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Abstract
Mountain agroecosystems deliver essential ecosystem services to society but are prone to climate change as well as socio-economic
pressures, making multi-functional land systems increasingly central to sustainable mountain land use policy. Agroforestry, the
combination of woody vegetation with crops and/or livestock, is expected to simultaneously increase provisioning and regulating
ecosystem services, but knowledge gaps concerning trade-offs exist especially in temperate industrialized and alpine regions. Here,
we quantify the aboveground carbon (C) dynamics of a hypothetical agroforestry implementation in the Austrian long-term socio-
ecological research region Eisenwurzen from 2020 to 2050. We develop three land use scenarios to differentiate conventional
agriculture from an immediate and a gradual agroforestry implementation, integrate data from three distinct models (Yield-SAFE,
SECLAND, MIAMI), and advance the socio-ecological indicator framework Human Appropriation of Net Primary Production
(HANPP) to assess trade-offs between biomass provision and carbon sequestration. Results indicate that agroforestry strongly
decreases HANPP because of a reduction in biomass harvest by up to − 47% and a simultaneous increase in actual net primary
production by up to 31%, with a large amount of carbon sequestered in perennial biomass by up to 3.4 t C ha-1 yr-1. This shows that a
hypothetical transition to agroforestry in the Eisenwurzen relieves the agroecosystem from human-induced pressure but results in
significant trade-offs between biomass provision and carbon sequestration. We thus conclude that while harvest losses inhibit large-
scale implementation in intensively used agricultural regions, agroforestry constitutes a valuable addition to sustainable land use
policy, in particular when affecting extensive pastures and meadows in alpine landscapes.

Keywords Mountain agriculture . Multi-functionality . Land use policy . Ecosystem services . Long-term socio-ecological
research (LTSER)

Introduction

Land use change is a major driver of global environmental
change, degrading ecosystems and contributing to climate
change (IPCC 2019; Ellis et al. 2013; Turner et al. 2007; Foley
2005). In order to reconcile projected increases in biomass

demand for food and energy (Camia et al. 2018; Coelho et al.
2012; Tilman 2001) while minimizing land demand for agricul-
ture and negative environmental impacts of conventional farm-
ing, the concept of ecological intensification is increasingly prop-
agated (e.g., Tittonell 2014; Bommarco et al. 2013). Ecological
intensification refers to the design and management of agricul-
tural systems to foster regulating ecosystem services (ES), which
minimize environmental degradation and sustain or increase pro-
duction (Kleijn et al. 2019). How to integrate the maximization
of provisioning and regulating ES, however, remains a crucial
question to be addressed (Grass et al. 2020).

ES trade-offs arise when the increased use of one ES, e.g.,
food production, results in the decreased provision of another ES,
e.g., carbon sequestration (Rodríguez et al. 2006). ES trade-offs,
in particular in mountain ecosystems, are subject to complex
interrelationships between environmental, biological, technolog-
ical, and socio-economic conditions (Briner et al. 2013b).
Mountain ecosystems provide critical ES (Egan and Price
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2017; Grêt-Regamey et al. 2012) and thus present important case
studies to investigate trade-offs between biomass provision and
carbon sequestration involved with different agricultural prac-
tices. Land use in the European Alps has a major impact on local
biogeochemical cycles and ecosystem structure and functions
(Tasser et al. 2005). Land use change in alpine and pre-alpine
regions, including the Eisenwurzen, is mainly characterized by
abandonment of once extensively managed land and intensifica-
tion on favorable plots (Streifeneder et al. 2007; Flury et al. 2013;
Vigl 2016). Land use change is thereby being themost important
driver for biodiversity loss (Zimmermann 2010; Tasser and
Tappeiner 2002). Additionally, mountain environments experi-
ence more rapid climatic change than environments at lower
elevations, which in turn accelerates the rate of ecosystem change
and increasingly threatens the provision of important ES (Seidl
et al. 2019; Schirpke et al. 2017; Mountain Research Initiative
EDWWorking Group 2015; Gobiet et al. 2014; Dirnböck et al.
2011). The concept of multi-functionality (Manning et al. 2018)
is becoming increasingly central in response to the urgent ques-
tion how to adapt agriculture in the Alps towards climate neu-
trality and resilience (Lavorel et al. 2017; Flury et al. 2013; Huber
et al. 2012), taking into account the cultural and natural heritage
as well as the complexity of socio-ecological interactions (Huber
2020; Alpine Convention 2019; Fleury et al. 2008).

Agroforestry, the combination of woody vegetation with
crops and/or livestock on the same unit of land, including
wood pastures and extensive orchard meadows as well as
intensive tree-crop systems (Mosquera-Losada et al. 2018;
Nair et al. 2008), has been shown to be a sustainable, multi-
functional land system with various potentially positive eco-
logical and socio-economic effects, reconciling climate
change mitigation and adaptation (Matocha et al. 2012). In
addition to biomass provision, benefits of agroforestry pertain
to enhancing biodiversity; regulating soil, water, and air qual-
ity; supporting biological pest control; more efficient nutrient
cycling; and positively modifying micro- to macro-climates,
all together reducing greenhouse gas emissions as well as the
need for external inputs (Lawson et al. 2019; Kay et al. 2019;
Torralba et al. 2016; Smith et al. 2013; McAdam et al. 2008).

Wood pastures and extensive orchard meadows are histori-
cally important agroforestry systems in central Europe and the
alpine region, enhancing the ecological and social integrity of
agricultural landscapes (Herzog 1998; Hartel et al. 2015).
Nevertheless, these land systems have deteriorated for decades
due to adverse socio-economic effects such as increased com-
petition from intensively managed orchards, decreased fruit
market prices, and insufficient agri-environmental policies
(Schönhart et al. 2011; Herzog 1998). In the alpine and subal-
pine belts, wood pastures mainly occur at an elevation of up to
1400 m a.s.l. and extensive meadow orchards up to 1200 m
a.s.l. (Herzog 1998; Buttler et al. 2008). Conservation and re-
establishment of these two agroforestry systems are of particu-
lar interest considering sustainable land use and ecological

restoration planning in mountain areas (Buttler et al. 2008;
Bergmeier et al. 2010), providing structural- and species-rich
landscapes enhancing ecological connectivity and reducing ni-
trate leeching, as well as providing a high aesthetic and cultural
value relevant for the local population and tourism (Herzog
1998; Helga et al. 2005). In particular, extensive orchard
meadows are a traditional and characteristic form of land use
in the region and related activities are part of regional develop-
ment initiatives (e.g., Styrian Eisenwurzen Nature & Geopark
2020) as well as the Austrian Agri-Environmental Programme
(ÖPUL) and other federal subsidies (Gantar et al. 2011).

While agroforestry’s carbon sequestration potential has been
addressed in numerous studies (Lawson et al. 2019; Feliciano
et al. 2018; Aertsens et al. 2013; Ramachandran Nair et al. 2010;
Dixon 1995), effects on food production are less clear. Many
studies that show agroforestry sustaining or increasing food se-
curity focus on subsistence farming in the Global South (Niether
et al. 2020; Montagnini and Metzel 2017; Mbow et al. 2014),
while evaluation of impacts on the productivity in highly efficient
agricultural systems shows mostly negative, but also neutral and
positive yield effects (Lehmann et al. 2020; Swieter et al. 2019;
Pardon et al. 2018; Arenas-Corraliza et al. 2018; Rivest et al.
2013). Further assessments of ES trade-offs, in particular in tem-
perate and industrialized mountain agroecosystems, will be use-
ful for informing policy decisions (Miller et al. 2020; Brown
et al. 2018).

This study contributes to the debate on agroforestry’s po-
tential for ecological intensification in temperate industrial-
ized and alpine regions by quantifying aboveground carbon
(C) dynamics of a hypothetical transition to silvoarable agro-
forestry with wild cherry (Prunus avium L.) in the Austrian
alpine Eisenwurzen region. To this end, we quantify trade-offs
between provisioning ES (biomass harvest) and regulating ES
(aboveground carbon sequestration through biomass accumu-
lation) in three land use scenarios. The scenarios serve to
differentiate between (i) conventional agriculture, (ii) imme-
diate implementation of agroforestry in the year 2020, and (iii)
gradual implementation of agroforestry between 2020 and
2045. Results will thus enable to identify and quantify the
trade-offs between carbon sequestration and biomass produc-
tion under two divergent trajectories of agroforestry imple-
mentation, compared to conventional agriculture. Our aim is
to shed light on the biophysical potentials of and barriers to
agroforestry as a measure for ecological intensification in the
context of industrialized and alpine agriculture.

Materials and methods

Study region

The study region (Fig. 2) is part of the long-term socio-eco-
logical research platform Eisenwurzen in the Austrian
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Northern Limestone Alps, covering an area of 1425 km2 be-
tween 250 and 2369 m a.s.l. The topographic gradient ranges
from the low-lying Danube basin in the north over hilly and
montane grasslands and forests to the alpine peaks of the
Gesäuse in the south. It covers a heterogeneous representative
transect of topography and land use in Austria and is well
suited to approach the question of sustainable mountain agri-
culture while embedding the issue in a broader socio-
ecological context (Gingrich et al. 2016).

In the twentieth century, the region was characterized by
typical alpine land use trends of regional specialization
(Krausmann et al. 2003; Gingrich et al. 2018). This entails
(i) primarily intensive arable and livestock agriculture in the
north, where only small-scale forest islands remain; (ii) inten-
sive and, to a lesser degree, extensive grassland agriculture
including the last remains of historic orchard meadows in
the hilly and submontane landscape, with forestry playing a
secondary role; and (iii) mostly intensive grasslands in the
valleys as well as increasingly abandoned extensive alpine
pastures and meadows in the rugged south, where > 85% are
covered with forests (Draschan et al. 2003; Helga et al. 2005;
Gingrich et al. 2013).

To represent cropland and grassland, the two major land
use types addressed in this study, two modeling sites were
chosen in locations dominated by cropland and grassland,
respectively (Fig. 2a). Modeling site A (N 48.160073, E
14.451603) is situated in the Danube basin at c. 270 m a.s.l.
It is characterized by good soil conditions (mostly unconsol-
idated brown earth sediment) and a moderate climate (8–9 °C
mean annual temperature, 800–1000 mm annual precipita-
tion). Intensively managed cropland (primarily cereals and
maize) dominates this region, while grassland is only found
on less fertile plots. Modeling site B (N 47.945322, E
14.443828) is located at c. 670 m a.s.l. in the hilly and
submontane region. The climate is slightly cooler and more
humid (6–9 °C mean annual temperature, 1166–1560 mm an-
nual precipitation) and soils are mostly fine-grained and
densely packed brown loam exhibiting only average produc-
tivity (Helga et al. 2005). This area is dominated by intensive-
lymanagedmeadows while pastures are only found on steeper
terrain. At both sites, intensive agriculture results in structur-
ally poor agroecosystems, biodiversity loss, and groundwater
contamination (Draschan et al. 2003; Geissler et al. 2003).

Methodological framework

The methodological framework combines data from three dis-
tinct modeling approaches and regional-level agricultural sta-
tistics to formulate one agriculture and two agroforestry sce-
narios and quantify inherent carbon dynamics with an extend-
ed version of the Human Appropriation of Net Primary
Production (HANPP) indicator set (Fig. 1). The parameter-
sparse, process-based agroforestry model Yield-SAFE (van

der Werf et al. 2007) is used to compute actual net primary
production (NPP) on a plot scale for all three land use scenar-
ios. These plot-scale productivity data are then aggregated to
the landscape scale based on datasets from the agent-based
model SECLAND (Dullinger et al. 2020), which predicts land
use change in the study region by simulating the decision-
making process of local agricultural actors. The simple
MIAMI (Lieth and Whittaker 1975) model is additionally
used to calculate the potential NPP in the study region, an
important input parameter to the HANPP framework.

Calculations for the agriculture scenario were performed
for the period of 2020–2050. To assess carbon sequestration
saturation effects as well as the potential carbon carrying ca-
pacity, i.e., the amount of carbon stored in a system with an
equally distributed age structure of trees throughout a full
harvest cycle, we extended the modeling period for the agro-
forestry scenarios to the year 2080, corresponding to an as-
sumed harvest cycle of 61 years (de Avila and Albrecht 2017;
Martinsson 2001; Pryor 1988).

Models and input data

Yield-SAFE simulates plot-scale data of aboveground bio-
mass production of trees and crops, enabling quantification
of growth dynamics in forestry, arable, and agroforestry sys-
tems (van der Werf et al. 2007). Simulations are governed by
seven state equations for tree biomass, tree leaf area, number
of shoots per tree, crop biomass, crop leaf area index, soil
water content, and heat sum, as well as a number of soil-,
plant- and site-specific parameters simulating resource acqui-
sition and dry matter accumulation of trees and crops under
spatially homogenous competition for light and water (van der
Werf et al. 2007; Palma et al. 2016b). Themodel operates on a
daily resolution with inputs of mean temperature, incoming
solar radiation, and precipitation. In this study, we used the
EcoYield-SAFE web interface (Palma et al. 2016a, b) with
standard model calibration for the selected crop and tree spe-
cies (Palma et al. 2017). Climate data was automatically re-
trieved from CliPick (Palma 2017), accessing regional climate
change datasets for Western Europe from the Coupled Model
Intercomparison Project (CMIP5) under the Representative
Concentration Pathway RCP4.5 (van Meijgaard et al. 2012;
Riahi et al. 2017). To run the model, site-specific inputs of
soil, tree, crop, and management parameters were required. A
collection of inputs can be found in Table S1.

SECLAND simulates land use decisions taken by agricul-
tural actors in the study region from 2014 to 2050 and outputs
geo-referenced raster files depicting each grid cell’s specific
land use class in a given year (Dullinger et al. 2020). These
actors evaluate their “happiness” on account of workload and
generated income to probabilistically decide from a
predefined set of ten possible actions (no change, intensifica-
tion, extensification, direct switch to lowest intensity level,
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areal expansion, areal reduction, land use change, afforesta-
tion, hiring of farm worker, termination). The evaluation pro-
cess is influenced by framework conditions (yields, market
prices, subsidies, preferences) derived from the Shared
Socioeconomic Pathways (SSP) (O’Neill et al. 2014, 2017),
and model runs were performed for different SSP scenarios.
Based on the assumption that the implementation of agrofor-
estry is more likely in a sustainability narrative, we retrieved
the dataset from model runs under the sustainability pathway
SSP1. This pathway is based upon the increased use of envi-
ronmentally friendly technologies, global cooperation, a shift
towards less resource intensive lifestyles, and a broader ac-
knowledgement of human well-being (van Vuuren et al.
2017). In SECLAND, this narrative was translated into the
assumptions of, for example, increased market prices and sub-
sidies for low-input products and energy plants, or a decrease
in the maximum of accepted workload (Dullinger et al. 2020).

Land use change in the study region, as simulated by
SECLAND under the SSP1 narrative (Fig. 2 as well as
Figure S2 and Table S4), is primarily characterized by a grad-
ual abandonment of grassland (conversion of high-yielding
plots to cropland and of low-yielding plots to broad-leaved
forest), a trend towards the production of energy crops (con-
version from intensive grassland, cereals, and non-cereal
crops) and a shift in production intensity towards extensive
management (Mayer et al. 2018, 2019). Abandonment and
intensification of extensive grassland correspond to the ongo-
ing agro-structural change occurring in many regions of the
European Alps (Streifeneder et al. 2007; Lavorel et al. 2017),
while the trend towards energy crops and extensive manage-
ment results from the model’s agents reacting to the SSP1
framework conditions (Dullinger et al. 2020).

The third model we used is the simple MIAMI model
(Lieth and Whittaker 1975) to calculate the potential net pri-
mary production (NPP) in the study region based on the rela-
tionship between annual mean temperature (T, in °C) and

annual precipitation (P, in mm) at annual resolution. NPP is
assumed to increase with increasing annual average tempera-
ture and precipitation, thus always being limited by either. The
following formulas apply:

NPP ¼ min NPPT ;NPPPð Þ ð1Þ
NPPT ¼ 3000� ð1þ exp 1; 315−0; 119� Tð Þ−1 ð2Þ
NPPP ¼ 3000� ð1−exp −0; 000664� Pð Þ ð3Þ

Scenario development

To assess the effects of agroforestry on biomass harvest and
carbon sequestration, we develop three distinct land use sce-
narios based on land use change simulated by SECLAND
from 2020 to 2050. For the extended agroforestry period until
2080, we assume no further land use change beyond the year
2050.

The agriculture scenario (AGR) serves as the baseline,
depicting conventional agricultural practice in the region char-
acterized by the strict division of agri- and silviculture (except
for small areas exhibiting traditional extensive orchard
meadows subsumed in the “extensive grassland” land use
class). The agroforestry scenarios (AFS) are counterfactuals
exploring the maximum potential effects of agroforestry by
assuming implementation on the totality of available agricul-
tural land. Calculations of AFS differentiate between immedi-
ate implementation in the year 2020 (AFS-IMM), and gradual
implementation in 5-year time-steps between 2020 and 2045
(AFS-GRAD).

We obtain seven aggregated land use classes from the
SECLAND datasets (Fig. 2). To allocate the most representa-
tive crop species to each land use class, we itemized classes
according to the region’s actual prevailing crop cultivars

I. INPUT DATA II. PROCESSING III. OUTPUT

Land-Use Data
(SECLAND)

(Yield-SAFE)

Scenario
Building

Yield-SAFE
Model Runs

(MIAMI)

HANPP

Biomass Harvest
(aHANPPharv)

Actual NPP
(aNPPact)

(RPB)
AGR

Scenario

AFS-GRAD
Scenario

AFS-IMM
Scenario

Fig. 1 Methodological framework depicting input data, processing steps,
and output. Hexagons refer to model data and rounded rectangles to
processing steps. Land use scenarios include conventional agriculture
(AGR) as well as immediate and gradual implementation of
agroforestry (AFS-IMM and AFS-GRAD). Outputs only illustrate the
three central indicators in this study, i.e., actual aboveground net

primary production (aNPPact), remaining perennial biomass (RPB), and
aboveground biomass harvest (aHANPPharv). A full description of
indicators included in the Human Appropriation of Net Primary
Production (HANPP) framework is found in the corresponding section
below
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derived from regional agricultural statistics of the federal
states of Upper Austria and Styria (STATcube 2019). The
“cereals” class, for example, was itemized with wheat, barley,
triticale, oats, rye, spelt, and sorghum. Specified crop cultivars
were then matched with crop cultivars available for modeling
in Yield-SAFE. For each land use class, we selected for fur-
ther processing the one or two crop cultivars with the highest
relevance based on the actual share of agricultural area in the
region, as well as the best model fit based on the comparison
of a 15-year mean (2000–2014) derived from regional agri-
cultural statistics and model outputs to compensate for singu-
lar climate extremes affecting year-to-year productivity. An
overview of SECLAND’s land use classes included in the
scenarios, corresponding representative species identified
from agricultural statistics, as well as the species equivalents
selected from Yield-SAFE is compiled in Table S2.

In AFS we assume prototypical silvoarable alley cropping
plots of 100 × 100 m. Regardless of the crop cultivar, every

plot includes 4 tree rows of wild cherry (Prunus avium L.)
with 20 trees each, resulting in 80 trees ha-1. This configura-
tion corresponds to agroforestry design adequate to the study
region (Reeg et al. 2009; Kaeser et al. 2011; Sereke et al.
2015; Crous-Duran et al. 2018). We selected wild cherry
(Prunus avium L.) as tree species from Yield-SAFE because
(i) it occurs naturally throughout European temperate forests
and is found at colline to submontane altitudes up to an ele-
vation of 1700 m a.s.l. in the Northern and Central Alps
(Ducci et al. 2013; Welk et al. 2016); (ii) it provides fruit as
a potential food source and high value timber for long-lived
veneer products; and (iii) it is beneficial to biodiversity as an
integral part of sustainable land use (Schmidt 2010; Welk
et al. 2016) and has a high aesthetic, cultural, and touristic
value, fitting the landscape’s historic characteristics (Herzog
1998; Styrian Eisenwurzen Nature & Geopark 2020). The
assumed harvest cycle of 61 years is based on the fact that
wild cherry features stagnant growth rates and increased

Fig. 2 a Representation of the study region along the river Enns. b Status
quo of land use in the base year 2014, when SECLAND model was
initialized with data from the Integrated Administration and Control
System (IACS). c Land use change as simulated by SECLAND model
under the Sustainability narrative of the Shared Socioeconomic Pathways

(SSP1) for the year 2050. Cropland and grassland agriculture are
indicated in color, remaining areas (forests, alpine habitats,
infrastructure) are not accounted for in this study. d Position of the
study region within Austria
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susceptibility to pests and disease after 50 years, making a
rotation period of 50 to maximum 90 years recommendable
(de Avila and Albrecht 2017; Martinsson 2001; Pryor 1988).

Human Appropriation of Net Primary Production

To quantify carbon dynamics and trade-offs between carbon
sequestration and biomass provision, we build upon the
Human Appropriation of Net Primary Production (HANPP)
framework. HANPP expresses the amount of carbon appro-
priated by humans in a given year through harvest and land
conversion (Haberl et al. 2014). It serves as a pressure indica-
tor for ecosystems by denoting the amount of energy with-
drawn from the trophic levels of the food chain (Erb et al.
2016). Here, we restricted calculations to aboveground NPP
(denoted by the prefix “a”) on crop- and grassland, while
belowground NPP as well as forest land, infrastructure areas,
and other land are excluded.

The HANPP framework is composed of a range of individ-
ual indicators (Table 1), including potential and actual net
primary production (aNPPpot and aNPPact); effects of land
conversion (aHANPPluc); biomass harvested, grazed, or
destroyed during harvest (aHANPPharv); as well as biomass
remaining in the ecosystem after harvest (aNPPeco). Yields,
used residues, and unused residues are expressed individually
as parts of aHANPPharv and depict final crop, grass, and cherry
yields, harvest residues used for economic activities (e.g.
straw used as animal feed or litter) as well as harvest residues
left on the field (e.g. stubble or roots that die off during har-
vest). To explicitly account for carbon sequestration, we ex-
tend the framework so that aNPPeco is further decomposed
into remaining annual biomass (RAB) and remaining peren-
nial biomass (RPB), building on methodology applied in
Niedertscheider et al. (2017) and Guzmán et al. (2018).
While RAB denotes vegetation that remains in the ecosystem
but dies off every year (like annual weeds on fallow land or
leaf litter of trees), RPB accumulates during tree growth to
build up vegetation carbon stocks in woody biomass. The

coinciding trends in aHANPPharv and RPB thus inform about
trade-offs between biomass provision and carbon sequestra-
tion, while trends in aNPPact inform about changes in total
agroecological productivity. Central relations between these
components and corresponding equations are depicted in Fig.
3. All indicators refer to annual fluxes of carbon and are given
in t C yr-1 or percent of aNPPpot.

In contrast to other HANPP studies, usually deriving
NPPact from agricultural and forest statistics and remotely
sensed data (e.g., Mahbub et al. 2019; Fetzel et al. 2016;
Gingrich et al. 2015; Haberl et al. 2014), here we used
Yield-SAFE to simulate aNPPact and MIAMI to calculate
aNPPpot. Both models provide production data in dry matter
(DM), except for cherries, which are reported in fresh weight.
An overview of calculations, expansion factors, and coeffi-
cients to calculate aNPPpot, aNPPact, aNPPeco, and
aHANPPharv components from MIAMI and Yield-SAFE out-
puts can be found in Table S3.

Results

The hypothetical transition to agroforestry in the study region
profoundly alters the carbon dynamics of the agroecosystem
(Figs. 4 and 5, and Table S5). While aNPPpot remains relative-
ly constant (just under 5 t C ha-1 yr-1 between 2020 and 2050),
aNPPact declines from 4.8 to 4.5 t C ha-1 yr-1 and aHANPPharv
from 2.5 to 2.1 t C ha-1 yr-1 in AGR. These declines result
from land use change simulated by SECLAND. This devel-
opment leads from a neutral to a slightly positive aHANPPluc
of 0.4 t C ha-1 yr-1 (corresponding to 8% of aNPPpot) in 2050.
While both AFS result in land use extensification (i.e., a re-
duction of aHANPPharv), aNPPact nevertheless increases dur-
ing the same timeframe, from 4.8 to 5.2 t C ha-1 yr-1 in AFS-
GRAD and 4.2 to 5.5 t C ha-1 yr-1 in AFS-IMM (Fig. 4b and
c). These changes in aNPPact are driven by the co-existence of
trees and crops. Tree growth thereby shapes the curve of RPB
by retaining a large fraction of biomass in the ecosystem.

Table 1 Overview of the
components included in the
Human Appropriation of Net
Primary Production indicator
framework

HANPP indicator Description

NPPpot Potential NPP that would prevail without human intervention

NPPact Actual NPP under the prevailing land use

HANPPluc NPP lost (or gained) through land use change

HANPPharv NPP harvested, grazed, or destroyed during harvest

Yields Final crop, grass, and cherry yields

Used residues Harvest residues used for economic activities

Unused residues Harvest residues left on the field

NPPeco NPP remaining in the ecosystem after harvest

RAB Remaining annual biomass that dies off every year

RPB Remaining perennial biomass that accumulates to build up carbon stocks
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According to the simulations, wild cherries feature a strong
growth rate during the first 20 years, after which they sustain a
considerably high but slightly decreasing annual increment
until 2080 (Fig. 5a). In AFS-IMM, RPB peaks in 2042 with
an annual increment of 3.4 t C ha-1 yr-1 and remains above 2.5
t C ha-1 yr-1 thereafter. AFS-GRAD shows a delayed and less
pronounced development with annual tree growth increasing
steadily but at a slower pace, reaching 2.3 t C ha-1 yr-1 in 2050
and an annual maximum increment of 3.3 t C ha-1 yr-1 in 2064.

Resource competition in the AFS negatively affects crop
production. Crop and grass yields decline substantially between
2020 and 2050, from 2.5 to 1 t C ha-1 yr-1 (− 60%) in AFS-
GRAD and 2.1 to 0.6 t C ha-1 yr-1 (− 71%) in AFS-IMM (Fig.
4). Compared to crop and grass yields in AGR in 2050 (2.1 t C
ha-1 yr-1), this corresponds to a deficit of − 52% in AFS-GRAD
and − 71% in AFS-IMM. Decreases of aHANPPharv, however,
are substantially attenuated, as cherry fruit production signifi-
cantly sets off crop and grass yield losses, starting as early as
2030 in AFS-IMM. By 2050, cherry yields in AFS-IMM in-
crease up to the point at which the yearly amount of harvested
fruit (0.7 t C ha-1 yr-1) is larger than that of harvested crops and

grass (Fig. 5b). In AFS-GRAD, cherry yields increase more
slowly but also become a significant factor by 2050.
Compared to AGR in 2050, total aHANPPharv declines by −
34% in AFS-GRAD and − 47% and AFS-IMM (Fig. 5e).
Looking at the extended modeling period until 2080, crop and
grass yields in AFS-IMM and AFS-GRAD do not decrease any
further beyond 2050 and 2065, respectively, and cherry yields
likewise stabilize between 0.8 and 1 t C ha-1 yr-1 (Fig. 5b). From
this we infer that no further significant increase in the intercep-
tion of solar radiation and competition for water occurs after 20–
30 years in tree age. This is, nevertheless, opposed by sustained
RPB in both AFS until 2080.

From a productivity perspective, tree growth and cherry
production in both AFS overcompensate for losses in crop
and grass yields. This effect is expressed in significantly
higher aNPPact and negative aHANPPluc values (Fig. 5c and
f). Actual and potential aNPP, nevertheless, converge again in
AFS-IMM, where trees are of uniform age. In AFS-GRAD,
the broader distribution of tree age leads to a moderated de-
velopment of aNPPact and a more constant rate of negative
aHANPPluc over time. If taken together, effects on biomass
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aHANPP = aNPPpot – aNPPeco

aHANPP = aHANPPluc + aHANPPharv

aHANPPluc = aNPPpot – aNPPact

aNPPact = aHANPPharv + aNPPeco

Fig. 3 Fluxes of net primary
production (NPP) contributing to
the indicator framework Human
Appropriation of Net Primary
Production (HANPP) and
corresponding equations.
Adapted from Haberl et al. (2014)
and Erb et al. (2009)

Fig. 4 Composition of aNPPact in a the agriculture scenario (AGR), b the
gradual agroforestry scenario (AFS-GRAD), and c the immediate
agroforestry scenario (AFS-IMM) between 2020 and 2050 in area-
weighted average t C ha-1 yr-1. The sum of crop and grass yields as
well as used and unused residues equals biomass harvest

(aHANPPharv); the sum of remaining annual biomass (RAB) and
remaining perennial biomass (RPB) equals biomass in the ecosystem
after harvest (aNPPeco); the sum of aHANPPharv and aNPPeco equals the
actual net primary production (aNPPact)
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production, harvest, and the build-up of carbon stocks in AFS-
IMM and AFS-GRAD result in a drastic reduction of
aHANPP from > 70 to < 35% of aNPPpot from 2020 to
2080 (Fig. 5d). This development indicates a strong reduction
of anthropogenic pressure on the agroecosystem in the study
region while system-level productivity (aNPPact) is increased,
despite the extensification trend and declining yields. In AGR,
on the contrary, aHANPP rises slightly from 72% to 74% of
aNPPpot (2020–2050) as a direct result of land use change
simulated by SECLAND.

Accumulated carbon stocks reach 120 and 156 t C ha-1 (2.6
and 3.37 Mt C in the study region) between 2020 and 2080 in
AFS-GRAD and AFS-IMM, respectively (Fig. 6). A signifi-
cant saturation in tree productivity was not simulated within
the extended study period of 61 years (as trees accumulate
>2.5 t C ha-1 yr-1 until 2080). While increases in tree height
and diameter at breast height stagnate significantly from 2050
onwards, strong growth of branch wood continues unabated-
ly, consistent with development of tree structures associated
with cherry fruit production (Sheppard and Spiecker 2015).
Extending the modeling period to the year 2080 also enabled
the calculation of the carbon carrying capacity, i.e., the
amount of carbon potentially being stored permanently in
the agroforestry system if tree age structure were equally dis-
tributed throughout the assumed harvest cycle of 61 years.

Carbon carrying capacity thus corresponds to the net carbon
sink in AFS. Carbon carrying capacity reaches 67.5 t C ha-1 at
a mean tree age of 30.5 years, corresponding to roughly two-
thirds of the actual carbon stock per hectare in an Austrian
mixed forest (Erb 2004). This is a substantial amount which
leads to a total potential long-term carbon pool of 1.46Mt C in

Fig. 5 Comparison of the three modeling scenarios for the extended
period of 2020 and 2080. Graphs show a remaining perennial biomass
(RPB), b yields of crops + grass (combined) and cherry, c actual and
potential net primary production (aNPPact, aNPPpot), d total aHANPP, e

biomass harvest (aHANPPharv), and f anthropogenic land use change
(aHANPPluc). Values are given in a–c area-weighted average t C ha-1

yr-1 and d–f percent of aNPPpot.

Fig. 6 Development of the accumulated carbon stock in AFS-GRAD and
AFS-IMM from 2020 to 2080 as well as the carbon carrying capacity
(CCC) in the study region, in t C ha-1. Intersections with the solid line
depict the year in which the region’s carbon carrying capacity is reached
in the respective scenario
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the study area. Carbon carrying capacity is reached in 2063 in
AFS-GRAD and 2049–2050 in AFS-IMM (Fig. 6).

Discussion

Evaluation of ES trade-offs is a central area of research to
inform sustainable land use policy (Crossman et al. 2013;
Schirpke et al. 2013; Bennett et al. 2009; Rodríguez et al.
2006) and mountain agriculture (Locatelli et al. 2017; Flury
et al. 2013; Briner et al. 2013a). To our knowledge, there exist
few studies (e.g., Kay et al. 2018) that quantify potential im-
pacts of agroforestry implementation on biomass harvest and
carbon sequestration on a landscape scale in a temperate
European context. To close this research gap, we integrated
data from a process-based agroforestry model and an agent-
based land use model and calculated carbon dynamics in an
alpine agroecosystem for three counterfactual land use
scenarios.

Exploring biophysical effects at the landscape scale de-
mands systematic trade-offs between accuracy and generaliz-
ability, pertaining to methodological complexity, data require-
ments, and robustness. Applied models and data vary in tem-
poral and spatial resolution, ranging from daily (Yield-SAFE)
to yearly (SECLAND,MIAMI) time steps as well as from plot
to federal state levels (modeled and statistical data).
Additionally, MIAMI model does not account for differences
in NPP resulting from seasonal variation in climate (Zaks et al.
2007; Field et al. 1995), producing imprecisions on smaller
timescales not affecting our overall results. The use of pre-
existing Yield-SAFE calibrations led to relatively large devi-
ations of simulated and statistically reported yields of some
cultivars (at the level of federal provinces), which were sub-
sequently not included in the study, reducing the number of
cultivars to those for which the pre-existing calibration pro-
duced the most plausible results (Figure S1). While yield sim-
ulations could thus not be fully accurate, evaluation of trade-
offs was nevertheless consistent, as all three scenarios relied
on the same modeling procedures and accounting approach.

By analyzing biomass provision and carbon sequestra-
tion, we focus on two ES that are most affected by above-
ground biomass. Although some root biomass is destroyed
during harvest, the vast majority of biomass extraction
takes place aboveground (Krausmann et al. 2013).
Carbon sequestration is also dominated by aboveground
biomass when tree cover expands (Le Noë et al. 2021;
Gingrich et al. 2007), but soil organic carbon represents
a large additional carbon pool that we excluded from anal-
ysis. While it is not straight-forward to quantify, literature
on temperate agroforestry systems suggests that soil organ-
ic carbon may create significant additional carbon sinks
under agroforestry due to the input of tree leaf litter and
root-derived carbon inputs (Lim et al. 2018; Cardinael

et al. 2017; Pardon et al. 2017; Lorenz and Lal 2014).
Therefore, probably, our study underestimates the carbon
sequestration potential of agroforestry, while more accu-
rately representing its biomass provision.

Agroforestry systems allow for complementary use of re-
sources (i.e., solar radiation, water and nutrients) through the
production of different products ormixture of different species
due to ecological niche differentiation (Cannell et al. 1996;
Smith et al. 2013). This can result in a higher land equivalent
ratio, i.e., a yield advantage of intercropping as compared to
sole cropping (Mead andWilley 1980), which has been shown
in various agroforestry studies (e.g., Lehmann et al. 2020;
Seserman et al. 2018; Sharrow and Ismail 2004). Many stud-
ies, however, are characterized by varying system designs and
species compositions, management practices, climatic and soil
conditions, spatial and temporal scales, as well as research
methodology, making it difficult to arrive at consistent com-
parisons (Torralba et al. 2016; Rivest et al. 2013).
Additionally, there still exist relatively little consistent exper-
imental field data from systems with mature tree components
(Brown et al. 2018; Miller et al. 2020).

Torralba et al. (2016), for example, showed that positive
effects on yields are more significant in Mediterranean and
Pannonian than in Alpine and Continental biogeographical
regions. Primarily negative yield effects have been document-
ed in a variety of relevant studies, with a range of results
including − 29% in mean annual biomass yields in four
Swiss agroforestry landscape test sites (Kay et al. 2018); −
8% (winter wheat) to − 65% (forage maize) in yields with
48-year-old trees (Prunus avium, Populus sp., Juglans regia,
and Sorbus torminalis) in Belgium (Pardon et al. 2018); −
51% (spring wheat, potatoes and squash with willow) in the
UK to + 16% (winter wheat with willow, alder, and hazelnut)
in Denmark (Lehmann et al. 2020); and neutral effects (winter
wheat and winter oilseed with 5–6-m high poplar clones) in
systems with wide cropping alleys (of 48 and 96 m, contrast-
ing 25m in this study) in Germany (Swieter et al. 2019). Yield
reductions estimated in our study of − 52% in AFS-GRAD
and − 71% in AFS-IMM, as compared to AGR in 2050, are
still within scope but more severe than themajority of reported
values. This might equally be due to an over-estimation of
resource competition in Yield-SAFE, or to the effect of the
regional agroforestry specificities.

A recent compilation (Lawson et al. 2019) reports carbon
sequestration rates in temperate climates ranging from 0.1 to
13 ha-1 yr-1. One relevant study, including four silvoarable and
silvopastoral systems (Prunus avium and Juglans regia x
nigra) aged 18–41 years in France, reports aboveground car-
bon sequestration rates of 0.5–1.5 t C ha-1 yr-1 (Cardinael et al.
2017). The IPCC default coefficient for aboveground woody
biomass in cropping systems containing perennial species in
temperate climates is 2.1 t C ha-1 yr-1 (63 t C ha-1 over 30
years) (IPCC 2006). And Dixon (1995) calculated a global
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median aboveground carbon storage in the vegetation of ag-
roforestry systems of 1.4 t C ha-1 yr-1 (70 t C ha-1 over the
period of 50 years). By comparison, the average accumulation
rate in this study was computed at 0.9 and 2.1 t C ha-1 yr-1 for
the period of 2020–2050 as well as 1.9 and 2.4 t C ha-1 yr-1 for
the period of 2020–2080 in AFS-GRAD and AFS-IMM, re-
spectively. These results correspond to the lower end of the
range compiled by Lawson et al. (2019) and coincide well
with the latter estimates.

While our study quantifies the maximum impacts by includ-
ing all available agricultural land in the region, results suggest
that such a radical agroforestry implementation is not conducive
to socio-ecological sustainability. To limit socio-economic im-
pacts of estimated yield reductions, agroforestry implementation
appears to be better suited to marginal instead of high-yielding
lands. In particular, extensively managed meadows and pastures
are an attractive opportunity in the study region, given their rel-
atively low productivity and large area extent (STATcube 2019)
as well as the historical connection to agroforestry in the region
(Styrian Eisenwurzen Nature & Geopark 2020; Buttler et al.
2008; Herzog 1998). These characteristics are similar in many
alpine and sub-alpine grasslands, which are increasingly aban-
doned and compromised by succession (Schirpke et al. 2017;
Streifeneder et al. 2007; Tasser et al. 2005).

Assuming the implementation of agroforestry systems on
Austria’s extensivelymanaged grasslands, amounting to roughly
0.64 Mha in 2018 (BMNT 2019)1 and using data from AFS-
GRAD with a carbon carrying capacity of 67.5 t C ha-1 in the
year 2063, the net carbon sink would amount to roughly 43.4Mt
C or 0.99Mt C yr-1 between 2020 and 2063. This corresponds to
c. 4.5% of annual GHG emissions (21.75 Mt C in 2016), c.
84.3% of the annual net carbon sink from forest land (1.17 Mt
C in 2016)2 or c. 49.5% of the annual emissions from agriculture
(1.99Mt C in 2016) in Austria (Anderl et al. 2018). Furthermore,
compared to the actual carbon stocks in mixed forests in Austria,
estimated at 96 t C ha-1 by Erb (2004), the carbon carrying
capacity of 67.5 t C ha-1 amounts to just over two-thirds of that
value, representing a substantial amount of stored carbon while
the agroecosystem continuously provides biomass products.
From these comparisons, we conclude that the potential above-
ground carbon sequestration rate of the silvoarable agroforestry
system studied here could substantially contribute to climate
change mitigation by (i) significantly offsetting GHG emissions
for almost three decades after agroforestry implementation and
(ii) creating a permanent net carbon pool that additionally pro-
vides a range of provisioning and regulating ES.

As such, agroforestry can contribute to interlink different
aspects of regional development, land use, and climate policy.
Additional synergies arise, in this case, by counteracting bio-
diversity loss caused by grassland abandonment as well as by
increasing cultural ES, adding aesthetic and touristic value to
the landscape. Potential synergies between climate change
mitigation and adaptation also result in increased risk abate-
ment (e.g., by reducing susceptibility to extreme weather
events) and resilience by diversifying sources of income
(Matocha et al. 2012; Hernández-Morcillo et al. 2018). This
provides further incentives to establish agroforestry as part of
sustainable land use and climate policy.

Conclusion

Here, we quantify trade-offs between carbon sequestration and
biomass provision inherent to a hypothetical transition to agro-
forestry on a landscape scale in the alpine long-term socio-eco-
logical research region Eisenwurzen in Austria. The study links
to the discourse about sustainable land use policy by providing a
reference frame for the assessment of agroforestry impacts on the
carbon dynamics in the land agroecosystem. Our estimations
indicate increased NPP and high carbon sequestration potential,
in parallel with strong reductions in yields.

We conclude that agroforestry qualifies as an option for
developing sustainable mountain agriculture, but increasing
monetary remuneration of carbon sequestration and other reg-
ulating ES through adequate land use policy is needed to en-
able agroforestry implementation, where appropriate. To this
end, future research should focus on quantifying trade-offs
and synergies on a landscape scale involving different agro-
forestry compositions on a gradient of pre-existing land use
intensity as well as additional land use types (e.g., forest),
managing a balance of provisioning and regulating ES within
a region’s larger socio-ecological context.
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