrable on S^{n-1} , $n < q < \infty$. Then there exists a positive constant $C = C_{n,q}$ such that for each $\lambda > 0$ and R > 0,

$$\int_{|x| \le \lambda R} \int_{R \le |x-y| \le 2R} [|K^*(x, y)| + |K(x, y)|] dy dx \le C \|\Omega\|_1 (1+\lambda)^{n(2+1/q)} \|\nabla A\|_{\mathrm{BMO}(\mathbb{R}^n)} R^n.$$

Proof Let B be the ball centered at the origin and having radius $(1 + \lambda)R$. Set

$$\widetilde{A}(z) = A(z) - \sum_{j=1}^{n} m_B(\partial_j A) z_j,$$

where $\partial_j A = \partial A/(\partial x_j)$, $m_B(\partial_j A)$ is the mean value of $\partial_j A$ on the ball *B*. It is easy to see that, for any $x, y \in \mathbb{R}^n$,

$$\widetilde{A}(x) - \widetilde{A}(y) - \nabla \widetilde{A}(y)(x - y) = A(x) - A(y) - \nabla A(y)(x - y),$$

and

$$\widetilde{A}(x) - \widetilde{A}(y) - \nabla \widetilde{A}(x)(x-y) = A(x) - A(y) - \nabla A(x)(x-y).$$

Note that if $R \leq |x - y| \leq 2R$ and $|x| \leq \lambda R$, $I_x^y \subset 10nB$. Recall that $n < q < \infty$. By Lemma 1, we know that for $x, y \in \mathbb{R}^n$ such that $R \leq |x - y| \leq 2R$,

$$\begin{split} |\widetilde{A}(x) - \widetilde{A}(y)| &\leq C|x - y| \sum_{j=1}^{n} \left(\frac{1}{|x - y|^{n}} \int_{I_{x}^{y}} |\partial_{j}A(z) - m_{B}(\partial_{j}A)|^{q} dz \right)^{1/q} \\ &\leq CR(1 + \lambda)^{n/q} \sum_{j=1}^{n} \left(\frac{1}{|10nB|} \int_{10nB} |\partial_{j}A(z) - m_{B}(\partial_{j}A)|^{q} dz \right)^{1/q} \\ &\leq C(1 + \lambda)^{n/q} R. \end{split}$$

Let $\widetilde{\Omega}(x) = \Omega(x)\chi_{\{R \leq |x| \leq 2R\}}$. By the Young inequality we then have

$$\begin{split} \int_{|x|\leq\lambda R} \int_{R\leq|x-y|\leq2R} [|K^*(x,y)| + |K(x,y)|] dy dx \\ \leq CR^{-n}(1+\lambda)^{n/q} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |\widetilde{\Omega}(x-y)| \left(1+\sum_{j=1}^n \left|\partial_j A(y) - m_B(\partial_j A)\right|\right) \chi_{\{|y|\leq(\lambda+2)R\}} dy dx \\ + C \|\Omega\|_1 (1+\lambda)^{n/q} \int_{|x|\leq\lambda R} \left(1+\sum_{j=1}^n \left|\partial_j A(x) - m_B(\partial_j A)\right|\right) dx \\ \leq C \|\Omega\|_1 (1+\lambda)^{n(2+1/q)} R^n. \end{split}$$

Lemma 3 Let Ω be integrable on S^{n-1} and satisfy the vanishing condition (1), A have derivatives of order one in BMO(\mathbb{R}^n). Then the operator T_A defined by (2) satisfies the weak boundedness property, that is, if η_1 and η_2 are $C_0^{\infty}(\mathbb{R}^n)$ functions whose supports are contained in a ball of radius r, then

$$\left| \int_{\mathbb{R}^n} \eta_1(x) T_A \eta_2(x) dx \right| \le C \|\nabla A\|_{\mathrm{BMO}(\mathbb{R}^n)} \|\Omega\|_1 r^{-n} \big(\|\eta_1\|_{\infty} + r \|\nabla \eta_1\|_{\infty} \big) \big(\|\eta_2\|_{\infty} + r \|\nabla \eta_2\|_{\infty} \big).$$

This is Lemma 4.3 in [3].

Lemma 4 Let Ω be integrable on S^{n-1} and satisfy the vanishing condition (3), A have derivatives of order one in BMO(\mathbb{R}^n). Then the operator T_A defined by (2) satisfies $T_A 1 \in$ BMO(\mathbb{R}^n) and

$$\|Q_s T_{A;l} 1\|_{\infty} \le C \|\nabla A\|_{\mathrm{BMO}(\mathbb{R}^n)} \|\Omega\|_1 (2^{-l} s)^{\varepsilon},$$

for $s \leq 2^l$ and some $\varepsilon > 0$.

This is Lemmata 4.1 and 4.2 in [3].

Lemma 5 Let Ω be the same as in Theorem 1, $\psi \in C_0^{\infty}(\mathbb{R}^n)$ be a radial function such that $\operatorname{supp} \psi \subset \{x : |x| \leq 1\}$, and

$$\int_{\mathbb{R}^n} \psi(x) dx = 0, \quad \int_0^\infty |\widehat{\psi}(s)|^2 \frac{ds}{s} = 1.$$

For each s > 0, set $\psi_s(x) = s^{-n}\psi(s^{-1}x)$ and Q_s to be the convolution operator with kernel ψ_s . Then for each $l \in \mathbb{Z}$ and $s \leq 2^l$,

$$\|Q_s T_{A;l} f\|_2 \le C \log^{-\beta+1} (2^l s^{-1} + 1) \|\Omega\|_1 \|\nabla A\|_{BMO(\mathbb{R}^n)} \|f\|_2.$$

Proof By scale invariance, it suffices to consider the case l = 0, and without loss of generality, we may assume that $\|\Omega\|_1 = \|\nabla A\|_{BMO(\mathbb{R}^n)} = 1$. As in the proof of Lemma 2.2 in [3], by a standard localization argument, we may assume $\operatorname{supp} f \subset Q$ for some cube Q having side length 1. Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ such that $0 \leq \varphi \leq 1$, φ is indentically one on 50Q and vanishes outside 100Q, $\|\nabla \varphi\|_{\infty} \leq C$. Let x_0 be a point on the boundary of 200Q. Set $\widetilde{A}(y) = A(y) - \sum_{j=1}^n m_Q(\partial_j A)y_j$ and

$$A_{\varphi}(y) = \left(\widetilde{A}(y) - \widetilde{A}(x_0)\right)\varphi(y).$$

400

Multilinear Singular Integral Operators

Applying Lemma 1 again, we have that, for $y \in 20Q$,

$$|A_{\varphi}(y)| \le |\widehat{A}(y) - \widehat{A}(x_0)| \le C.$$
(5)

For each fixed integer j with $1 \leq j \leq n$, set

$$k_j(x) = \phi(x) \frac{\Omega(x)x_j}{|x|^{n+1}}, \quad k(x) = \phi(x) \frac{\Omega(x)}{|x|^{n+1}}$$

Denote by S_j (resp. S) the convolution operator whose kernel is k_j (resp. k). The Fourier transform estimate (3) together with the trivial estimate $|\hat{\psi}(s\xi)| \leq C \min\{1, |s\xi|\}$ says that

$$\sum_{j=1}^{n} |\widehat{\psi}(s\xi)\widehat{k_{j}}(\xi)| + |\widehat{\psi}(s\xi)\widehat{k}(\xi)| \le C \log^{-\beta}(s^{-1}+1).$$

This, via the Plancherel theorem, tells us that

$$\|Q_s Sh\|_2 + \sum_{j=1}^n \|Q_s S_j h\|_2 \le C \log^{-\beta} (s^{-1} + 1) \|h\|_2.$$
(6)

Note that, for $y \in \mathbb{R}^n$,

$$T_{A;0}f(y) = T_{A_{\varphi};0}f(y).$$

Write

$$Q_s T_{A_{\varphi};0} f(x) = Q_s (A_{\varphi} S f)(x) - Q_s S(A_{\varphi} f)(x) - \sum_{j=1}^n Q_s S_j (f \partial_j A_{\varphi})(x)$$
$$= \mathbf{I}(x) + \mathbf{II}(x) + \mathbf{III}(x).$$

Combining estimates (5) and (6) leads to

$$\|\mathrm{III}\|_{2} \le C \log^{-\beta} (s^{-1} + 1) \|A_{\varphi}f\|_{2} \le C \log^{-\beta} (s^{-1} + 1) \|f\|_{2}.$$

Decompose the term I as

$$\mathbf{I}(x) = A_{\varphi}(x)Q_sSf(x) - \int_{\mathbb{R}^n} \left(A_{\varphi}(x) - A_{\varphi}(y)\right)\psi_s(x-y)(Sf)(y)dy = \mathbf{I}_1(x) + \mathbf{I}_2(x).$$

Obviously,

$$\|\mathbf{I}_1\|_2 \le C \log^{-\beta} (s^{-1} + 1) \|f\|_2.$$

A familar argument involving Lemma 1 shows that, for $z \in 40Q$,

$$\begin{aligned} |\nabla A_{\varphi}(z)| &\leq |\nabla \widetilde{A}(z)| + C |\widetilde{A}(z) - \widetilde{A}(x_0)| \leq \sum_{j=1}^n |\partial_j A(z) - m_Q(\partial_j A)| \\ &+ C \sum_{j=1}^n |z - x_0| \left(\frac{1}{|I_z^{x_0}|} \int_{I_z^{x_0}} |\partial_j A(w) - m_Q(\partial_j A)|^q dw \right)^{1/q} \\ &\leq C \bigg(\sum_{j=1}^n |\partial_j A(z) - m_Q(\partial_j A)| + 1 \bigg). \end{aligned}$$

$$(7)$$

If $y \in 10Q$ and $|x - y| \le s < 1$, then $x \in 12Q$ and $I_x^y \subset 40Q$. Choosing q > n, by Lemma 1 we

have that, for $y \in 10Q$ and $|x - y| \le s$,

$$\begin{aligned} |A_{\varphi}(x) - A_{\varphi}(y)| &\leq C|x - y| \left(\frac{1}{|x - y|^n} \int_{I_y^x} |\nabla A_{\varphi}(z)|^q dz\right)^{1/q} \\ &\leq C|x - y|^{1 - n/q} \sum_{j=1}^n \left(\int_{40Q} |\partial_j A(z) - m_Q(\partial_j A)|^q dz\right)^{1/q} \\ &\leq C|x - y|^{1 - n/q}. \end{aligned}$$

Recall that supp $f \subset Q$. Thus supp $Sf \subset 10Q$ and so

$$|\mathbf{I}_2(x)| \le Cs^{1-n/q} \int_{\mathbb{R}^n} |\psi_s(x-y)| |Sf(y)| dy.$$

This in turn implies that

$$\|\mathbf{I}_2\|_2 \le Cs^{1-n/q} \|f\|_2.$$

To estimate the term III, we will use a basic estimate for $(Q_s S_j)^*$, the adjoint operator of $Q_s S_j$, that is,

$$(Q_s S_j)^* h(x) = \int_{\mathbb{R}^n} \psi_s * k_j (y - x) h(y) dy.$$

We claim that there exists a positive constant C_n such that, for supp $h \subset 10Q$ and $b \in BMO\mathbb{R}^n$,

$$\int_{Q} |b(x) - m_{Q}(b)|^{2} |(Q_{s}S_{j})^{*}h(x)|^{2} dx \leq C \log^{2(-\beta+1)}(s^{-1}+1) ||b||^{2}_{BMO(\mathbb{R}^{n})} ||h||^{2}_{2}.$$
 (8)

In fact, without loss of generality, we may assume that $\|b\|_{BMO(\mathbb{R}^n)} = \|h\|_2 = 1$. Note that $\Phi(t) = t\log^2(2+t)$ is a Young function and its complementary Young function is $\Psi(t) \approx \exp t^{1/2}$. By the general Hölder inequality, it follows that

$$\int_{Q} |b(x) - m_Q(b)|^2 |(Q_s S_j)^* h(x)|^2 dx \le C ||b - m_Q(b)|^2 ||_{(\exp L)^{1/2}, Q} ||((Q_s S_j)^* h)^2 ||_{L(\log L)^2, Q},$$

where

$$\left\| |b - m_Q(b)|^2 \right\|_{(\exp L)^{1/2}, Q} = \inf\left\{ \lambda > 0 : \int_Q \exp\left(\frac{|b(y) - m_Q(b)|}{\lambda^{1/2}}\right) dy \le 2 \right\}$$

and

$$\|((Q_sS_j)^*h)^2\|_{L(\log L)^2, Q} = \inf\left\{\lambda > 0: \int_Q \frac{|(Q_sS_j)^*h(y)|^2}{\lambda} \log^2\left(2 + \frac{|(Q_sS_j)^*h(y)|^2}{\lambda}\right) dy \le 1\right\},$$

see [4, p. 168]. The well-known John-Nirenberg inequality now states that

$$\left\| |b - m_Q(b)|^2 \right\|_{(\exp L)^{1/2}, Q} \le C.$$

On the other hand, note that supp $h \subset 10Q$ and by the Young inequality,

$$\|(Q_s S_j)^* h\|_{\infty} \le C \|\Omega\|_1 \|\psi_s\|_{\infty} \|h\|_1 \le C_n s^{-n}.$$

Set $\lambda_0 = C_n \log^{2(-\beta+1)}(s^{-1}+1)$. A straightforward computation gives us that

$$\int_{Q} |(Q_s S_j)^* h(y)|^2 \log^2 \left(2 + \frac{|(Q_s S_j)^* h(y)|^2}{\lambda_0}\right) dy \le C \log^2 \left(2 + \frac{C_n s^{-2n}}{\lambda_0}\right) \|(Q_s S_j)^* h\|_2^2$$

402

Multilinear Singular Integral Operators

$$\leq C \log^{-2\beta} (s^{-1} + 1) \log^2 (2 + s^{-n+1})$$

$$\leq C \log^{2(-\beta+1)} (s^{-1} + 1),$$

which means that

$$\|((Q_s S_j)^* h)^2\|_{L(\log L)^2, Q} \le C \log^{2(-\beta+1)}(s^{-1}+1),$$

and then we establish inequality (8).

The estimate for III follows from inequality (8) directly. In fact, for each $1 \le j \le n$, by the standard duality argument, we have

$$\begin{split} \|Q_{s}S_{j}(\partial_{j}A_{\varphi}f)\|_{2} &= \sup_{\sup p \ h \subset 20Q, \ \|h\|_{2} \leq 1} \left| \int_{20Q} Q_{s}S_{j}(\partial_{j}A_{\varphi}f)(x)h(x)dx \right| \\ &= \sup_{\sup p \ h \subset 20Q, \ \|h\|_{2} \leq 1} \left| \int_{20Q} f(y)\partial_{j}A_{\varphi}(y)(Q_{s}S_{j})^{*}h(y)dy \right| \\ &\leq \sup_{\sup p \ h \subset 20Q, \ \|h\|_{2} \leq 1} \|f\|_{2}\|((Q_{s}S_{j})^{*}h)\partial_{j}A_{\varphi}\|_{2} \\ &\leq C\log^{-\beta+1}(s^{-1}+1)\|f\|_{2}, \end{split}$$

where in the last inequality, we have invoked the fact that $\operatorname{supp}(Q_s S_j)^* h \subset 50Q$ and estimate (7). Summing over all $1 \leq j \leq n$ gives the desired estimate for III, and then concludes the proof of Lemma 5.

Proof of Theorem 1 Also, we may assume that $\|\nabla A\|_{BMO(\mathbb{R}^n)} = 1$. By the Littlewood-Paley theory, it suffices to prove that, for $f, g \in C_0^{\infty}(\mathbb{R}^n)$,

$$\int_{0}^{\infty} \int_{0}^{t} \int_{\mathbb{R}^{n}} Q_{s}^{2} T_{A} Q_{t}^{2} f(x) g(x) dx \frac{ds}{s} \frac{dt}{t} \bigg| \le C \|f\|_{2} \|g\|_{2}$$
(9)

and

$$\int_{0}^{\infty} \int_{t}^{\infty} \int_{\mathbb{R}^{n}} Q_{s}^{2} T_{A} Q_{t}^{2} f(x) g(x) dx \frac{ds}{s} \frac{dt}{t} \bigg| \leq C \|f\|_{2} \|g\|_{2}.$$
(10)

By Lemma 2–Lemma 5, the same argument as in the proof of Theorem 3.1 in [3] shows that the estimate (9) holds. Thus the proof of Theorem 1 can be reduced to proving (10). Note that by a standard duality argument, the inequality (10) is equivalent to the estimate

$$\left| \int_0^\infty \int_0^t \int_{\mathbb{R}^n} Q_s^2 T_A^* Q_t^2 f(x) g(x) dx \frac{ds}{s} \frac{dt}{t} \right| \le C \|f\|_2 \|g\|_2. \tag{11}$$

Define the operator T_A by

$$\widetilde{T_A}f(x) = \int_{\mathbb{R}^n} \frac{\Omega(y-x)}{|x-y|^{n+1}} \big(A(x) - A(y) - \nabla A(y)(x-y)\big) f(y) dy$$

and the operator W_j by

$$W_j f(x) = \int_{\mathbb{R}^n} [\partial_j A(x) - \partial_j A(y)] \frac{\Omega(x-y)(x_j - y_j)}{|x-y|^{n+1}} f(y) dy,$$

for integer j with $1 \leq j \leq n$. Write

$$T_A^*f(x) = \widetilde{T_A}f(x) + \sum_{j=1}^n W_jf(x).$$

403

Note that $\widetilde{\Omega}(x) = \Omega(-x)$ is also integrable on S^{n-1} and enjoys the same Fourier transform estimate (3). So by the same argument as that was used in the proof of the inequality, we have

$$\left|\int_0^\infty \int_0^t \int_{\mathbb{R}^n} Q_s^2 \widetilde{T_A} Q_t^2 f(x) g(x) dx \frac{ds}{s} \frac{dt}{t}\right| \le C \|f\|_2 \|g\|_2.$$

The observation of Han and Sawyer [8] says that the kernel of the convolution operator

$$P_s = \int_s^\infty Q_t^2 \frac{dt}{t}$$

is a radial bounded function with bound Cs^{-n} , supported on a ball of radius Cs and having integral zero. It follows from the Littlewood-Paley theory that

$$\int_0^\infty \|P_s h\|_2^2 \frac{ds}{s} \le C \|h\|_2^2.$$

On the other hand, note that, for $1 \leq j \leq n$, $\Omega(x)x_j/|x|^{n+1}$ is homogeneous of degree zero and has mean value zero. Theorem 1 of [6] tells us that for Ω satisfing the Fourier transform estimate (3) for $\beta > 2$, then the commutator W_j is bounded on $L^2(\mathbb{R}^n)$ with bound $C \|\partial_j A\|_{\text{BMO}(\mathbb{R}^n)}$. Appling the Schwarz inequality twice, we finally obtain that, for each j with $1 \leq j \leq n$,

$$\begin{aligned} \left| \int_0^\infty \int_0^t \int_{\mathbb{R}^n} Q_s^2 W_j Q_t^2 f(x) g(x) dx \frac{ds}{s} \frac{dt}{t} \right| &= \left| \int_0^\infty \int_s^\infty \int_{\mathbb{R}^n} W_j^* Q_s^2 g(x) Q_t^2 f(x) dx \frac{dt}{t} \frac{ds}{s} \right| \\ &\leq \left(\int_0^\infty \|W_j^* Q_s^2 g\|_2^2 \frac{ds}{s} \right)^{1/2} \left(\int_0^\infty \|P_s f\|_2^2 \frac{ds}{s} \right)^{1/2} \leq C \|\partial_j A\|_{\mathrm{BMO}(\mathbb{R}^n)} \|f\|_2 \|g\|_2, \end{aligned}$$

where W_j^* is the adjoint operator of W_j . This shows that inequality (10) is a easy consequence of inequality (9) and then concludes the proof of Theorem 1.

Acknowledgement The author would like to thank Professor Dachun Yang for pointing out reference [7].

References

- Cohen, J.: A sharp estimate for a multilinear singular integral on ℝⁿ. Indiana Univ. Math. J., **30**(2), 693–702 (1981)
- Hu, G.: A sharp function estimate for the multilinear singular integral operators. Approx. and its Appl., 16(1), 17–25 (2000)
- [3] Hofmann, S.: On Certain non-standard Calderón-Zygmund operators. Studia Math., 109(2), 105–131 (1994)
- [4] Pérez, C.: Endpoint estimate for commutators of singular integral operators. J. Funct. Anal., 128(1), 163–185 (1995)
- [5] Hofmann, S.: Weighted norm inequalities for commutators of rough singular integrals. Indiana Univ. Math. J., 39(4), 1275–1304 (1990)
- [6] Hu, G.: L² boundedness for the commutators of convolution operators. Nagoya Math. J., 163, 55–70 (2001)
- [7] Grafakos, L., Stefanov, A.: L^p bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ. Math. J., 47(2), 455–469 (1998)
- [8] Han, Y., Sawyer, E. T.: Para accretive functions, the weak boundedness property and the Tb theorem. Rev. Mat. Iberoamericana, 6(1), 17–41 (1990)