
ORIGINAL ARTICLE

Importance of climate uncertainty for projections of forest
ecosystem services

Rebecca S. Snell1,2 & Ché Elkin1,3
& Sven Kotlarski4,5 & Harald Bugmann1

Received: 5 June 2017 /Accepted: 4 April 2018 /Published online: 3 May 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Mountain forests provide a wide range of ecosystem services (ES, e.g., timber production, protection from natural hazards,
maintaining biodiversity) and are especially sensitive to climate change. Dynamic vegetation models are commonly used
to project climate change impacts on forests, but the sensitivity of process-based forest landscape models (FLMs) to
uncertainties in climate input data has received little attention, especially regarding the response of ES. Using a dry
inner-Alpine valley in Switzerland as a case study, we tested the sensitivity of a process-based FLM to different baseline
climate data, lapse rates, and future climate change derived from different climate model combination chains and down-
scaling methods. Under the current climate, different sources of baseline climate accounted for the majority of the variation
at lower elevations, while differences in lapse rates caused large variability at higher elevations. Under climate change,
differences between climate model chains were the greatest source of uncertainty. In general, the largest differences for
species were found at their individual regional distribution limits, and the largest differences for ES were found at the
highest elevations. Thus, our results suggest that the greatest uncertainty for simulating forest ES is due to differences
between climate model chains, and we recommend using as many climate scenarios as possible when projecting future
forest response to climate change. In addition, care should be taken when evaluating climate impacts at landscape locations
that are known a priori to be sensitive to climate variation, such as high-elevation forests.
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Introduction

Climate change is expected to have strong influences on nat-
ural and anthropogenic systems (IPCC 2014), although the
severity depends on the region and the sensitivity of the indi-
cator (e.g., Dunford et al. 2015). Mountain regions may be
especially sensitive to climate change due to enhanced climate
warming at higher elevations (Pepin et al. 2015) and the po-
tential for increased risk of natural hazards such as rockfall,
landslides, avalanches and floods (e.g., Huggel et al. 2010;
Keiler et al. 2010).

Impact models use climate change projections to predict
how selected systems may respond to shifts in climatic pat-
terns. In mountain regions, this has included, among others,
climate-induced changes to forest growth and gravitational
protection services (e.g., Elkin et al. 2013; Maroschek et al.
2015), changing streamflow and habitat provisioning for fish
(Papadaki et al. 2016), or drinking water availability (Marques
et al. 2013). To quantify uncertainty in model projections, best
practice encourages climate change impact models to use as
many combinations of global and regional climate models
(GCMs, RCMs) as possible (e.g., Araújo and New 2007;
Christensen et al. 2007), although this is not always done.
Uncertainty has also been examined by looking at the vari-
ability between emission scenarios (e.g., Brown et al. 2015),
between GCM-RCM model chains within a single emission
scenario (e.g., Buisson et al. 2010), between impact models
(e.g., Burke et al. 2017), and between different downscaling
methodologies (Bosshard et al. 2013; Camici et al. 2014).
While all sources of variability can increase uncertainty in
model projections, there is a need to identify and rank the most
important (i.e., those that cause the greatest differences in
model results). We will focus specifically on uncertainty
caused by variability in climate input data, specifically related
to uncertainty within known quantified limits. For ecosystem
service (ES) provisioning in mountain forests, potentially im-
portant sources of climate variability include historical cli-
mate, temperature lapse rates, and precipitation gradients, as
well as methods for downscaling climate model outputs to the
landscape scale.

Using the best available climate input data should be a
priority for impact assessments, but there has been almost no
research on forest model sensitivity to variability in climate
data at the landscape scale. This is the scale at which forest
management occurs, and accurate predictions are of key im-
portance especially under a rapidly changing climate. The
only previous study that we are aware of quantified uncertain-
ty in a forest biogeochemical model and focused on the sen-
sitivity of hydrology, water quality, and forest growth to var-
ious downscaling methods (Pourmokhtarian et al. 2016).
Accurately downscaling climate projections is a priority for
assessing climate change impacts that may be influenced by
both long-term changes (e.g., Nishina et al. 2015) and changes

in day-to-day variability (e.g., Camici et al. 2014). The sensi-
tivity of tree growth and species composition to long-term
climatic signals is well established (Babst et al. 2013), and
there is increasing evidence that forest properties are also sen-
sitive to short-term climate variability (Elliott et al. 2015).

Interestingly, Pourmokhtarian et al. (2016) found that the
choice of downscaling methodology was not as important as
the choice of historical observations that was used to train their
model. Forests that we observe today reflect past climatic and
growing conditions (e.g., Gimmi et al. 2009), and it is these
current forests that will respond to future climate change.
Baseline climate is typically used to Bspin up^ impact models
to represent current forests, before applying future climate
change scenarios. As there are several potential sources for
baseline climate (e.g., weather stations, gridded and
interpolated datasets such as WorldClim; Hijmans et al.
2005), the bias from the choice of historical climate data
may be an important source of variability that has previously
been largely ignored.

Impact models that simulate mountain regions have yet
another source of climatic variability—temperature lapse rates
and precipitation gradients (Zhang et al. 2015). The methods
and data used to derive elevational lapse rates are often coarse
and not scrutinized further in climate sensitivity analyses, al-
though they could be important for landscape-scale impact
models that use these rates to interpolate climate throughout
the catchment area.

The objective of the present study is to test the sensitiv-
ity of a forest landscape model to the uncertainty induced
by different approaches for providing climatic input data in
mountain regions. More specifically, we will address the
following: (1) How sensitive are simulation results to dif-
ferent sources of baseline climate data, temperature lapse
rate, and precipitation gradients? (2) How much of the
variability in future climate change impacts in forest eco-
systems is due to the choice of baseline climate data, lapse
rates, or the choice of GCM-RCM model chain? (3) How
important is the methodology for downscaling future large-
scale climate change data to the landscape level?
Separating and quantifying these uncertainties will im-
prove our understanding of the sensitivity of forest land-
scape projections and identify ways to reduce them.

Methods

Case study landscape

The Saas valley (46° 11′ N and 7° 93′ E) is a dry inner-Alpine
region located in the southwestern Swiss Alps. It was selected
because it covers a large elevation range (from 600 to
2500m a.s.l.) and has very different environmental conditions
at the lowest and highest elevations, thus rendering it a good
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template to comprehensively evaluate the sensitivity of eco-
systemmodel projections to climate-related uncertainties. The
valley bottom is very dry and precipitation is the most impor-
tant limiting factor for tree growth and the main determinant
of species composition (Bigler et al. 2006), whereas at higher
elevations temperature limitations drive species performance
(Vitasse et al. 2012). Lower elevations (600–1000 m a.s.l.) are
dominated by drought-tolerant Pinus sylvestris and Quercus
pubescens, with increasing abundances of other deciduous
species at mid-elevations (1000–1200 m a.s.l). Higher eleva-
tion forests (1200–1800 m a.s.l.) are dominated by Picea
abies, with Pinus cembra and Larix decidua occurring further
up and near the treeline (up to 2300m a.s.l) (Elkin et al. 2015).
Future climate change is expected to have a strong impact on
forests in this region (Elkin et al. 2013), in particular, low-
elevation forests are at risk due to increasing drought frequen-
cy and intensity (Elkin et al. 2015).

Dynamic forest landscape model

LandClim is a process-based forest landscape model
(Schumacher et al. 2004) designed to simulate forest dynam-
ics and disturbances at large spatial scales (103 to 106 ha) over
long periods of time (decades to thousands of years). We
chose LandClim since it has successfully been applied to sim-
ulate forest dynamics in Central Europe and the
Mediterranean under current (Schumacher et al. 2006), past
(Henne et al. 2011) and future climatic conditions (Bouriaud
et al. 2015). In addition, LandClim has previously been eval-
uated and applied in the Saas valley to simulate the provision-
ing of ecosystem services (ES) under current and future cli-
mate (Briner et al. 2012; Elkin et al. 2013).

In LandClim, landscapes are represented as a 25-m × 25-m
grid with specific topographic and climatic input variables for
each cell. Within each cell, a simplified forest gap model
(Bugmann 2001) simulates tree establishment, growth, com-
petition, and mortality on an annual time step. Trees are sim-
ulated using a cohort approach (i.e., a computational simplifi-
cation where one representative individual is simulated for all
trees of the same species and age within a cell), as individuals
within a cohort have similar traits and a similar response to
environmental conditions (Bugmann 1996). The model simu-
lates the number of trees in a cohort and the mean biomass of
an individual tree. Individual tree growth is simulated using a
logistic growth equation, where species-specific maximum
growth rate and size are reduced by light availability,
degree-day sum, and a drought index (Schumacher et al.
2004). Light availability is calculated for each grid cell, based
on light extinction calculated with the Lambert-Beer Law
(Monsi and Saeki 2005).

Tree establishment and mortality are stochastic processes.
Each year, the potential for tree establishment is determined as
a function of several environmental filters (i.e., available light

at the forest floor, minimum winter temperature, growing
degree-day sum, drought index, and browsing). Even if all
the environmental filters are passed, there is an additional
stochastic process to capture all the factors not explicitly
modeled. This takes the form of a random number drawn from
a uniform distribution in the range [0,1] that must exceed a
user-defined establishment probability. Mortality is deter-
mined as a combination of stress (sequential years of poor
growing conditions), density-dependent and intrinsic mortali-
ty (increasing probability of mortality as the tree approaches
its maximum lifespan). The mortality probability is translated
stochastically into mortality events. Further, mortality can be
caused by disturbances such as fire, wind, and bark beetles,
but these agents were turned off in the current simulations.
LandClim version 1.4 was used for this study.

LandClim produces a variety of outputs for each cohort in
each grid cell, including stem density and biomass, diameter at
breast height (DBH), height, and age. These variables can then
be used to calculate a variety of ES metrics. For this study, we
calculated three ES including (i) total biomass (sum of all
aboveground biomass across all species and cohorts), (ii) bio-
diversity, and (iii) rockfall protection. These represent the
most important ES in this region, as these forests are used
for timber production, biodiversity conservation, and protec-
tion against gravitational hazards (Briner et al. 2013).
Biodiversity was calculated using the Shannon diversity index
(typically ranges from 1 to 4) and protection using the
Rockfall Protection Index (RFPI, ranges from 0 to 6) as de-
fined by Elkin et al. (2013).

Climate data

LandClim requires monthly mean temperature and precipita-
tion sums, which are usually derived from a reference weather
station. The elevation of the weather station is used, along
with temperature and precipitation lapse rates, to extrapolate
the climate data throughout the landscape using the DAYMET
algorithm (Thornton et al. 1997).

Baseline climate and lapse rates

We used 30 years of historical baseline climate data (1981–
2010) from two sources (Table 1):

(I) Monthly values for mean temperature and precipitation
sums from the MeteoSwiss weather station Visp
(650 m a.s.l.) at the bottom of the valley. A nearby station
outside the Saas valley, Montana (1427 m a.s.l.), was
used to calculate mean monthly lapse rates. We refer to
these climate data as station climate and station lapse rate
(Appendix A, Fig. A1).

(II) Monthly temperature and precipitation values from an
observation-based, 2 km gridded data set (temperature:
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Frei 2014, MeteoSwiss 2013a; precipitation:
MeteoSwiss 2013b) from which a 48-km × 58-km rect-
angle that encompasses the Saas valley was extracted.
As a surrogate for the Bbase station,^we used the climate
data at 700 m a.s.l. and re-calculated mean monthly tem-
perature and precipitation lapse rates using all of the cells
in the extracted area. We refer to this climate data as grid
climate and grid lapse rate.

Future climate

We used three climate products for one emission scenario,
IPCC’s SRES A1B greenhouse gas emission scenario
(Nakicenovic et al. 2010). This emission scenariowas selected
because it had already been downscaled using three methods
(described below), i.e., climate forcing data were readily
available.

(i) Regional delta change (Appendix A, Fig. A2). We used
the median estimate of the probabilistic regional CH2011
scenario product at daily resolution that is provided for
three regions in Switzerland (CH2011 2011), for three
scenario periods (2021–2050, 2045–2074, and 2070–
2099). We took the mean of the northwestern and north-
eastern parts of Switzerland (CHW and CHNE) to get
values for the central Alps. For obtaining transient

scenarios, a linear interpolation of delta change values
was applied between the central year of each scenario
period (2035, 2060, 2085), with a start in 1994 to be
consistent with the reference period of 1980–2009. This
is the samemethodology employed by Elkin et al. (2013).
The final transient scenario series used as input for
LandClim was obtained by modifying the baseline cli-
mate with these transient delta change values (additive
for temperature and multiplicative for precipitation) and
aggregating to monthly resolution (Fig. 1).

(ii) Local delta change (Appendix A, Fig. A2). We used the
daily local CH2011 product, i.e., daily temperature and
precipitation changes, downscaled for the station Visp
for ten individual GCM-RCM model chains (Table 1).
As for the regional delta change, we applied a linear
interpolation between the three scenario periods to obtain
transient changes in temperature and precipitation from
1994 to 2100 for each GCM-RCM model chain. The
final transient forcing series was obtained in the same
way as for (i) above.

(iii) Downscaled and bias-corrected (transient product until
the year 2099). Quantile mapping was used to bias-
correct and downscale the RCM output for daily tem-
perature and precipitation to the Visp station (Rajczak
et al. 2016). This was performed only for the
ETH_HadCM3Q0_CLM model chain (Appendix A,
Fig. A3). The bias-corrected approach yields a slightly
lower rise especially of summer temperatures during the

Table 1 Simulation design, for quantifying the sensitivity of a forest
landscape model (LandClim) to various sources of uncertainty from
climate input data. Other sources of variation are also accounted for
(i.e., initial forest state, stochastic processes in LandClim,
randomization of baseline climate data), as each repicate has a different
random number seed and a different randomized climate data. The

downscaling comparison (D) were the only simulations where each
replicate was also initialized with a different forested state. Note that the
roman numerals refer to future climate products, and letters refer to
simulations. Additional details for both climate and simulations are found
in the BMethods^ section

Uncertainty Initialized forest Base climate – Lapse rate Climate change Replicate n

(A) Current climate 
data source

1 × Station – Station
1 × Station – Grid
1 × Grid – Station
1 × Grid – Grid

Station – Station calculated
Station – Grid calculated
Grid – Station calculated
Grid – Grid calculated

none 10 4·10=40

(B) Future climate 
change (relative 
to current 
conditions)

1 × Station – Station
1 × Station – Grid
1 × Grid – Station
1 × Grid – Grid

Station – Station calculated
Station – Grid calculated
Grid – Station calculated
Grid – Grid calculated

10 Local downscaled delta change (ii)
ETHZ_HadCM3Q0_CLM
HC_HadCM3Q0_HadRM3Q0
SMHI_HadCM3Q3_RCA
SMHI_ECHAM5_RCA
MPI_ECHAM5_REMO
KNMI_ECHAM5_RACMO
ICTP_ECHAM5_REGCM
DMI_ECHAM5_HIRHAM
CNRM_ARPEGE_ALADIN
SMHI_BCM_RCA

1
2
3
4
5
6
7
8
9
10

4·10·10=400

(C) Regional versus 
downscaled 
projections

1 × Station – Station Station – Station calculated 10 Local downscaled delta change (ii)
Probabilistic regional delta change (i)

10 1·11·10=110

(D) Downscaling 
methodology

10 × Station-Station Station – Station calculated Local downscaled delta change (ii) for   
ETHZ_HadCM3Q0_CLM

Transient bias-corrected (iii) for
ETHZ_HadCM3Q0_CLM

10 1·2·10=20
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twenty-first century. The daily values were aggregated
to monthly mean temperatures and precipitation sums,
for input to LandClim.

Simulations

Spin up

To expand the 30-year baseline climates (station climate and
grid climate) into longer time series, we randomly sampled
with replacement (extracting between 1 and 30 years at a time)
to create 10 different 1000-year climate series for the station
data, and 10 for the gridded data. The baseline climates were
paired with lapse rates from both station and grid, creating
four combinations of baseline climate–lapse rate. These
1000-year climate data sets were used to grow the forest
from bare ground, using the 15 tree species found in this
region (Appendix B). The final state of the landscape was
saved (Fig. 1), and these forests were used to initialize the
matching simulations described below (i.e., station climate
+ station lapse rate, or station climate + grid lapse rate,
etc.). All simulations had the same forest management re-
gime applied, designed to increase the protection value of
forests by increasing regeneration and structural diversity
(for details cf. Elkin et al. 2013).

Below, we describe the methodology for deconstructing
climate-related uncertainty in the simulation results. For more
details about the methods, cf. Appendix B.

Uncertainties from baseline climate and lapse rates (A)

To examine the sensitivity of the simulation results to uncer-
tainties in baseline climate and lapse rates, we created 10
replicates for each of the four combinations of baseline
climate and lapse rate (Table 1).

Uncertainty from baseline climate and lapse rate relative
to projection uncertainty (B)

To understand the importance of baseline climate and lapse
rate relative to the uncertainty in future climate projections,
we ran all combinations of baseline climate data × lapse
rates × 10 GCM-RCM model chains that had been down-
scaled to produce a local delta change (scenario product
(ii); Table 1).

Uncertainty from climate downscaling methodology (C
and D)

For examining the influence of the downscaling method, we
kept the baseline climate and lapse rate constant and always
used the station data and station lapse rates. First, we com-
pared the regional and local delta change values (see section
BFuture climate^ (i) and (ii) above). These relative changes to
temperature and precipitation were applied to 10 randomly
generated baseline climate series, from 1990 to 2100. This
created a total of 110 simulations (10 replicates of the regional
climate change, and 10 replicates for each of the 10 GCM-
RCMs, Table 1). Second, we compared the local delta change
to the bias-corrected climate (see section BFuture climate^ (ii)
and (iii) above).

Analysis

We analyzed several species-specific variables, including
mean biomass (t/ha), mean diameter at breast height, and
mean age within each grid cell. However, all three species-
level variables showed similar responses so only the results
for biomass are included in the manuscript. We also analyzed
three important ES: total biomass, biodiversity, and rockfall
protection.

For each 10-m elevation band (from 640 to 2400 m a.s.l.),
we performed an ANOVA and used the total and partial sum

Historic climate
Observed single site base 

climate (30 years)

T and P eleva�on gradients
Data expansion LANDCLIM

Historic climate input
Single site base climate 

(1000 years)

T and P eleva�on gradients

Ini�al forest
A�er 1000 years of 
historical climate

Climate scenario input
1990 - 2100

Forest
scenarios

LANDCLIM

LANDCLIM

C
Climate scenario input

1990 – 2100 as directly 
obtained from downscaled 
and bias-corrected climate 

scenarios

Local downscaled delta change 
and probabilis�c regional 

delta change

Transient bias-corrected

Historic climate
Observed single site base 

climate (30 years)

T and P eleva�on gradients

Historic climate input
Single site base climate 

(110 years)

T and P eleva�on gradients
Data expansion Climate model

delta change

Dataset
LandClim input/output
Data processing

Forest
scenarios

Fig. 1 Schematic of the preparation of climate input for LandClim
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of squares to calculate the effect size (η2) for each variable,
i.e., the proportion of the total variance explained by each
factor. Other sources of variability between simulations are
captured in the residuals, and could be due to the stochastic
processes in LandClim, or the randomization of the 30-year
baseline climate into longer time series. This analysis was
done for simulations in uncertainty scenarios A and B.

To compare the results from the probabilistic regional sce-
nario to the local delta change values for each GCM-RCM
(uncertainty scenarios C), we calculated the total possible
range of all simulations that used the local delta change (i.e.,
for each elevation, the maximum and minimum simulated).
We refer to this as the 100% range. We also calculated the
50% range, i.e., the 25th–75th percentile, of all of the local
delta change simulations. This was done for mean species
biomass as well as the ES described above.We then calculated
the proportion of the regional results along the elevation gra-
dient that were contained within the 100 and 50% range.

To compare the results from the local delta change value
to the bias-corrected climate (uncertainty scenarios D), we
analyzed the three ES metrics through time, at every ele-
vation (although only four representative elevations are
shown below). We used a linear mixed effects model that
included the effect of climate scenario, time, and the inter-
action between climate and time. The initial forest state
was included in the error term. All analyses were per-
formed in the statistical software R (v3.1.1).

Results

Sensitivity to uncertainties in baseline climate
and lapse rates (A)

Variation in simulation results due to the choice of baseline
climate and lapse rate had the largest impacts at the edges
of a species’ elevation distribution (Fig. 2). Generally, the
baseline climate accounted for more variability at low ele-
vations, whereas lapse rate became more important with
increasing elevation. The species that was least sensitive
to differences in baseline climate or lapse rates (i.e., Pinus
mugo) has the lowest growing degree requirements and the
highest drought tolerance (i.e., it is not strongly limited by
temperature nor precipitation), whereas those species that
were very sensitive to differences in climatic input data
(e.g., Fraxinus excelsior, Quercus robur, or Picea abies)
have some of the lowest drought tolerances or highest
degree-day requirements.

The simulated ES indicators showed a similar pattern, with
baseline climate contributingmore to variability particularly at
lower elevations, and lapse rate having a stronger impact at
higher elevations (i.e., > 2100 m a.s.l., Fig. 3). For total bio-
mass, variability in different baseline climates accounted for

approximately 25 to 60% of the variation below 1500 m a.s.l.,
and lapse rates accounted for a similar percentage >
2100 m a.s.l. (Fig. 2a). For most of the elevation gradient,
however, the residuals were the largest component of variabil-
ity for total biomass. For the biodiversity and rockfall protec-
tion indices (Figs. 2b, c), however, baseline climate and lapse
rates typically accounted for > 50% of the variability and up
90% at some elevations.

Sensitivity to uncertainties in baseline climate, lapse
rate, and future climate (B)

Variability induced by the GCM-RCM model chain was the
largest source of systematic uncertainty for most species
(Fig. 4), accounting for up to 33 and 88% of the variability,
depending on the species. Some species were less sensitive to
the differences between future climate data, such asAbies alba
and Larix decidua, whereas others were much more sensitive
to differences between GCM-RCM model chains, in particu-
lar Acer sp., Quercus sp., Fraxinus excelsior, and Tilia
platyphllos. This is not to say that certain species did or did
not respond to climate change, but rather that the magnitude
and direction of their response was consistent regardless of the
GCM-RCM model chain used.

The ES indicators were also more sensitive to differences
between GCM-RCMmodel chains than to baseline climate or
lapse rates, for most of the elevation range (Fig. 5). Across the
entire elevation gradient, biodiversity and rockfall protection
indices were more sensitive to differences in climate input
data compared to total biomass. In the year 2100, variability
caused by different baseline climates was still an important
factor for all three ES metrics at high elevations (Fig. 5), while
the different lapse rates were important for total biomass and
rockfall protection.

Impact of climate downscaling methodology

Regional versus local delta climate change (C)

At the end of the twenty-first century, most tree species were
projected to shift their biomass distribution to higher eleva-
tions (Fig. 6), resulting in decreasing biodiversity at lower and
increasing biodiversity at higher elevations (Fig. 7). For most
low-elevation species, biomass simulated with the probabilis-
tic regional climate change scenarios matched quite well those
under the ensemble projections, usually falling in the range of
projections from the ten individual local climate change sim-
ulations (Fig. 6, Table C1). However, this was not true at
higher elevations, where simulations using the probabilistic
regional projections became noticeably different from the lo-
cal scenarios. Particularly Picea abies, Pinus cembra, and
Larix decidua showed quite different patterns above
2100 m a.s.l. (Fig. 6).
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Differences in the downscaling methodology also
caused elevation-dependent differences in the simulation
of ES metrics. Below 2000 m a.s.l., the probabilistic re-
gional climate change simulations were within the 100%
ensemble range for all three indicators (Fig. 7). However,
above 2100 m a.s.l., the probabilistic regional climate
change simulations were again very different from the sim-
ulations that used the individual locally downscaled cli-
mate change data. The probabilistic regional climate
change simulations featured higher total biomass, lower
biodiversity, and increased rockfall protection between
2100 and 2400 m a.s.l (Fig. 7).

Above 2100 m a.s.l., there is a sharp decrease in water
holding capacity (Bbucket size^; cf. Appendix B), which is
pivotal for simulating drought in LandClim. The probabi-
listic regional climate change projections have a higher
frequency and severity of annual droughts (Appendix A,
Fig. A4) and are also somewhat colder than most of the
locally downscaled GCM-RCM models (Appendix A, Fig.
A5). The interaction between increased drought and colder
temperatures drove the differences in the simulation

results between the two downscaling approaches >
2100 m a.s.l.

Local delta climate change versus local bias-corrected climate
change (D)

The simulated ES metrics responded to future climate
change in a similar manner when using either the bias-
corrected climate change method or the downscaled delta
change method (Fig. 8), with time having a significant
effect for all indicators at all elevations. However, there
were systematic differences between downscaling
methods. The higher spring and summer temperatures in
the delta change method (Appendix A, Fig. A3) caused
more drought limitations for tree growth at low elevations,
resulting in lower total biomass (Fig. 8). The difference in
the climate produced by the two downscaling methods also
resulted in a significant impact on simulated tree diversity.
Although both methods showed a decrease in species di-
versity at lowest elevations, and generally increasing diver-
sity at higher elevations in the second half of the century

Fig. 2 The proportion of variability caused by the choice of baseline climate and lapse rate on mean biomass for each species, under current climatic
conditions along the entire elevation gradient in the Saas valley. An explanation of effect size (η2) can be found in the BMethods^ section
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(Fig. 8), the bias-corrected method consistently had lower
tree diversity at higher elevations. The delta change meth-
od also had higher variability between simulation repli-
cates, specifically at lower elevations for total biomass
and biodiversity. This may be due to the fact that bias-
corrected approach excludes the sampling of different ini-
tializations, and thus there is no variation between the 10
replicates from climate. This is not true for the delta change
method, where each of the 10 replicates is slightly different
due to the randomized sequence of historical climate that
the relative change was then applied to (see the BMethods^
section and Appendix B). Rockfall protection was gener-
ally insensitive to the downscaling methodology (Fig. 8).

Discussion

Our systematic evaluation of the sensitivity of a forest
landscape model to various components of climate input
data showed that all sources increase variability in the sim-
ulation of forest dynamics and the provisioning of ecosys-
tem services. We found that our simulation results were
most sensitive to the choice of historical baseline climate
at lower elevations, whereas differences between lapse
rates caused the greatest variability at higher elevations.
However, under future climate change, the most significant
source of variability was from the choice of GCM-RCM
model chain (which becomes even more important under
longer scenarios beyond 2100, results not shown). In addi-
tion, we found that the methodology used for downscaling
future climate also influenced the results, but depended on
the tree species, ES indicator, and elevation. Below, we
discuss in more detail our key questions (i) the choice of
baseline climate and lapse rates, (ii) the relative importance
of climatic uncertainty compared to random variability,
(iii) how downscaling methodology matters for forest pro-
jections, and (iv) recommendations for reducing
uncertainty.

Choice of baseline climate and lapse rates at low
and high elevation

Our inner-Alpine case study valley has very different en-
vironmental conditions at the lowest and highest eleva-
tions, with precipitation limiting tree growth at low eleva-
tions and temperature limiting trees at high elevations.
These elevation-dependent drivers of tree growth and for-
est composition are captured in all baseline climate simu-
lations. The two baseline climates have almost the same
temperature, but the station climate data has lower precip-
itation amounts (Fig. A1). As a result, LandClim results
were not as sensitive to differences between the two base-
line climate inputs at higher elevations, while the differ-
ences between baseline climates were quite important at
lower, drought-prone elevations.

Conversely, differences in lapse rate estimates were
much more important at higher elevations. This is partly
because our simulations were based on a low-elevation
climate station, and thus lapse rate-induced differences in
temperature and precipitation were small at low elevations
and increased with elevation. In addition, this is also the
area where temperature is the dominant factor limiting tree
growth and establishment (Vitasse et al. 2012). One way
to minimize the lapse rate-induced elevation-dependent
bias would thus be to use a Bvirtual^ climate station at
an intermediate elevation, or to choose the elevation of
the base climate station based on a priori assumptions
about where the most relevant changes in ecosystem

Fig. 3 The proportion of variability caused by the choice of baseline
climate and lapse rate on the provisioning of several forest ecosystem
services including a total above ground biomass, b biodiversity, and c
rock fall protection, under current climatic conditions along the entire
elevation gradient in the Saas valley. The dashed line is placed at 50%
to aid interpretation
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properties are expected to occur. Thus, our results support
previous modeling studies in alpine regions, such as
Zhang et al. (2015) who found that simulating snowmelt
would be vastly improved with more accurate temperature
lapse rates and precipitation gradients. Despite the fact
that lapse rates were found to be important, it is important
to note that the climate projections employed in this study
do not consider possible future lapse rate changes
(Kotlarski et al. 2015).

The relative importance of climatic uncertainty

LandClim is a stochastic process-based model; hence, at
least some of the variability in simulation results are due
to the outcome of these random processes in the model
(i.e., establishment and mortality). Thus, when we refer to
the relative importance of climate uncertainty, we are
comparing the variability due to climate input data to
variability from the amount of stochasticity that is intrin-
sic to the forest landscape model being used. Within our
case study, we aggregated the results by elevation band.

This decision was based on an a priori expectation that the
strong elevation gradient that is characteristic of the re-
gion is a key determinant for vegetation composition
(Bigler et al. 2006), as well conforming to how forest
landscape models are commonly applied and analyzed
(e.g., Henne et al. 2015; Thrippleton et al. 2014).
However, aggregating and interpreting model results at a
different spatial grain, or along a different environmental
axis, can substantially alter the relative importance of cli-
matic uncertainty. For example, when our results were
evaluated at the level of individual raster cells (25 ×
25 m2), the dominant source of uncertainty was the intrin-
sic stochastic processes that underpin LandClim (results
not shown) and the relative importance of climatic uncer-
tainty at that spatial resolution is much smaller. This is
because differences between establishment and mortality
can result in very different successional states (e.g., a
young forest compared to a mature forest) when compar-
ing individual cells. Thus, evaluating the relative impor-
tance of climate uncertainty should be done with an ap-
preciation of both the ecological grain at which climatic

Fig. 4 The proportion of variability caused the choice of baseline climate, lapse rate, and GCM-RCM model chain on mean biomass for each species.
The results shown are for the year 2100, along the entire elevation gradient in the Saas valley
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input variables are used in the model and the spatial scale
at which model output is evaluated.

Downscaling methodology for future climate change

Our results demonstrated how the choice of downscaling
methodology, and the realized interaction between tempera-
ture and precipitation changes, can have important conse-
quences for simulating the impact of climate change in moun-
tain forests.

In LandClim, species are limited by temperature (growing
degree-days), soil moisture (drought index), and light avail-
ability (competition). These factors are non-linear, and small

differences in any of them can cause large changes to simu-
lated forest properties (Elkin et al. 2012). Even though the
probabilistic regional climate projections appeared to be in
the middle of the local scenarios of the ten individual climate
model chains (Fig. A2), the joint and non-linear influence of
temperature and precipitation on soil moisture resulted in a
higher frequency and severity of droughts (Fig. A4) and con-
comitant impacts on the projected growth of drought-sensitive
species. This caused a reduction in Picea abies, the most
abundant and least drought-tolerant species at 2100 m. a.s.l.,
and an increase in the more drought-tolerant Pinus cembra.
Although Larix decidua is quite drought tolerant, it is very
shade intolerant and thus was not an effective competitor.
We suggest that this elevation is the point where soil water
holding capacity becomes more limiting than precipitation
(Fig. B1). For the locally downscaled models that are wetter
compared to the probabilistic regional climate projection, this
transition occurred at higher elevations.

The locally downscaled climate projections using either
the bias-corrected or the delta change methodology also
produced different results in LandClim. The differences
in tree diversity at higher elevations and in total biomass
at low elevations were caused by the higher summer tem-
peratures resulting from the delta change method (Fig. A3).
Higher drought at low elevations reduced total biomass,
whereas increased warming at higher elevations induced
a considerable turnover of species. The large elevation gra-
dient that characterizes our study area contributed to the
detection of differences caused by downscaling methodol-
ogies; Pourmokhtarian et al. (2016) applied an ecosystem
model in a much smaller study area with only a 200-m
elevation gradient and found that different downscaling
methods had only a limited impact on their results.

It is difficult to evaluate which downscaling methodology
produces Bbetter^ results. Rather, a more appropriate question
to ask is what are the objectives of the impact study? One clear
advantage of the bias correctionmethod is that it allows for the
possibility for the frequency and magnitude of future extreme
events to emerge from the historic climate forcing data (Fig.
A3; Ivanov and Kotlarski 2017). This is important for
predicting impacts on indicators that respond to short-term
changes. Furthermore, forest structure and dynamics are
shaped by a variety of natural disturbances (Seidl et al.
2011), and extreme events are of crucial importance for
stand-replacing disturbances such as wildfires (e.g.,
Hernandez et al. 2015) and bark beetle outbreaks (e.g., Kolb
et al. 2016). Thus, simulations that include disturbances may
be more sensitive to downscaling methodologies.

Increasing confidence in model results

We found that simulated landscape properties were sensi-
tive to all sources of climate uncertainty that were

Fig. 5 The proportion of variability caused by the choice of baseline
climate, lapse rate, and GCM-RCM model chain on the provisioning of
several forest ecosystem services including a total above ground biomass,
b biodiversity, and c rock fall protection. The results shown are for the
year 2100, along the entire elevation gradient in the Saas valley
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considered in our study, at some point in space and time.
However, there are steps that can be taken to increase con-
fidence in the simulation results, depending on the objec-
tive and spatial grain of the study. Projects that aim to
evaluate landscape-level responses over longer time frames
will likely be better served by using gridded climate data
that more accurately reflect regional climate expectations.
Climate from weather stations would be more appropriate

for small landscapes (Pourmokhtarian et al. 2016) or that
are situated in locations with unusual climatic conditions.
Studies focusing on indicators that are less sensitive to
local climate details, such as total biomass in our study,
can also be interpreted in a broader context if gridded cli-
mate data are used.

If long-term, accurate, baseline climate data are not
available for a reliable model Bspin up,^ it may still be

Fig. 6 Simulated biomass of each tree species along an elevation gradient
in the Visp valley for the year 2100. The black line shows the mean of 10
replicated simulations that used the regional median delta change product.
The light gray areas show the 100% range of all of the simulations that
used the delta change products downscaled for Visp (i.e., 10 replicates for

each of the 10 GCM-RCM downscaled model chains), and the dark gray
areas show the 50% range. The red line is included for a reference and
shows the biomass of each species under current climate. Note the differ-
ent scales for the y-axis
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possible to minimize this deficiency by initializing forest
models with inventory data (cf. Temperli et al. 2013), as
this would place less emphasis on the quality of the base-
line climate for spinning up the model to a forested state.
As found in our study as well as many other studies (e.g.,
Buisson et al. 2010; Woldemeskel et al. 2016), differences
between GCM-RCM model chains cause large uncertainty
in impact assessments. Thus, we recommend using as
many climate models as possible to capture the uncertainty
of these projections, rather than relying on one single tra-
jectory of future climate data.

Conclusions

We systematically addressed the impacts of multiple
sources of climatic uncertainty on projections from a forest
landscape model. For simulating current conditions, differ-
ences in both baseline climate and lapse rate had a consid-
erable impact on simulated forest properties and species
abundances. Under future climate change, baseline climate
became less important, and differences between GCM-
RCM model chains accounted for a large fraction of the
variability. In general, the greatest variability was found at
the elevational edges of a species’ distribution. This has

Fig. 7 Simulated ecosystem service provisioning along the elevation
gradient in the Saas valley for the year 2100. The black line shows the
mean of 10 replicated simulations that used the regional median delta
change product. The light gray areas show the 100% range of all of the
simulations that used the delta change products downscaled for Saas (i.e.,

10 replicates for each of the 10 GCM-RCM downscaled model chains),
and the dark gray areas show the 50% range. The red line is included for a
reference, as this shows the ecosystem service provisioning under current
climate
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important implications for studies that aim to predict shifts
in species and community composition along elevation
gradients. Ecosystem service (ES) metrics were relatively
less sensitive to differences in climatic input data and
downscaling methodology. Thus, when using these models
to project ES changes, greater flexibility is possible in the
choice of climatic source data.

In mountain regions, projections for high-elevation forests
have the largest degree of uncertainty, and the choice of climate
model and downscaling methodology can produce very differ-
ent results. Efforts to increase the accuracy of climate projections
at high elevations would thus make a large difference for impact
modeling, especially as these areas are likely to be among the
most sensitive to future climate change (Pepin et al. 2015).

Fig. 8 Response of the provisioning of ecosystem services over time, at
selected elevations, in the Saas valley. Both climate simulations use the
same GCM-RCM model chain and emission scenario (ETH_
HadCM3Q0_CLM, A1B) and differ only in their downscaling method-
ology (bias-corrected = black line, delta change = gray line). Each of the

10 replicates was initialized with a different forest structure. In each panel,
the numbers are the results of the linear mixed effects models, which
included year, climate downscaling method (dm), and the interaction
between year and downscaling method (year/dm), and indicate the sig-
nificance value for each variable
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