
Vol.:(0123456789)1 3

Regional Environmental Change (2022) 22:112 
https://doi.org/10.1007/s10113-022-01957-5

ORIGINAL ARTICLE

Assessing observed and projected flood vulnerability under climate 
change using multi‑modeling statistical approaches in the Ouémé 
River Basin, Benin (West Africa)

Jean Hounkpè1   · Djigbo F. Badou1,2   · D. M. Maurice Ahouansou3   · Edmond Totin4   · Luc O. C. Sintondji1

Received: 14 December 2020 / Accepted: 12 July 2022 / Published online: 6 September 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Climate change has severe impacts on the livelihoods of West-African communities with the floods of the late 2000s and early 
2010s serving as factual evidence. Focusing on the assessment of observed and future vulnerability to extreme rainfall in the 
tropical Ouémé River Basin, this study aims to provide scientific evidence to inform national adaptation plans. Observed cli-
mate variables, historical and future outputs from regional climate models, topographic, land cover, and socioeconomic data 
were used in the vulnerability assessment. This assessment was based on four indicator normalization methods (min–max, 
z-scores, distance to target, and ranking), two aggregation techniques (linear and geometric), four classification methods 
(quantile, standard deviation, equal intervals, natural breaks), and three robustness evaluation approaches (spearman correla-
tion, Akaike Information Criterion (AIC), and average shift in ranks). Based on the AIC, it was found that “equal intervals” 
is the overall best classification method and the min–max normalization with linear aggregation (MM.LA) outperformed 
other methods. The median scenario indicates that the population of the Ouémé Basin is vulnerable to the adverse impacts of 
climate change for the historical (1970–2015) and future periods (2020–2050) as a result of low adaptive capacity. By 2050, 
the southern part of the Ouémé Basin will be highly vulnerable to pluvial flooding under RCP 4.5. Vulnerable municipalities 
will continue to suffer from flooding if adequate adaptation measures including water control infrastructure (development and 
expansion of rainwater and wastewater drainage systems) and appropriate early warning systems to strengthen community 
members’ resilience are not taken.

Keywords  Pluvial floods · Vulnerability assessment · Multiple methodological approaches · Ouémé Basin · Benin

Introduction

Flood is among the most devastating natural disasters 
affecting human beings and natural ecosystems. Accord-
ing to Sultan and Gaetani (2016), West Africa is one of 
the most exposed regions to the adverse effects of climate 
change. While the 1970s and 1980s were marked by the 
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great drought (Nicholson 2001; Lebel and Ali 2009), 
which negatively impacted the region’s economy, the 
2000s recorded unprecedented floods. The annual aver-
age of flood events has increased from less than 5 to 11 
between 1966 and 2020 (EM-DAT 2022) in West Africa, 
likely due to the increase in heavy rainfall frequency and 
intensity in the region (Nkrumah et al. 2019; Tazen et al. 
2019). In Benin, between 1984 and 2010, floods caused 
the death of 71 persons and injured an average of 279,971 
people per year (MEHU, 2011). The worst happened in 
2010 when the country experienced the most devastating 
floods in its history, resulting in the death of 46 people and 
an estimated loss of 80,778,431 US dollars (World Bank 
2011). Recent years also recorded extreme flood events. 
The year 2020 was a dreadful one as high flows led to the 
death of 29 persons and affected 6869 people in northern 
Benin (e.g., in Kandi, Karimama, and Malanville).

Evaluating flood vulnerability is relevant to inform the 
design of integrated flood risk management. Flood vulner-
ability can be understood as the degree to which a system is 
likely to be harmed by water under various factors, includ-
ing exposure, sensitivity, and adaptive capacity (Parry et al. 
2007) as discussed in the “Index of flood vulnerability 
components” section below. There is a wide range of stud-
ies that have evaluated flood vulnerability in the context 
of climate change through different approaches, including 
damage evaluation approach (Tóth 2008), socioeconomic 
and biophysical vulnerability indicators (Hebb and Mortsch 
2007; Birkmann et al., 2022), integrated vulnerability index 
(Kumpulainen 2006), coastal city flood vulnerability index 
(Balica et al. 2012), and GIS-based method (Coto, 2002). 
Areas experiencing high flood risk lack sufficient water 
drainage infrastructures.

In Benin, there are limited studies on flood vulnerability 
assessment. Behanzin et al. (2016) conducted a GIS-based 
mapping of flood vulnerability and risk in the Niger River 
Valley. The study highlighted some flood vulnerability 
drivers including poverty rates and socioeconomic factors. 
In the Ouémé River Basin (ORB), previous studies have 
documented the exposure of flood vulnerability focusing on 
extreme rainfall trends (Attogouinon et al. 2017; N’Tcha 
M’Po et al. 2017), stationary flood frequency analysis, non-
stationary flood frequency analysis (Hounkpè et al. 2015b, 
2015a), the impact of land use change on floods (Hounkpè 
et al. 2019), and hydrological modeling of flooding. Apart 
from the assessment of exposure to flood events, there is a 
huge gap in the literature on flood vulnerability as defined 
above over the ORB. This study, the very first of its kind in 
Benin, assesses specifically observed and projected flood 
vulnerability in the ORB using multi-modeling statistical 
approaches. The multi-modeling approaches imply the use 
of two or more methods at each stage of flood vulnerability 
assessment as recommended in the literature (Feizizadeh 

and Kienberger 2017; Nazeer and Bork 2019, 2021; Moreira 
et al. 2021).

Methodological approach

Study area

The Ouémé River is 548 km long and drains about 49,256 
km2 at its main outlet of Bonou (Deng, 2007). With its 
source located in Kpabégou, about 10 km from Djougou 
in northwestern Benin, the river flows from North to South 
and is joined by its main tributaries, the Okpara (200 km) 
on the left bank and the Zou (150 km) on the right bank. 
The ORB is located between latitudes of 10°09′33″N and 
6°20′14″ N and longitudes 1°30′E and 2°30′E (Fig. 1) and 
is relatively flat.

The ORB is composed of three climatic zones based on 
the rainfall regime (Deng 2007): (i) the unimodal rainfall 
regime of the northern part of the basin comprising two sea-
sons, the rainy season that falls between May and October 
and the dry season that spans from December to April; (ii) 
the bimodal rainfall regime of the southern part of the basin 
with two wet seasons, a long season between March and July 
and a short season between September and mid-November 
and a long dry season between November and March; and 
(iii) the transition rainfall regime in the center of the basin, 
a rainy season between March and October, with or without 
a short dry season in August. The average annual rainfall 
ranges between 1100 mm in the north (Deng 2007; Badou 
et al. 2015) and 1340 mm in the South of the basin. As a 
result, precipitation decreases northwards and results in a 
steep gradient. The average annual temperatures fluctuate 
between 26° and 30 °C (Bossa et al. 2014). The 1970–2015 
period was chosen to assess the current vulnerability as it 
covers the recent trends observed in the climatic variable 
across West Africa (Badou et al. 2017), while the 2020–2050 
period was chosen to assess the mid-century future vulner-
ability. The future period started in 2020 as the initial work 
was done before 2020.

Index of flood vulnerability components

In this paper, the concept of vulnerability as defined in the 
AR4 is used which is nearly equivalent to the actual risk 
concept (AR5). The vulnerability is therefore defined as the 
“degree to which a system is susceptible to and unable to 
cope with, adverse effects of climate change, including cli-
mate variability and extremes” (Solomon et al., 2007; Page 
6). The vulnerability framework (see supplementary materi-
als) was adopted from Fritzsche et al. (2014). This frame-
work was initially developed by Füssel and Klein (2006) and 
was further used by Lung et al. (2013) for a multi-hazard 
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regional level impact assessment for Europe combining indi-
cators of climatic and non-climatic change. The current work 
was done using the same conceptual framework:

The methodological framework adopted for the flood 
vulnerability assessment is synthesized in Fig. 2. It is based 
on four indicator normalization methods, two aggregation 
techniques, four classification methods, and three robust-
ness evaluation approaches. Each of the components of this 
framework is described in the following lines.

Identification of flood vulnerability indicators

The impact chain of key factors considered for shaping 
current and future flood vulnerability in the ORB was 

Vulnerability = f (Exposure, Sensitivity, Adaptation Capacity)

elaborated following Fritzsche et al. (2014) (see figure F1 
in supplementary materials). Relevant indicators are selected 
to assess each of the components of the impact chain. For 
example, poverty, the existence and effectiveness of flood 
early warning systems, and access to information are the 
indicators chosen for the assessment of the adaptation capac-
ity component. Indicators are used to characterize factors. 
For example, the availability of climate information (weather 
stations) is selected as an indicator to characterize the factor 
“access to information.” Municipalities are the basic geo-
graphical unit level considered for the analysis. The ORB 
has a total of thirty-four (34) municipalities.

Flood exposure or climate impact‑drivers  In Benin, the 
majority of floodings are caused by torrential rains mak-
ing precipitations the main cause of flooding in the ORB 
(MEHU 2011). Therefore, in this study, rainfall was 

Fig. 1   Location of the Ouémé River Basin in Africa and Benin as well as the rainfall stations
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purposely used as the key factor for exposure analysis. Based 
on the analysis of rainfall data and natural factors (topogra-
phy and soil), SAP-Benin (2015) determined warning level 
thresholds associated with flooding for cities prone to pluvial 
flooding. Four alert levels were identified, and thresholds 
slightly vary with the considered station. For consistency 
purposes, the same thresholds were used for all the sta-
tions of the ORB. The indicators considered are (i) average 
annual number of rainy days greater than or equal to 60 mm, 
(ii) average annual number of rainy days between 60 and 
90 mm, (iii) average annual number of rainy days between 
90 et 110 mm, and (iv) average annual number of rainy days 
greater than or equal to 110 mm. For each station, the num-
ber of rainy days was determined according to these thresh-
olds. This resulted in a three-time series of each station’s 
number of rainy days. For pluvial flood studies, sub-daily 
data resolution should be preferred as rainfall-induced floods 
could occur in a few hours. However, due to the paucity of 
higher temporal resolution data, daily data was considered. 
In addition, the outputs of the RCMs used are provided at a 
minimum temporal resolution of a day.

Flood sensitivity  Topography (slope index) and land use 
substantially influence the velocity of water flow and have 
therefore been selected as drivers of sensitivity. The land 
use unit’s susceptibility to favor flooding was considered 
to scale the land use unit from 1 to 5 (see table T1, sup-
plementary materials). For instance, urban areas are prone 
to flooding while forests are not. Similarly, the slope is one 

of the influencing factors of flooding. The same applies to 
population density. The sensitivity of a population to flood 
is directly linked to its density. Other things being equal, a 
population with a higher density is more subject to flooding 
than one with a lower density.

Flood adaptation capacity  Adaptation capacity is a set of 
mechanisms and actions to cope with the risks of flooding. 
The indicators of monetary wealth (INSAE 2015), the avail-
ability of a contingency plan/civil protection committee at 
the municipality level, and the availability of hydro-climatic 
information were considered to assess the adaptation capac-
ity to flooding in the ORB.

Standardization of indicators

Given the plurality of the drivers considered in this study, 
it was necessary to standardize them for comparison and 
interpretation purposes. The normalization was based on 
four methods (Yoon 2012; Hudrliková 2013; Moreira et al. 
2021) namely the Min–max, z-score, distance to target and 
ranking with Xi the ith element of the indicator X, and NIi 
the standardized value of Xi.

–	 The min–max method standardized the indicator ( X ) 
to the scale between zero, corresponding to the lower 
indicator value and 1 corresponding to the highest indi-
cator value using the following formula:

Fig. 2   Methodological frame-
work for flood vulnerability 
analysis



Regional Environmental Change (2022) 22:112	

1 3

Page 5 of 14  112

–	 The z-score standardized the indicators to a new vari-
able with a mean value of zero and a standard deviation 
of 1. It is based on the following formula where X and 
�X are respectively the mean and standard deviation of 
X:

–	 The distance to target method normalizes indicators by 
dividing the unit’s value by a reference target (i.e., maxi-
mum value):

–	 The ranking approach attributes to each indicator value 
its ordinary rank in the series:

Weighting scheme

No weighting scheme was considered in this study to avoid 
subjectivity in choosing the weight as indicated by Nazeer 
and Bork (2021), Villordon (2012), and Moreira et  al. 
(2021). It was assumed that all the initial indicators con-
tribute equally to flood vulnerability. Therefore, the same 
weight was applied to all normalized indicators during the 
aggregation stage.

Aggregation of indicators and vulnerability classification 
approaches

After the normalization, the next step was to group com-
ponents (exposure, sensitivity, and adaptation capacity). It 
was assumed that the average values of the indicators under 
each component following the municipalities were rep-
resentative of the component in line with the no different 
weighting scheme previously indicated. The vulnerability 
was inferred by combining the exposure, sensitivity, and 
adaptation capacity. Exposure and sensitivity on the one 
hand and adaptation capacity on the other hand have a con-
trary effect on vulnerability. An increase in exposure and/
or sensitivity increases vulnerability, while an increase in 
adaptive capacity reduces vulnerability. The aggregation of 
the exposure (EP), sensitivity (SE), and adaptation capacity 
(AC) into vulnerability index (VI) were done using the linear 
and the geometric approaches as follow:

NIi =
Xi − min(X)

max(X) − min(X)

NIi =
Xi − X

�X

NIi =
Xi

max(X)

NIi = rank(Xi)

–	 The linear aggregation approach was based on the vulner-
ability assessment method as defined by Ritzsche et al. 
(2015):

–	 The geometric aggregation was performed using the for-
mula below:

To account for uncertainties due to the classification 
of the vulnerability indexes, four classification methods 
(quantile, standard deviation, equal intervals, and natural 
breaks) (Moreira et al. 2021) were considered, and vulner-
ability indexes were grouped into five classes (very low, low, 
medium, high, and very high). Differences in the classifi-
cation methods were evaluated using visual inspection and 
numerical criteria.

Robustness and sensitivity evaluation

Three metrics were considered for assessing the robust-
ness and sensitivity of composite indicators (vulnerability 
indexes). These are:

	 (i).	 Spearman correlation coefficient (Spearman 1904; 
Hauke and Kossowski 2011; Nazeer and Bork 2019): 
Spearman correlation coefficient is a nonparametric 
measure of the strength and direction of existing 
association between two quantitative variables. It was 
used to evaluate the relationship between any couple 
of model participant scenarios.

	 (ii).	 Average absolute shift in rank (OECD 2005; Saisana 
et al. 2005; Nazeer and Bork 2021): Average abso-
lute shift in rank ( Rs ) is computed as the average of 
the absolute difference between the municipalities’ 
rank and a reference value such as the median rank of 
all scenarios. Its formula is as follows with YMR , the 
median rank; Yi , the rank derived through different 
scenarios for a given Y  municipality across the 34 
municipalities (i = 1, 2, .., 34):

	(iii).	 Akaike information criterion (Akaike 1974): this 
criterion is used for evaluating how well a model fits 
the data it was generated from. For more information 
on the use of this criterion in vulnerability assess-

VI =

(EP+SE)

2
+ [1 − AC]

2

VI =
SE ∗ EP

AC

Rs =
1

34

34
∑

i=1

(YMR − Yi)
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ment, the reader can refer to Mazari et al. (2017) and 
Moreira et al. (2021)

Scenario analysis

The combination of the various normalization meth-
ods (min–max, z-scores, distance to target, and ranking) 
(Moreira et al. 2021), aggregation techniques (linear and 
geometric), and classification approaches (quantile, standard 
deviation, equal intervals, natural breaks) led to the realiza-
tion of 24 participating members. The geometric aggrega-
tion capability to treat information derived from min–max 
and distance to target is limited (Garg et al. 2018) and these 
combinations were excluded as these two normalization 
techniques transform the minimum value into zero and 
thus produce a final zero vulnerability. The vulnerability 
indexes were generated using the four normalization tech-
niques namely the Z-score (ZC), the min–max (MM), the 
distance to target (DT), and ranking (RA), combined with 
two aggregations methods namely the geometric aggregation 
(GA) and the linear aggregation (LA) and led to six vulner-
ability indexes (ZC.GA, ZC.LA, MM.LA, DT.LA, RA.LA, 
RA.GA) referred here as scenarios. ZC.GA corresponds to 
Z-score normalization technique combined with the geomet-
ric aggregation method for flood vulnerability index calcula-
tion. ZC.LA, MM.LA, DT.LA, RA.LA, and RA.GA should 
be similarly interpreted.

The observed and projected vulnerability was assessed 
based on the indicators presented above. The difference 
between these two types of vulnerability is mainly at the 
exposure level. For the historical vulnerability, exposure was 
assessed using both ground climate station data and regional 
climate models (RCMs) outputs (downscaled and bias cor-
rected) over the period 1970–2015, whereas, for future vul-
nerability, data from the same RCMs (REMO/MPIESM, 
RCA4/IPSL, CCLM4/HADGEM2, RACMO/ECEARTH) 
downscaled and bias corrected were used to assess the expo-
sure over the 2020–2050 period. The intermediate scenario 
RCP4.5 (Representative Concentration Pathway) was used 
in this study. Compared to the other scenarios, it is the most 
plausible scenario fitting the current context (Edenhofer 
et al. 2012) of global climate change mitigation efforts. 
The scenario RCP8.5 is too pessimistic and not consistent 
with current climate change mitigation agendas. The model 
outputs were corrected via a trend-preserving bias correc-
tion technique applied to the RCM climate projections. This 
bias correction technique adjusts climate simulations to a 
reference dataset (regioclim.climateanalytics.org/choices, 
accessed on 10/12/2018) over a reference period without 
influencing projected trends (Hempel et al. 2013). Other vul-
nerability components were considered constant to evalu-
ate to what extent climate change specifically impacts flood 
vulnerability in the study area.

Results

Influence of different normalization 
and aggregation approaches on flood vulnerability 
indexes

Relationship between flood vulnerability scenarios

The partial correlations between flood vulnerability 
indexes (FVI) were generated using four normalization 
techniques namely the Z-score (ZC), min–max (MM), dis-
tance to target (DT), and ranking (RA), combined with two 
aggregations methods namely the geometric aggregation 
(GA) and the linear aggregation (LA), and are presented in 
figure F2 of the supplementary material. The FVI based on 
Z-score and geometric aggregation (ZC.GA) exhibited a 
negative correlation with other vulnerability indexes sug-
gesting a dissimilarity between ZC.GA and the other meth-
ods (Moreira et al. 2021). The Spearman correlation coef-
ficients obtained between the remaining scenarios are very 
high and statistically significant at a 5% level indicating a 
good agreement between these scenarios. The highest cor-
relation value of 0.98 was obtained for linear aggregation 
between the scenarios DT.LA and MM.LA; RA.LA and 
MM.LA; and MM.LA and ZC.LA while the lowest signifi-
cant correlation of 0.86 was obtained between DT.LA and 
Geometric aggregation for ranking technique.

Robustness of flood vulnerability indexes based on Rs  

The robustness based on the average shift in ranking rela-
tive to the median provides a basis for uncertainty analysis 
of normalization and aggregation methods. Table 1a shows 
the average shift in rankings for the 34 municipalities indi-
cated in Fig. 3. A value of Rs close to zero indicates a 
classification similar to the median ranking. The Z-score 
combined with the geometric aggregation (ZC.GA) indi-
cated the highest Rs value implying a dissimilarity with 
the median ranking and thus high uncertainties with the 
vulnerability estimated based on this method (Hudrlik-
ová 2013). The linear aggregation method except for the 
DT.LA provided low Rs values and therefore low uncer-
tainties in contrast to the geometric aggregation.

The relatively low values of Rs combined with the high 
and statistically significant correlation (at 5% level) among 
MM.LA, ZC.LA, and RA.LA imply that the vulnerabil-
ity indexes estimated through this method will not highly 
affect the ranking of the municipalities as indicated by 
Nazeer and Bork (2019). Therefore, MM.LA, ZC.LA, and 
RA.LA can be used for further investigation.
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Flood vulnerability index classification uncertainties

To evaluate the uncertainties related to the spatial repartition 
of the FVI, five classes of vulnerability indexes were cre-
ated namely “very low,” “low,” “medium,” “high,” and “very 
high” using four classification methods: quantile, standard 
deviation, equal intervals, natural breaks (Fig. 4). Consid-
ering the linear aggregation, the min–max (MM.LA), the 
z-score (ZS.LA), the distance to the target (DT.LA), and the 
ranking (RA.LA) normalizations provide generally similar 
results for the quantile (Fig. 4a, b, d, e, f), standard devia-
tion (Fig. 4g, h, j), and equal intervals (Fig. 4m, n, p) clas-
sifications respectively. The slight differences noted for the 
aforementioned sub-figures are the change from one class to 
the next, which is acceptable. Similarly, the ranking normali-
zation with linear (RA.LA) and geometric (RA.GA) aggre-
gations provide nearly the same spatial characteristics for 
quantile (e, f), standard deviation (k, l), and natural breaks 
(w, x) classifications.

Vulnerability results obtained from the geometric aggre-
gation combined with the z-score (ZC.GA: c, i, o, u) and 
somehow with the ranking (RA.GA: l, r, x) normalizations 
are drastically different from their respective companion 
classes. For instance, a change from very low (r) to very high 
(c) vulnerability classes for some municipalities and vice 
versa was observed. Using this approach may lead to under-
estimating or overestimating the actual vulnerability. These 
results confirm previous findings obtained on the negative 
correlation and highest value of the average shift in rank 
(see Relationship between flood vulnerability scenarios and 
Robustness of flood vulnerability indexes based on Rs ) that 
the geometric aggregation provides diverging vulnerability 
outputs comparatively to other methods.

Concentrating on the variability due to the classification 
methods, a shift from one class to the next is noticed for 
all normalization and aggregation methods. However, some 
shifts from very low (lower left municipalities of Fig. 4b, 

t) to medium (lower left municipalities of Fig. 4h, n) were 
also found.

Beyond the visual inspection, the average shift in the 
five classes of vulnerability for the 34 municipalities was 
computed using the median classes as reference (Table 1b). 
Focusing on the uncertainties linked with the classification 
methods, the equal intervals show an average shift in the 
class of zero for min–max normalization and linear aggrega-
tion implying a perfect agreement with the overall median 
classes. Similarly, equal interval appears to be the best clas-
sification method for z-score with linear aggregation (ZC.
LA). For ranking (respectively z-score) normalizations com-
bined with geometric and linear (RA.GA, RA.LA) (respec-
tively geometric, ZC.GA) aggregations, natural breaks were 
the best vulnerability classification method. The uncertain-
ties relative to the median classes of vulnerability are the 
lowest for the standard deviation when considering the dis-
tance to target normalization and linear aggregation (DT.
LA) of vulnerability indicators. The quantile classification 
did not outperform any of the other classification methods 
regardless of the normalization and aggregation methods 
considered.

The performance of the classification was further 
investigated using the Akaike information criterion 
(AIC, Table 1c). AIC was not computed for vulnerability 
indexes based on z-score normalization and geometric/
linear aggregations (ZC.GA, ZC.LA) since the sum of 
the indicators is equal to zero (average value of zero for 
z-score). The results based on the AIC are similar to one 
of the average shifts in vulnerability classes. The natural 
breaks classification is the best for ranking normalization 
with linear and geometric aggregation (RA.LA, RA.GA). 
Equal interval classification provides the lowest value of 
AIC and thus is the overall best classification method for 
all normalization and aggregation approaches. The low-
est AIC was obtained for min–max normalization with 
linear aggregation (MM.LA). These results imply that the 

Table 1   Average shift in rank 
(a) and performances of the 
classification methods for the 
FVI based on the different 
normalizations and aggregation 
techniques using the average 
shift in classes (b) and the 
Akaike information criterion 
(c). The values in bold indicate 
the best classification method 
for each scenario

MM.LA ZC.LA ZC.GA DT.LA RA.LA RA.GA

(a) Average shift in rank ( Rs)
  Scenarios 1.19 1.13 11.75 2.04 1.10 2.72

(b) Average shift in vulnerability classes
  Quantile 0.50 0.38 0.53 0.51 0.25 0.62
  Standard deviation 0.09 0.88 0.26 0.07 0.31 0.24
  Equal intervals 0.00 0.15 0.65 0.19 0.22 0.35
  Natural breaks 0.12 0.24 0.24 0.10 0.07 0.15

(c) Akaike information criterion (AIC)
  Quantile 110.75 - - 117.68 3585.93 4613.80
  Standard deviation 110.67 - - 117.68 3585.93 4613.80
  Equal interval 110.66 - - 117.68 3585.93 4613.80
  Natural breaks 110.76 - - 117.72 3585.57 4610.92
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min–max normalization with linear aggregation (MM.LA) 
combined with the equal intervals classification can be 
used for future investigation of flood vulnerability in the 
Ouémé Basin.

Historical and future flood vulnerability in Ouémé 
River Basin

Historical flood vulnerability

Fig. 3   Shift in vulnerability index classes using the quantile, standard deviation, equal intervals, and natural breaks classification
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The upper box of Fig. 4 presents the median vulnerability 
of the 24 participating members for the historical period 
based on the observed data (a) and simulated data for the 

four RCMs. As far as the vulnerability obtained from the 
observed data is concerned, the municipalities of Glazoue, 
Cove, Zagnanado, Agbangnizoun, Toffo, Ze, and Pobè 

Fig. 4   Historical flood vulnerability (1970–2015) based on the 
median of the 24-member scenarios using observed data (a), simu-
lated data for the historical period by four Regional Climate Models 
(RCMs; b, c, e, f), median (d) and mean (g) from the RCMs for the 

upper box. The lower box shows the change in the median flood vul-
nerability from the historical to the future period (2020–2050) based 
on 24 participating members for each of the four RCMs
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appeared to have a very high vulnerability to climate change 
in the Ouémé Basin.

In addition to these municipalities, most areas in the 
southern part of the basin (see Fig. 5) showed a high vul-
nerability to pluvial flooding. In the northern part of the 
basin, the areas highly vulnerable to flooding are Djougou, 
Copargo, and Pèrèrè. The municipality of Parakou in the 
northern part of the basin has low vulnerability owing to 
its very high adaptation capacities. Municipalities in the 
central-western part of the basin, such as Bante, Savalou, 
and Dassa Zoume have a medium vulnerability.

When comparing the historical flood vulnerability from 
observed data (Fig. 5a) with the one obtained from the 
RCMs (b to g), some similarities appear. The four RCMs 
indicated the upper north of the basin as vulnerable areas 
to flood which is in line with the observation if abstraction 
is made between the difference in two consecutive classes 
at the exception of Parakou and N_Dali. The difference 
between classes for these two cities is three which somehow 
is important. At the central part of the basin, the vulnerabil-
ity simulated from the RCMs varies slightly with REMO/
MPIESM (f) being the closest to the observed vulnerability 
at the exception of Glazoue with a difference in class of 
three. At the south of the basin, the RCMs reproduce slightly 
the observed vulnerability with REMO/MPIESM (f) being 
the best mainly for the southwestern of the basin. The mean 
and the median of the four model outputs improve somehow 
the overall simulations.

Future flood vulnerability

As performed for the historical period, each climate model 
output was processed using the normalization, aggregation, 
and classification methods presented above for projected 
flood vulnerability assessment. The lower box of Fig. 4 
displays the change in the median flood vulnerability from 
the historical to the future period (2020–2050) based on 24 
participating members for each of the four RCMs (REMO/
MPIESM, RCA4/IPSL, CCLM4/HADGEM2, RACMO/
ECEARTH). For most of the climate models, the southern 
and northern parts of the basin will be more vulnerable to 
flood by 2050, under the RCP 4.5 (see Figure F3 supplemen-
tary material). Only the RCA4/IPSL model predicted: “high 
vulnerability” for two municipalities (Glazoue and Dassa 
Zoume) in the center of the basin.

The spatial patterns of change in flood vulnerability vary 
with the models and there is no clear spatial trend except for 
the central-western part of the basin where no change was 
found. Table T2 (see supplementary material) displays the 
change in flood vulnerability between the future and his-
torical periods for the RCMs’ outputs. Decreasing refers to 
change from upper to lower classes while increasing refers 
to the opposite. Most of the RCMs indicated no change in 

future flood vulnerability relative to the historical period 
taken as reference. The highest decrease in flood vulnerabil-
ity (29.4%) was simulated from CCLM4/HADGEM2 while 
the highest increase (41.2%) was obtained from RCA4/IPSL. 
On average, the RCMs projected a possible decrease in flood 
vulnerability for 22.1% of the municipalities in the Ouémé 
Basin, an increase of 27.2%, and no change for 50.7% of the 
municipality. The very high shift found for some munici-
palities must be taken with caution considering uncertainties 
inherent to any modeling and much more to the projection 
of extreme rainfall (Chen et al. 2013).

Discussions

Methodological scenarios for flood vulnerability 
assessment

The assessment of flood vulnerability in the ORB explored 
different methodological approaches. High correlations were 
obtained among ZC.LA, MM.LA, DT.LA, RA.LA, and 
RA.GA suggesting that the FVI is not highly sensitive (Tate 
2012) to changes in the normalization and aggregation meth-
ods except for ZC.GA. The high correlation values found are 
in line with previous flood vulnerability studies (Yoon 2012; 
Nazeer and Bork 2019). The divergence of the ZC.GA from 
other normalization and aggregation approaches through 
the negative correlation was noted by Moreira et al. (2021) 
showing that the geometric aggregation does not have the 
potential to manage information derived from the z-score 
normalization (Garg et al. 2018).

The average absolute shift in rank position ( Rs ) is an 
adapted tool for testing the robustness, stability, and reli-
ability of the findings (Hudrliková 2013; Nazeer and Bork 
2021). Rs values of 1.10, 1.13, and 1.19 for the scenarios 
RA.LA, ZC.LA, and MM.LA respectively are moderate 
(Merz et al. 2013) implying a moderate deviation from the 
reference scenario (median ranking). The results are there-
fore relatively robust to the variation in the initial indica-
tor normalization and aggregation techniques. The ZC.GA 
scenario indicated the largest difference from the median 
rank with the highest uncertainty. This probably indicates 
that the geometric aggregation is not adapted to the Z-score 
normalization which can be negative for indicator values 
lower than the average. The geometric aggregation rewards 
the spatial units with higher scores while linear aggregation 
favors indicators proportionally to weights (OECD 2005).

The average absolute shift in classes and the Akaike infor-
mation criterion (AIC) show conjunctly that the equal inter-
vals and natural breaks generally outperformed the other 
classification methods. This result is consistent with earlier 
findings (Moreira et al. 2021). However, the high value of 
AIC mainly for RA.LA and RA.GA reveals high variances 
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in the classes for these scenarios. The quantile classification 
approach did not rank first for any scenario. As the quantile 
method divides the data into the equal interval, it may not be 
appropriate for all types of distribution (Moreira et al. 2021).

Uncertainties in historical and future vulnerabilities

For the historical period, based on the observed data, the 
southern part of the basin appears to be the most vulnerable 
to extreme rainfall. This is consistent with previous studies 
on flood frequency analysis including Hounkpè et al. (2016) 
and Attogouinon et al. (2017). This work is among the first 
of its kind to identify flood vulnerability classes for the dis-
tricts of the Ouémé Basin using a multi-modeling statistical 
approach.

While the highest vulnerabilities were found for the 
Southwest of the basin based on observed data, models’ 
outputs for the historical data indicated rather the North. 
This inconsistency stems from rainfall which is the only dif-
ference in terms of inputs for computing observed and mod-
eled (RCMs) vulnerabilities for the historical period. Cli-
mate models are less skillful in reproducing extreme rainfall 
than in reproducing mean rainfall values (Chen et al. 2013). 
Subsequently, the consideration of the peak over threshold 
sampling method adopted in this work has resulted in con-
trasted samples for the observed and models outputs data. 
Any overestimation or underestimation of rainfall data from 
the RCMs would propagate in the vulnerability assessment 
resulting in contrasting results. However, to limit the propa-
gation of this kind of uncertainty, the results were inter-
preted in relative terms for each RCM rather than absolute 
values (see Fig. 4). This approach is common in scenario 
analysis (Huisman et al. 2009; Vaze and Teng 2011; Teng 
et al. 2012). For example, in an analysis of climate change 
impact on flood risk at Ebro River Basin (Spain), Lastrada 
et al. (2020) found important differences in absolute and 
relative terms for model outputs which they attributed to 
the uncertainties in climate projections mainly rainfall and 
downscaling methods.

Changes in flood vulnerability from historical to future 
periods are RCM dependent. While the outputs of some 
RCMs projected a decreasing flood vulnerability, oth-
ers indicated an increase for the same geographical unit. 
To understand the differences, future extreme rainfall fre-
quency was computed for each RCM (see supplementary 
material Figure F4). The results were found concordant with 
the North being the most likely exposed to heavy rainfall, 
the center highly exposed and the south, the least exposed. 
Exceptions were found for CCLM4/HADGEM2 for the 
extreme north and the RCA4/IPSL for the southwest. The 
degree of similarity of future extreme rainfall frequency of 
nearly all the RCMs cannot explain the variability of the 
change in flood vulnerability among the RCMs (lower box 

of Fig. 4). It was, therefore, hypothesized that the variability 
may be due to the number of shifts in classes considered 
as a change. Change in flood vulnerability was recomputed 
assuming a change effective when there is a minimum of 
two shifts between the historical and future vulnerability 
maps (see supplementary material Fig. S2S2). The variabil-
ity in the change of vulnerability from historical to future 
periods was substantially reduced. The results found in this 
case were concordant across RCMs for the North, South, 
and East of the basin with no change in flood vulnerability. 
However, RCA4.IPSL indicated an increase in flood vulner-
ability for four municipalities located in the Southwest. The 
methodological approach for computing the change in flood 
vulnerability could substantially influence the outputs.

Some indicators of sensitivity such as population density 
and land cover vary in time (but also in space), and further 
quantification of these indicators for the 2020–2050 period 
should be considered. However, to derive exclusively the 
impact of future climate, sensitivity indicators were consid-
ered constant over time. A possible decrease in future flood 
vulnerability was found for many districts (22.1%) based on 
the median of the scenarios. This was essentially due to a 
possible decrease in heavy rainfall for the future. However, 
as reported in the literature, projections of rainfall and par-
ticularly heavy rainfall in West Africa are subject to many 
uncertainties (Chen et al. 2013). These results can, however, 
serve as a proxy for framing adaptation measures and iden-
tifying areas where more efforts are required.

Conclusions

The objective of this study was to determine the level of 
present vulnerability and future vulnerability to flooding 
risks in the ORB at the Bonou outlet using a multi-mode-
ling statistical approach. The vulnerability assessment was 
based on the impact chain, which defines vulnerability as 
resulting from the combination of exposure, sensitivity, and 
adaptation capacity. Each of the components was developed 
as indicators that served for computing flood vulnerability 
index at the municipality scale, used as a basic geographi-
cal unit. The methodology applied comprises four indica-
tor normalization methods, two aggregation techniques, 
four classification methods, and three robustness evaluation 
approaches.

Among all the classification methods considered in this 
study, it was found that the equal interval provides the low-
est value of the Akaike information criterion (AIC) and thus 
is the overall best classification method. The lowest AIC 
was obtained for the min–max normalization with linear 
aggregation (MM.LA) implying the outperformance of this 
method over the others. Results also indicate that the ORB 
is very vulnerable to the adverse impacts of climate change. 



	 Regional Environmental Change (2022) 22:112

1 3

112  Page 12 of 14

For the historical period (1970–2015), the municipalities 
of Glazoue, Cove, Zagnanado, Agbangnizoun, Toffo, Ze, 
and Pobè appeared to have a very high vulnerability in the 
Ouémé Basin. In addition to these municipalities, most areas 
in the southern part of the basin showed a high vulnerability 
to pluvial flooding. In the northern part of the basin, the 
most vulnerable areas to flooding are Djougou, Copargo, and 
Pèrèrè. For most of the climate models, future vulnerability 
(2020–2050) will be, to some extent, exacerbated mostly in 
the southern part of the basin than in the northern part of 
the basin.

Notwithstanding the challenges related to flood vulner-
ability assessment as a composite indicator (Mazziotta and 
Pareto 2013; Nazeer and Bork 2019) for which there is no 
universally accepted method, the methodology developed 
here and based on different scenarios reinforce confidence 
in the results presented. The outcome of this study can pro-
vide a solid background to decision-makers for designing 
appropriate adaptation strategies for the municipalities indi-
cating an increase in flood vulnerability for a minimum of 
two shifts. However, in the face of the large uncertainties 
in climate projections, detailed analyses need to be carried 
out using more climate models (with the possibility of con-
sidering sub-daily data) and scenarios to select the bests for 
framing tailored adaptation measures.

Efforts must focus on strengthening the adaptability of 
populations through feasible adaptation options that would 
contribute to strengthening their resilience. Adaptation 
measures should target either the reduction of the sensitivity 
or the increase of the adaptive capacity of the system stud-
ied. Also, the current study focused on flood vulnerability to 
extreme rainfall in the study area. Downstream, mainly after 
the Bonou outlet, flood is mainly due to the river discharge. 
Therefore, future flood vulnerability studies would target 
riverine flooding.
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