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Abstract
Regions with a Mediterranean climate are generally predicted to become warmer and drier with climate change. Estuaries in these
regions are influenced by a broad range of climate drivers and are particularly vulnerable to the effects of climate change.We examine
observed and predicted effects of climate change on the estuaries of south-western Australia (SWA), where sustained warming and
drying trends have caused dramatic declines in freshwater flows of up to 70% since the 1970s, as a case study of the impacts that
might be expected in other Mediterranean regions. Current and projected impacts of climate change in SWA include progressive
warming and ‘marinisation’ of estuaries; extended closure of periodically open systems; an increased frequency and severity of
hypersaline conditions; enhancedwater column stratification and hypoxia; and reduced flushing and greater retention of nutrients.We
document the effects of these environmental changes on the habitats, biota and ecology of SWA estuaries, including phytoplankton,
macrophytes, invertebrates and fish. For example, decreasing river flows will cause periodically open estuaries across SWA to remain
closed for longer periods, inhibiting the extent to whichmarine taxa can access these systems, thus reducing species diversity, whereas
marinisation of permanently open systems will increase species diversity. We discuss the broader relevance of our findings, placing
them in a global context and highlighting implications for ecosystem services and human populations. Finally, we consider the
adaptation options that could be implemented to reduce the impacts of climate change in Mediterranean climate regions.
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Introduction

Climate change, linked to anthropogenic increases in green-
house gases, is proceeding at an unprecedented rate (IPCC—

Intergovernmental Panel on Climate Change 2013), with mea-
surable impacts on aquatic environments worldwide (Firth
and Fisher 2012; Hoegh-Guldberg and Bruno 2010).
Warming will increase throughout this century, leading to
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long-term, broad-scale changes in a suite of climate drivers,
including air and sea surface temperatures (SST), rainfall pat-
terns, sea level and extreme weather events (IPCC—
Intergovernmental Panel on Climate Change 2013). Whilst
global predictions of mean climate conditions are important,
ecological impacts of climate change are more likely to be
mediated by responses to extremes than changes in average
conditions (Coumou and Rahmstorf 2012) and will exhibit
great spatial variability as, for example, some regions become
wetter and others drier (Durack et al. 2012; Hobday and
Lough 2011).

Mediterranean climate regions, i.e. the Mediterranean
Basin, central Chile, California and the Baja Peninsula, and
parts of southern Australia and South Africa (Klausmeyer and
Shaw 2009), are characterised by warm to hot, dry summers
and mild to cool, wet winters (Belda et al. 2014). These re-
gions are generally predicted to becomewarmer and drier (e.g.
Giorgi and Lionello 2008; Trenberth 2011), with flow-on ef-
fects on their terrestrial and aquatic ecosystems (Klausmeyer
and Shaw 2009; Thompson et al. 2015). The floristic diversity
ofMediterranean climate regions has receivedmuch attention,
yet they also support important land-sea connections, particu-
larly through estuaries. Estuaries are highly productive and
valuable aquatic ecosystems that provide a multitude of eco-
system services (Barbier et al. 2011; Costanza et al. 1997,
2014). As transition zones between marine, freshwater and
terrestrial environments, estuarine ecosystems are particularly
vulnerable to the effects of climate change (Poloczanska et al.
2007). Moreover, as they provide key locations for human
settlements (Hallett et al. 2016b), many estuaries have been
extensively impacted by pollution, habitat loss, altered hydrol-
ogy and/or geomorphology, and overfishing (Kennish 2002),
compounding the pressures associated with climate change.

Estuaries in the Mediterranean climate regions of Australia
exemplify these climatic and non-climate stressors. Australia is
the driest inhabited continent on Earth andAustralian river flows
are among themost variable in theworld, reflecting bothmarked
seasonality and inter-annual variability in rainfall (Finlayson and
McMahon 1988; Hobday and McDonald 2014). The resulting
hydrologic regime, i.e. the timing of flows of different magni-
tudes, is crucial in structuring the unique environments and biota
of Australian estuaries, including those in south-western
Australia (SWA; Online Resource 1). Moreover, like many such
systemsworldwide (Hearn 1998), estuaries in SWAare typically
shallow and microtidal (tidal range < 2 m), with relatively long
water residence times (Tweedley et al. 2016b).

This review examines observed and predicted effects of
climate change on the estuaries of SWA, as a case study of
the impacts that might be expected in other Mediterranean
climate regions. We document the evidence for changes in
climate drivers across SWA and evaluate their observed and
potential effects on estuarine environments, their habitats, bi-
ota and ecology, supported by examples from other

comparable regions worldwide. We then discuss the relevance
of our findings in a global context, including the implications
for human populations. Finally, we consider briefly the adap-
tation responses that can be implemented in these regions,
noting the conflicting objectives of development and ecosys-
tem protection that are often encountered.

Regional context

The Mediterranean climate of SWA (Online Resource 1) has
up to 80% of annual rainfall fromMay to October (Hope et al.
2015a). The relative strength of waves, tides and freshwater
flows determines the mouth status of estuaries (Heap et al.
2004); thus, wave patterns and rainfall variability are key
drivers of estuarine morphology and ecology in this and other
microtidal regions. Estuaries of SWA, as in other
Mediterranean climate regions (Collins and Melack 2014;
Cooper 2001; Tweedley et al. 2016b), can be classified as
permanently open (PO) or periodically open. The PO estuaries
in SWA are commonly maintained in an open state through
human action, via dredging, removal of rock bars or construc-
tion of artificial entrance channels (Brearley 2005).
Periodically open systems include those that are either inter-
mittently open (IO), seasonally open (SO) or normally closed
(NC), depending on whether and for how long they become
separated from the ocean by the formation of a sand bar across
their mouth (Chuwen et al. 2009b; Hodgkin and Hesp 1998).
Indeed, some NC estuaries may open so infrequently, if at all,
that they could be regarded as permanently closed, saline
coastal lakes or lagoons (Hodgkin and Hesp 1998).

A key climatic feature of SWA is a gradient of increasing
air temperatures and decreasing rainfall (and hence river
flows) from the south-west corner to the South Australian
border (Lester et al. 2014). This gradient not only influences
the types of estuary found along the coast (Online Resource
1), their degree of connectivity to the ocean and thus their
environmental conditions, flora and fauna, but also provides
an opportunity to use a space-for-time approach to examine
the changes that various estuaries across the region will expe-
rience with climate change (Lester et al. 2014). Moreover, the
relatively rapid rate of change in the climate of SWA, includ-
ing a recent record of anomalously warm and dry years, facil-
itates understanding of the longer-term impacts of climate
change and offers lessons for slower warming regions.

The marine flora and fauna of the region are influenced by
the Leeuwin Current (e.g. Ayvazian and Hyndes 1995), which
flows southward along the Western Australian coast bringing
warm water from the tropics. As a result, biological assem-
blages are characterised by temperate species, with a declining
presence of subtropical and warm-temperate species from the
north-west to the south-east corner of SWA (e.g. Hutchins
1994; Carruthers et al. 2007; Wernberg et al. 2013). The
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estuarine environments and biota of SWA estuaries also reflect
the region’s small tidal range (< 1 m). For example, the geo-
graphic extent of tidal marshes in SWA estuaries is limited;
thus, these habitats are excluded from the current review.

Observed and predicted changes
in the regional climate

The major climatic drivers that shape environmental condi-
tions in estuaries include air temperatures, SST and rainfall
(Poloczanska et al. 2007), as well as rising sea levels.
Observed and predicted changes in the climate of SWA are
summarised conceptually in Fig. 1.

Annual mean air temperatures for SWA rose by 1.1 °C
from 1910 to 2013. By 2030, temperatures are predicted to
be 0.5–1.1 °C above the 1986–2005 average, with respective
increases of 1.2–2.0 and 2.6–4.0 °C by 2090 under moderate
(representative concentration pathway; RCP4.5) and high
(RCP8.5) emissions scenarios (Hope et al. 2015a). Rising
mean air temperatures will be accompanied by a marked in-
crease (> 150%) in hot (> 35 °C) and extreme (> 40 °C) tem-
perature days. An increase in SSTof 0.02 °C per year since the
1950s has been observed off SWA (Pearce and Feng 2007)—
an ocean warming hotspot (Hobday and Pecl 2014). Increases
in SST have been greatest in autumn-winter, with the peak in

the seasonal temperature cycle shifting by 10–20 days from
the 1950s to the 2000s (Caputi et al. 2009) as warmer SST
persists later into the year. Across coastal waters of SWA,
warming by 2090 is projected in the range of 1.5–3.9 °C for
RCP8.5 (Hope et al. 2015a).

Winters in the region became 25% drier over the course of
the twentieth century (Hughes 2003), including a 15–20%
decline in late autumn-winter rainfall since the 1970s (Hope
et al. 2015b) and a recent absence of very high rainfall years
relative to much of the twentieth century. Decreases in future
winter, spring and annual rainfall are projected with high con-
fidence. By 2030, winter rainfall for SWA may change by −
15 to + 5%, and by 2090, these ranges are around − 30 to − 5%
under RCP4.5 and − 45 to − 5% under RCP8.5 (Hope et al.
2015a). Despite these projected decreases, the intensity of
heavy rainfall events across SWA is likely to increase.
Although storms and cyclones may become less frequent
across the region (Elsner et al. 2008), their severity may in-
crease (Hughes 2003) and forecast changes in the temporal
pattern of storms will intensify runoff profiles (Min et al.
2011; Wasko and Sharma 2015). In particular, very large fluc-
tuations in summer rainfall intensity are predicted (Andrys
et al. 2017), which will dramatically alter estuarine hydrology.
The above changes in rainfall patterns largely reflect a pro-
gressive southward shift of winter storm systems and greater
prevalence of high pressure systems (Hope et al. 2015a).

Climate
drivers
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Fig. 1 Conceptual diagram of key climatic drivers across south-western
Australia and their effects on the primary and secondary environmental
stressors of estuaries in this region. (Dashed boxes indicate drivers and

effects whose direction and/or magnitude of change is less certain or
considered to be less significant)
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Sea level at Fremantle has risen by an average of 1.4 mm
per year from 1966 to 2009 and is predicted to increase by 7–
17 cm by 2030, and 28–66 cm by 2090, under RCP4.5 (Hope
et al. 2015a). Rising sea levels will increase the susceptibility
of SWA estuaries to coastal flooding associated with extreme
sea level and storm surge events. The frequency of these
events has increased 3-fold since 1950 (Church et al. 2006)
and is predicted to rise dramatically with climate change. For
instance, a 50-cm rise in mean sea level will see a 100- to
1000-fold increase in the frequency of extreme sea level
events in SWA (Braganza et al. 2014).

Finally, acidification of marine and estuarine waters will
occur due to rising atmospheric CO2 concentrations, e.g.
ocean pH in SWA is projected to fall by up to 0.08 units by
2030, and by up to 0.15 (RCP4.5) to 0.33 (RCP8.5) by 2090
(Hope et al. 2015a). The latter values would represent an ad-
ditional increase in acidity of 40 and 110%, respectively, im-
posing an additional environmental stressor on estuarine
ecology.

Effects of climate change on environmental
conditions

The above climate drivers are already modifying the environ-
mental conditions in estuaries of SWA and will do so at an
increasing rate if climate change follows a business as usual
pathway (e.g. RCP 8.5). Such changes will reshape the envi-
ronmental stressors to which estuarine flora and fauna are
subjected (Fig. 1).

Increases in air temperature and SSTcontribute to warming
of estuarine waters, especially as many estuaries are shallow
and have a high surface area to volume ratio. This warming
effect will be particularly marked in shallow, nearshore habi-
tats (Oczkowski et al. 2015) and in periodically open systems
when they become disconnected from the ocean (James et al.
2013). For example, water temperatures in the shallow distal
portions of the Leschenault Estuary (Online Resource 1) reg-
ularly exceed 30 °C during summer (Veale et al. 2014).

Warming will also raise the salinity of estuarine environ-
ments through increased evaporation, contributing to
‘marinisation’ of PO estuaries over time and increasingly fre-
quent and severe hypersaline conditions in some systems
(Cyrus et al. 2011; Largier et al. 1997). Increasing salinities
are evident in some PO estuaries of SWA (e.g. Valesini et al.
2017), although region-wide trends have yet to be effectively
documented. As in several other Mediterranean climate re-
gions (e.g. Webster 2010; Wooldridge et al. 2016), hypersa-
linity is prevalent among SWA estuaries, including both PO
(Loneragan et al. 1987; Veale et al. 2014) and NC systems
(Chuwen et al. 2009a, b; Hoeksema et al. 2006), primarily
reflecting relatively low freshwater inputs and high rates of
evaporation in summer. For example, salinities of 296 have

been recorded in Culham Inlet during an extended closed pe-
riod (Chuwen et al. 2009a). South coast estuaries will be most
susceptible to hypersalinity (see below), some of which may
become negative or inverse estuaries (sensu Largier et al.
1997) for longer periods due to climate change.

Changes to rainfall, and thus river flows, across SWAwill
exacerbate these increasing salinity regimes and lead to addi-
tional impacts. Observed changes in the timing and magnitude
of rainfall, combined with increasing temperatures and evap-
oration and the clearing of 80–90% of native vegetation since
European settlement (Halse et al. 2003), have had pronounced
effects on freshwater flows (Petrone et al. 2010). Inflows to
dams across SWA have declined by up to 70% since the mid-
1970s (Barron et al. 2012), with total annual stream flow in
2010, the driest year on record for SWA, only ~ 5% of the
long-term average (Silberstein et al. 2012). Further declines
in annual flow of ~ 30% by 2030 are projected under a medi-
um emissions scenario (Silberstein et al. 2012).

These changes will have significant secondary effects on
multiple estuarine stressors, some of which may vary between
estuary types and will be harder to predict due to complex
interactions among climate drivers (Fig. 1). For instance, de-
clining rainfall and river flows, rising sea levels and increased
storm surge will increase the influence of the marine environ-
ment on PO systems and also alter erosion/deposition cycles.
In the longer term, this will encourage the extended closure of
numerous SWA estuaries; IO and SO systems will generally
experience shorter open phases and longer periods between
mouth openings, whilst NC estuaries in the drier east of SWA
may ‘evolve’ towards a permanently closed, lagoonal state
(Hodgkin and Hesp 1998). Such changes would in turn in-
crease the likelihood of extreme temperatures and salinities in
these systems (Chuwen et al. 2009a, b; Cyrus et al. 2011;
Collins and Melack 2014). However, changes in the timing
and intensity of storm events will also exert an influence on
estuarine connectivity. As the influence of winter rainfall de-
clines and that of summer storm events potentially increases
into the future, estuaries that previously opened predominant-
ly during winter may instead open during summer. This would
lead to changes in the effects of opening on estuary hydrology,
flushing and environmental conditions (e.g. Human et al.
2016).

Declining flows will also influence the dynamics of sedi-
mentation, nutrients, stratification and hypoxia within SWA
estuaries, although the direction and magnitude of these ef-
fects are less certain and likely to be context-dependent.
Whilst decreasing annual flows will potentially deliver less
sediment and nutrients to estuaries under baseflow conditions
(Thompson et al. 2015), less scouring and flushing is also
likely to occur, encouraging greater retention and internal cy-
cling within estuaries (Statham 2012). Also, the growing in-
fluence of more intense summer storms will increase delivery
of sediment and nutrients via high flow events, particularly if
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intense rainfall follows prolonged drought conditions that in-
crease the erodibility of catchment soils (Thrush et al. 2004).
Moreover, greater rates of erosion are associated with rising
sea levels and increasing storm surge conditions (Eliot 2012).

Nutrient dynamics in estuaries are also influenced by, inter
alia, dissolved oxygen (DO) concentrations in waters and sed-
iments. As ammonium and phosphates are typically released
from sediments under hypoxic to anoxic conditions
(Middelburg and Levin 2009; Rabalais et al. 2010), oxygen
availability influences the extent to which estuarine sediments
are nutrient sinks or sources (Statham 2012). Climate change
effects on DO in SWA estuaries are somewhat uncertain and
likely to exhibit considerable spatial and temporal variability.
Warmer estuarine waters will contain less oxygen due to re-
duced oxygen solubility and increased biological oxygen de-
mand (Ficke et al. 2007). However, DO levels in these estu-
aries are also strongly influenced by water column stratifica-
tion, with enhanced stratification leading to the development
of hypoxic or anoxic conditions in the water column and sed-
iments (Brearley 2013; Douglas et al. 1997; Kurup and
Hamilton 2002; Tweedley et al. 2016a). The key question will
be how changes in rainfall timing and magnitude influence
stratification, oxygen availability and nutrient dynamics in
different systems. Nonetheless, reduced flushing and en-
hanced stratification in middle to upper estuarine regions is
expected with declining flows.

Impacts on estuarine habitats, flora and fauna

We synthesise and summarise the ecological impacts of cli-
mate change across different biotic groups and on various
levels of biological organisation, i.e. biological performance,
phenology, abundance and distribution, and community struc-
ture (see Koenigstein et al. 2016). Accompanying appendices
(Online Resources 2, 3, 4, 5 and 6) detail the effects of climate
change on phytoplankton, flora, invertebrates and fishes, in-
cluding numerous examples of observed and predicted im-
pacts from SWA and other Mediterranean climate regions.

Effects on biological performance

The biological performance of an organism is inextricably
linked to its environment, mediated primarily through the en-
ergetic costs of homeostasis and adaptive responses to envi-
ronmental stress. Effects of stress are manifested in an organ-
ism’s molecular biology, physiology, behaviour, growth and
reproduction and may ultimately determine their survival
(Killen et al. 2013; Sokolova 2013). Climate change will
therefore impact on estuarine biota by altering the abiotic
stressors to which they are exposed.

Temperature is a key factor affecting the biological perfor-
mance of organisms (Pörtner and Farrell 2008; Sokolova 2013).

Increasing water temperatures may enhance the growth and/or
reproduction of organisms that use estuaries, from phytoplank-
ton to fish (Gillanders et al. 2011; Thomas et al. 2016). For
example, elevated water temperatures will facilitate longer pe-
riods of growth of the Western school prawn (Metapenaeus
dalli) and Blue swimmer crab (Portunus armatus) in SWA
estuaries and enhanced recruitment of warm-temperate marine
fishes (Online Resource 6). However, warming will negatively
impact the physiology and performance of species that are close
to their thermal maximum, particularly during their germination
or larval stages (Andrews et al. 2014; Crisp et al. 2017;Madeira
et al. 2016), and elevated temperatures may negatively impact
the recruitment of cool-temperate marine fish. Mortality of
seagrass associated with high temperatures has been observed
in the Swan-Canning Estuary (Hoffle et al. 2012), and phyto-
plankton are predicted to exhibit a strong negative response to
temperatures > 27 °C (Fig. 2; Online Resource 2).

Whilst metabolic demand increases with water tempera-
ture, warmer, saltier waters also hold less oxygen. Any de-
crease in oxygen availability, and particularly to an extent that
results in environmental hypoxia, will potentially cause stress
to biota. Hypoxia is a key stressor in many SWA estuaries, and
particularly for benthic habitats. For example, sediment anox-
ia and associated sulfide intrusion are a major stressor of root-
ed macrophytes and infaunal communities (Online Resources
4 and 5). Hypoxia induces molecular stress responses that
cascade through biochemistry and physiology to ultimately
impact metabolism, behaviour and scope for growth/
reproduction (Wu 2002; Spicer 2016). These effects vary
markedly among taxa (Riedel et al. 2016) and will be greatest
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Fig. 2 Percent surviving from > 200 species and 439 strains of
phytoplankton at different temperatures and from three different habitats
(based on the analysis of data in Supplement, Appendix 2, of Thomas
et al. 2016). Arrow highlights the marked decrease in survival at
temperatures exceeding 27 °C
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for species at their thermal tolerance limits (Koehn et al.
2011), particularly under increasingly frequent and extreme
maximal water temperatures.

Rising salinities will place species that are close to their upper
salinity limits under greater osmoregulatory stress, potentially
altering their metabolism, activity, growth, spawning and devel-
opment (Smyth and Elliott 2016; Whitfield 2015; Online
Resources 2, 3, 4, 5 and 6). For example, most freshwater fish
species, which lack chloride cells in their gill epithelia, will be
unable to tolerate rising salinities (Whitfield 2015). If salinities
exceed an organism’s biological tolerance, mass mortalities may
result. In the NC Culham Inlet (Online Resource 1) in 2001,
hypersaline conditions (~ 85) caused the death of an estimated
1.3 million Black bream (Hoeksema et al. 2006).

Effects of estuarine acidification are less well understood,
particularly for phytoplankton (Online Resource 2), but are
likely to vary greatly among taxa (Sokolova et al. 2016).
Decreasing pH will likely have positive effects on growth of
seagrasses and fleshy macroalgae, but negative impacts on
calcareous macroalgae (Online Resource 4). Invertebrate taxa
exhibit widely varying responses to acidification, with recent
studies documenting resistance to negative impacts among
key groups (Online Resource 5). Impacts on fish are likely
to be indirect given the relatively high tolerance of estuarine
species to changes in water chemistry (Booth et al. 2011), for
example, via a reduced ability of diadromous fish to detect and
respond to olfactory cues from estuaries, and widespread tro-
phic impacts associated with any disruption of calcification
and subsequent loss from the diet of potential prey items in-
cluding molluscs and diatoms (Gillanders et al. 2011).

Climate change will have both negative and positive effects
on the survival, abundance, distribution and community com-
position of estuarine flora and fauna across SWA. However, in
many cases, we do not know the environmental optima or
physiological tolerance ranges of the flora and fauna of this
region, and much work is needed to enable specific predic-
tions of their responses to climate change. The potentially
synergistic effects of interacting stressors represent a further
significant gap in our understanding of climate change im-
pacts (Brown et al. 2013a). For example, acidification may
narrow the thermal tolerances of marine invertebrates
(Whiteley and Mackenzie 2016), and elevated temperatures
can decrease the survival times of marine benthos during hyp-
oxic events by up to 74% (Vaquer-Sunyer and Duarte 2011).
In such cases, the costs of responding to one stressor may
compromise an organism’s ability to cope with an additional
stressor, increasing the allostatic load on the organism and
impacting its fitness (Schulte 2014).

Effects on phenology

Understanding of phenological responses to climate change
varies widely among both geographic regions and taxa (e.g.

Gallinat et al. 2015; Ovaskainen et al. 2013; Poloczanska et al.
2013). Relatively little is known regarding the phenology of
estuarine organisms (Testa et al. 2016), particularly in the
southern hemisphere (Beaumont et al. 2015). This represents
a significant research gap that must be addressed to enable
robust predictions of future climate change effects on the ecol-
ogy of SWA and other Mediterranean climate regions.
Nonetheless, some future changes to estuarine phenology
are likely, based on extrapolation of observed trends.

The seasonality of SWA rainfall has already shifted, with
autumn and winter becoming significantly drier, and the trend
of a southerly contraction in the SWA Mediterranean climate
region is forecast to continue (Klausmeyer and Shaw 2009).
Changes in temperatures and the timing of rainfall and river
flows are expected to stimulate phenological shifts among
estuarine flora and fauna. Typical ‘summer’ conditions, i.e.
low freshwater flows coincident with high temperatures, inso-
lation and evaporation (Hope et al. 2015a), will develop ear-
lier and be maintained longer into autumn. Earlier springs and
longer summers alter the timing of spawning, larval release
and the movements of marine organisms (Poloczanska et al.
2013), and similar responses are likely in estuaries. For exam-
ple, less frequent freshwater pulses may reduce the cues and
hence success of macrophyte germination (Kim et al. 2013;
Stafford-Bell et al. 2016). Extended periods of elevated salin-
ities will influence the seasonal succession of phytoplankton
(Online Resources 2 and 3) and the timing of reproduction and
recruitment among invertebrates and fishes (Online Resources
5 and 6).

Effects on abundance and distribution

Freshwater flows exert significant influence on the abundance
and distribution of estuarine biota via their effects on water
column stratification, residence time, nutrient concentrations
and turbidity, which in turn control estuarine productivity and
the availability of suitable environmental conditions and hab-
itats (Cloern et al. 2014). River flow is the dominant driver of
phytoplankton biomass in the PO Swan-Canning Estuary
(Chan and Hamilton 2001), and chlorophyll a increases in
the upper reaches of this system during dry winters
(Thompson et al. 2015). Continuing declines in freshwater
flows across SWA will increase water residence times and
nutrient retention in estuaries, whilst summer storms are pre-
dicted to increase allochthonous nutrient delivery (Fig. 1).
These changes will likely increase phytoplankton biomass,
with potential effects on secondary production via trophic
cascades.

Biotic responses to reduced freshwater flows will vary
markedly among estuaries of different types (i.e. PO, IO,
SO, NC), reflecting the effects of local flow regimes on estu-
arine connectivity, habitat availability and environmental con-
ditions, and how these in turn influence the distributions,
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reproduction and recruitment of various taxa (Online
Resources 2, 3, 4, 5 and 6). The loss or contraction of partic-
ular habitats due to climate change will alter the abundance
and distribution of fauna with strong affinities for those hab-
itats. For example, changes in the distribution and biomass of
seagrass and macrophytes will impact vegetation-associated
fishes (Online Resource 6). Declines in the abundances of
such fish species coincided with a marked decrease in
macroalgal growth in the Peel-Harvey Estuary following the
construction of an artificial opening designed to improve tidal
flushing of that highly eutrophic system (Young and Potter
2003a, b). More broadly, the abundance and distribution of
biota will be influenced by the degree to which prevailing
abiotic conditions align with their environmental tolerances.
Declining freshwater flows across SWA have already led to
increasingly saline conditions in SWA estuaries, causing the
distribution of freshwater fish species to contract upstream and
allowing more marine species to penetrate further into estuar-
ies and remain there for longer periods (Potter et al. 2016;
Valesini et al. 2017). Similarly, shifts in the distributions of
seagrass species have been observed in SWA estuaries as sa-
line waters penetrate further upstream (Online Resource 4).

At a regional scale, poleward range extensions will occur
among tropical and sub-tropical species of flora and fauna
(Booth et al. 2011; Hyndes et al. 2016) as warming marine
waters enable some species to overcome overwintering bot-
tlenecks (Figueira and Booth 2010) and move between estu-
ar ies . For example , the (sub) t ropical ather in ids
Craterocephalus mugiloides and Atherinomorus vaigiensis
colonised and became abundant in the Leschenault Estuary
between 1994 and 2008–2010 (Veale et al. 2014) and have
since further extended their distribution southward to the
Vasse-Wonnerup system (Online Resource 1). Similar range
extensions have been documented among tropical crab spe-
cies, with Mud crabs (Scylla serrata) and Coral crabs
(Charbydis ferriata) reaching the temperate Swan-Canning
Estuary following a period of elevated water temperatures in
2010/2011 (Caputi et al. 2014). Increasing temperatures will
thus lead to a progressive ‘tropicalisation’ of estuarine biota
(James et al. 2013), mirroring the process that is occurring in
the marine environment of WA (Cheung et al. 2012).

Effects on community structure

The aforementioned effects of climate change on biological
performance, abundance, distribution and phenology will
combine to modify the structure of floral and faunal commu-
nities in SWA estuaries. Changing abiotic conditions will act
as environmental filters when they exceed the tolerances of
organisms, playing a direct role in controlling community as-
sembly and disassembly (Kraft et al. 2015). More subtly,
changing environmental conditions will also influence the bi-
ological interactions among species, e.g. elevated water

temperatures may favour faster-growing macroalgae over
seagrasses, and increased stratification will enable dinoflagel-
lates to outcompete less motile phytoplankton taxa (Online
Resources 2, 3 and 4). For higher taxa, effects of climate
change stressors on biotic habitats such as macrophytes are
likely to be important, given that they not only provide phys-
ical structure but also affect ecosystem productivity and phys-
icochemical variables such as turbidity and oxygen concentra-
tions (Morgan et al. 2016), which in turn influence community
assembly.

Community-level responses to freshwater inputs will be
context dependent, differing among species and in relation
to the characteristics of each estuary and the timing and mag-
nitude of flows (Whitfield 2005; Dolbeth et al. 2010; Gillson
2011). Marinisation may increase the species richness and
taxonomic diversity of estuarine faunal communities, particu-
larly in PO systems, due to enhanced estuarine use by marine
taxa, whereas freshwater species will become less prevalent as
their distributions contract upstream (Online Resources 5 and
6). However, decreasing river flows will cause more periodi-
cally open SWA estuaries to remain closed for longer periods.
This will reduce the extent to which marine taxa can access
and use these systems (Gillanders et al. 2011), thereby altering
their community composition and reducing diversity (Online
Resources 5 and 6).

Extreme environmental conditions will have increasing im-
pacts on estuarine communities, the nature of which will re-
flect differences in environmental tolerances among species.
For example, protracted periods of bottom-water hypoxia
cause marked shifts in the composition of benthic macroin-
vertebrate communities in SWA estuaries. Responses include
decreases in species richness, diversity and the abundances of
more sensitive taxa such as small crustaceans, with the re-
maining assemblage comprising predominantly small-bodied
annelids (Tweedley et al. 2016a). Similarly, increasing hyper-
salinity will have negative effects on biological communities,
leading to e.g. reduced phytoplankton biodiversity, with a
likely increase in the proportion of cyanobacteria but vastly
fewer species across the other major taxonomic groups
(Online Resources 2 and 3). Extreme hypersalinity will cause
mass mortalities of flora and fauna (Hoeksema et al. 2006;
Kim et al. 2013) and the dramatic simplification of communi-
ty structure and composition (Veale et al. 2014; Dittmann et al.
2015).

Water column stratification and microalgal blooms exert
significant influence over environmental conditions—particu-
larly DO concentrations—and the ecology of faunal commu-
nities in many SWA estuaries. Ongoing declines in river flows
across SWAwill encourage increased stratification, lower DO,
longer water residence times and increased nutrient retention
in estuaries (Thompson et al. 2015; Tweedley et al. 2016b).
Such conditions will favour vertically migrating dinoflagel-
lates (Horner Rosser and Thompson 2001; Jephson et al.
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2011) and other bloom-forming phytoplankton (Online
Resource 2). Future effects of climate change on stratification
and algal blooms are difficult to predict and will be strongly
influenced by the timing and magnitude of river flows and the
geomorphology of each particular estuary-catchment system.
However, any increase in the prevalence or severity of hypox-
ia/anoxia, associated with greater stratification and/or
microalgal blooms, would significantly impact the behaviour
and biological performance of estuarine fauna. In the Swan-
Canning Estuary, for example, stratification-induced hypoxia
and algal blooms have dramatic effects on fish movements,
abundance and community composition, and reduce the eco-
logical health of the system (Hallett et al. 2016a).

Knowledge gaps and uncertainties

As detailed above and summarised in Fig. 3, climate change
will alter environmental stressors and thereby impact the flora
and fauna of permanently and periodically open estuaries in
SWA, at levels of biological organisation from molecules to
communities.

We acknowledge that ecological responses to climate
change will be more complicated than we can currently envis-
age, including unforeseen impacts of disease (Altizer et al.
2013) and the complex, indirect effects of altered phytoplank-
ton and macroalgal blooms (Hallett et al. 2016a; Hoffle et al.
2012). Indeed, this review highlights key gaps in our under-
standing of SWA estuaries and the likely impacts of climate
change on their biota. Most notably, our understanding of the
biology of many estuarine species, including their environ-
mental tolerances, is relatively poor. This is particularly true
for species that are commercially unimportant. Moreover, we
have limited understanding of the ecological interactions, in-
cluding competitive and trophic relationships, among estua-
rine biota. Together, these factors preclude more specific pre-
dictions of ecological responses to climate change and inhibit
our ability to implement directed adaptation measures (e.g.
Hobday and Pecl 2014; Pratchett et al. 2017; see BPossible
adaptation responses^ section). Another significant gap con-
cerns the potentially synergistic effects of interacting stressors
on estuarine ecology. For example, changes in stratification
and hypoxia may reduce the suitability of deeper habitats as
thermal refugia for fish, and increased hypoxia will enhance
ammonia release from sediments, exacerbating the physiolog-
ical stressors to which organisms are exposed (Middelburg
and Levin 2009).

However, it is important to note that the rivers and estuaries
of SWA, like those of other Mediterranean climate regions, are
characterised by highly variable flows to which their fauna are
adapted. Aquatic environments with high variability tend to be
dominated by generalist and/or r-selected species that can ex-
ploit a wide array of resources and tolerate changing environ-
mental conditions (Ficke et al. 2007; Steffen et al. 2009). The

evolutionary adaptation of the estuarine biota of SWA to var-
iable environmental conditions may confer a degree of resil-
ience to the impacts of climate change, although the rate and
magnitude of future change (and particularly the range of as-
sociated extreme conditions) may exceed the adaptive capac-
ity of species (Morrongiello et al. 2011).

The future of Mediterranean climate estuaries

TheMediterranean climate region of SWA is a climate change
hotspot that is predicted to become considerably drier and
warmer in coming decades. Effects of climate change on the
environments, habitats and biota of estuaries across SWA
(Fig. 3) provide insights into the future impacts of climate
change in other comparable regions. These impacts will have
significant repercussions for the human uses and benefits that
estuaries provide, and will require potentially complex and
costly adaptation responses if maintaining these environments
is a societal objective.

Global context

Several of the trends and impacts described for SWA are ev-
ident in other Mediterranean climate regions. Widespread in-
creases in SST and more frequent marine heatwaves are driv-
ing the tropicalisation of temperate marine ecosystems world-
wide as (sub)tropical species extend their ranges into higher
latitudes, the consequences of which can include ecological
regime shifts and significant fisheries impacts (Vergés et al.
2014; Wernberg et al. 2016). Similar climate-driven range
extensions have also been documented among the estuaries
of Mediterranean climate regions in South Africa (James et al.
2013; Potts et al. 2015; Whitfield et al. 2016) and Europe
(Nicolas et al. 2011; Baptista et al. 2015).

Combined warming and drying are driving the
marinisation of estuarine ecosystems across southern Europe
(Chaalali et al. 2013; Chevillot et al. 2016; Pasquaud et al.
2012; González-Ortegón et al. 2015). Moreover, Chevillot
et al. (2017) recently documented the earlier onset of ‘spring’
conditions in the Gironde Estuary, France, in response to
warming temperatures and altered river flows, highlighting
the potential ecological implications of the resulting pheno-
logical mismatch in abundances of key fish species and their
zooplankton prey. Increasing salinity regimes are also an in-
creasingly important driver of ecological changes among es-
tuaries of South Africa (James et al. 2013) and South Australia
(Zampatti et al. 2010). Californian estuaries such as San
Francisco Bay will experience similar trends to those in
SWA, i.e. increased water temperature, elevated salinity and
sea level, and decreased precipitation and river flows (Cloern
et al. 2011; Feyrer et al. 2015), leading to significant impacts
on their ecology (Brown et al. 2013b; Lehman et al. 2013).
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Fig. 3 Conceptual summary of predicted environmental and ecological
impacts of climate change on estuaries of south-western Australia.
(Images courtesy of the Integration and Application Network,
University of Maryland Center for Environmental Science [ian.umces.
edu/symbols/]). a Across estuaries in general, (1) declining rainfall ➔
(leads to) decreased freshwater flows ➔ (2) reduced riverine flushing of
estuaries ➔ (3) increased retention and internal nutrient cycling. (4)
Increased sea level and storm surge ➔ (5) enhanced marine influence
and increased salinities➔ (6) upstream contraction of freshwater species
distributions and (7) expanded marine species distributions. (8)
Increasing water temperatures ➔ (9) increased growth of ectotherms
and (10) growth of macroalgae is favoured over seagrasses. b In perma-
nently open estuaries, (1) decreased freshwater flows ➔ marinisation ➔
(7) greater penetration of marine species and (11) salinity-induced shifts

in community structure. Increasing water temperatures ➔ (12) range ex-
tensions of tropical species. Declining flows also cause (13) increased
stratification in middle-upper estuary ➔ (14) increased hypoxia ➔ (15)
shift in phytoplankton community composition, e.g. greater dominance
by dinoflagellates, (16) simplification of infaunal communities and (17)
emigration of mobile fish species to refuge areas. c In periodically open
estuaries, (1) decreased freshwater flows ➔ (18) protracted closure of
entrance by sand bars ➔ impedes (19) entry of marine species and (20)
migration of diadromous species. Increased temperatures, salinities and
(21) water residence time ➔ (22) loss of macrophytes and (23) altered
phytoplankton community composition. (24) More extreme water tem-
peratures and (25) hypersalinity ➔ (26) simplification of communities
and (27) mass mortalities
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Decreased precipitation and river flows are also prolonging
the closure of periodically open estuaries in several
Mediterranean climate regions, influencing their faunal rich-
ness and diversity (James et al. 2013; Pasquaud et al. 2015). In
many cases, the extended closure of these estuaries increases
their susceptibility to hypersalinity and/or hypoxia, potentially
resulting in the extirpation of fauna (Collins andMelack 2014;
Mikhailov and Isupova 2008; Wooldridge et al. 2016).
Droughts are becoming more frequent and/or severe in many
Mediterranean regions of the world (Diffenbaugh et al. 2015;
Vicente-Serrano et al. 2014), and the extreme environmental
conditions generated by these events are thus likely to play an
increasing role in shaping estuarine ecology in these systems
(e.g. Dittmann et al. 2015; Lehman et al. 2017). This is par-
ticularly true in regions such as California and South
Australia, where societal demands for water abstraction are
high.

Climate change and other anthropogenic pressures

Estuaries worldwide are subjected to anthropogenic pressures
including hydrological modification, habitat loss, chemical
pollution and nutrient enrichment, overfishing and introduced
species (Kennish 2002; Jennerjahn and Mitchell 2013). In
many cases, climate change impacts on estuaries will be ex-
acerbated by the synergistic effects of these anthropogenic
pressures. Intensifying urbanisation will accelerate the deliv-
ery of nutrients and pollution to estuaries during extreme
storm events (Beck and Birch 2012), and declining flows will
increase the residence times, stratification and susceptibility of
many estuaries to cultural eutrophication and harmful algal
blooms (Rabalais et al. 2010). Furthermore, widespread loss
of riparian vegetation will reduce shading, increasing the fre-
quency and severity of extreme water temperatures; height-
ened effects of hypoxia will be seen in anthropogenically de-
graded, sulfidic sediments (Vaquer-Sunyer and Duarte 2010),
and many pollutants will exhibit increased toxicity at higher
temperatures (Ficke et al. 2007).

Perhaps most critically for estuaries in Mediterranean cli-
mate regions, the ecological effects of declining freshwater
flows under a drying climate will be aggravated by increasing
water extraction for human use (Vörösmarty et al. 2000). In
South Australia, for example, upstream diversion of water in
the Murray-Darling Basin magnifies the effects of drought in
the Ramsar-listed estuary andwetlands of the Coorong, Lower
Lakes and Murray Mouth (Kingsford et al. 2011). Similarly,
the upstream consumption or diversion of 39% of unimpaired
runoff to the San Francisco Bay Estuary has significant eco-
logical impacts on biotic communities ranging from phyto-
plankton to fish (Cloern and Jassby 2012). The interaction
of these pressures will have profound repercussions: climate
change and human development will drive an increasingly
rapid pace of change in estuaries (Cloern et al. 2016), shifting

the baselines against which their health is measured and forc-
ing us to reconsider how we use and manage them into the
future (Duarte et al. 2013; Kopf et al. 2015).

Effects on ecosystem services and human populations

Ecosystem services, derived from the healthy functioning of
ecosystem structure and processes, provide a host of direct
and indirect societal benefits (Costanza et al. 1997; Barbier
et al. 2011; Turner et al. 2015) which are commonly
categorised as either provisioning (e.g. food), supporting
(e.g. primary production), regulating (e.g. waste burial) or
cultural (e.g. recreation) (Millennium Ecosystem Assessment
2005). Estuaries are widely recognised as among the most
vital ecosystems globally for providing such services and ben-
efits (Barbier et al. 2011; Wetz and Yoskowitz 2013).

The cumulative impacts of climate change on the ecosys-
tem structure and processes of Mediterranean and more par-
ticularly SWA estuaries described in preceding subsections
will naturally translate into differences in their ability to deliv-
er ecosystem services and subsequent human benefits.
However, as outlined below, such trends are likely to be com-
plex, non-linear and spatially and temporally dependent (Wetz
and Yoskowitz 2013; Pinto et al. 2014). For example, in the
upper, deeper reaches of these systems and/or those that be-
come closed to the sea, it may be expected that the various
negative impacts on water and sediment quality resulting from
reduced riverine flushing, increased stratification and warmer
temperatures (BEffects of climate change on environmental
conditions^ section) will compromise delivery of many eco-
system services. In contrast, the lower reaches of PO systems
will experience greater tidal flushing with rising sea levels,
which could in turn improve habitat quality, area and/or diver-
sity for marine species.

For obvious provisioning services such as targeted fish and
shellfish stocks, the above-described effects in upper and/or
periodically open Mediterranean estuaries have been well
documented with respect to major mortality events (e.g.
Hoeksema et al. 2006), chronic reductions in growth and pro-
ductivity (e.g. Cottingham et al. 2014) and loss of nursery
habitat (e.g. Hughes et al. 2015). Conversely, increased tidal
incursions have been linked to improved fisheries in the
lower-middle reaches of some estuaries, not only through
greater marinisation and ocean connectivity, but also through
accompanying increases in marine seagrass and mangrove
habitats and their associated trophic and nursery functions
(e.g. Boon et al. 2016). Changes in estuarine macrophyte hab-
itats, either via progressive shifts from fresh/brackish water to
marine species (e.g. Boon et al. 2016) or loss of biomass/
diversity in response to greater salinisation, tidal inundation
and sediment erosion expected with climate change (Craft
et al. 2009; Grenfell et al. 2016), will in turn signal shifts in
the ability of estuaries to deliver supporting ecosystem

1366 C. S. Hallett et al.



services such as primary production and nutrient cycling and
regulating services such as natural flood protection and waste
removal. The latter type of services also includes climate reg-
ulation (Heckbert et al. 2011), which occurs via processes
such as carbon sequestration/release and evapotranspiration
(Gattuso et al. 1998; Chen and Borges 2009; Heckbert et al.
2011; Duarte et al. 2013). Estuaries are typically sources of
carbon dioxide and other greenhouse gases given their exten-
sive biotic respiration and decomposition of organic matter,
and these emissions are likely to increase under projected
climate conditions such as warmer temperatures (enhancing
decomposition), more frequent storms (increasing pulses of
nutrients and organic matter) and increased hypoxia (influenc-
ing carbon dioxide flux at the air-water interface and biogeo-
chemical processes such as denitrification) (Gattuso et al.
1998; Chen and Borges 2009; Heckbert et al. 2011).
However, microtidal and highly stratified estuaries, common
in SWA and other Mediterranean regions, can be net carbon
sinks due to their long residence times and lack of mixing,
which promotes carbon sedimentation (Chen and Borges
2009; Koné et al. 2009).

Several of the above ecosystem shifts anticipated with cli-
mate change will have obvious impacts on societal percep-
tions and thus cultural services provided by these estuarine
environments, including recreation, aesthetic benefits and
spiritual connection (Pinto et al. 2014; Boon et al. 2016).
Many also have clear economic impacts via industry develop-
ment and sustainability, including food production (e.g. Pinto
et al. 2010; Hughes et al. 2015) and tourism (e.g. Pinto et al.
2010).

Much work is still required, however, to develop quantita-
tive impact pathways that connect stressor effects, including
both climate-related and other anthropogenic pressures, to es-
tuarine ecosystem service delivery (Mach et al. 2015). This
will be imperative for understanding how vital services might
be impacted under anticipated future scenarios and improving
adaptation responses to sustain the societal benefits they
generate.

Possible adaptation responses

Adaptation responses implemented by humans are designed to
decrease system vulnerability due to climate change (Adger
et al. 2005). A common model of vulnerability (Hobday et al.
2016; IPCC—Intergovernmental Panel on Climate Change
2014) is defined by three components: exposure, sensitivity
and adaptive capacity. Proactive or reactive adaptation actions
can decrease the exposure to climate effects, decrease the sen-
sitivity or increase the adaptive capacity of species (e.g.
Alderman and Hobday 2016; Foden et al. 2013; Williams
et al. 2008) but have received limited attention at a habitat
scale (see Thresher et al. 2015). We describe a broad spectrum
of options here for estuaries in Mediterranean climate regions,

building on Sheaves et al. (2016), and noting that in many
cases these options may not yet be technically, socially or
legally possible. We also discuss the possibility of negative
consequences from an intervention (maladaptation; Magnan
et al. 2016) on other parts of estuarine systems or to the cli-
mate system in general. The outcomes and relative expense of
proactive and reactive interventions could be investigated in
simulation models, even if technical or legal barriers exist.

Firstly, exposure of estuaries in Mediterranean climate re-
gions to reduced rainfall and increased salinity might be re-
duced by artificially increasing water flows, perhaps via cloud
seeding, inflows from dam storages, or supplementation from
artisanal bores. These adaptation options can be applied in a
proactive fashion (e.g. riparian enhancement to increase
shading and hence reduce water temperatures in upper
estuarine reaches; Ghermandi et al. 2009) or reactive (e.g. ar-
tificial oxygenation to alleviate stratification-induced hypoxia;
Hipsey et al. 2013). Options such as covering the surface of
estuaries to reduce evaporation with flocculants or covers, as
used at smaller scales on water storage dams on farms (Hassan
et al. 2015), might interfere with a range of species that depend
on estuaries, and represent a maladaptive response.

Developing adaptation options to decrease the sensitivity of
estuarine systems to climate change—whereby they experi-
ence the warmer, drier conditions but are less affected—is
more difficult. Options to remove introduced species, manage
bar openings, reduce nutrients and mitigate algal blooms to
lessen the stress on estuaries may reduce their sensitivity.
Channel deepening, which will allow more water mixing
and result in cooler water in deeper locations, may reduce
the impact of atmospheric heating on these estuaries. This
approach carries a risk of maladaptation, as deeper waters
may become deoxygenated. Reactive strategies to reduce the
sensitivity of estuarine systems following a climate-related
extreme are also possible. Real-time monitoring and reporting
to informmanagement of estuaries may offer benefits, such as
facilitating risk-based decision-making for artificial mouth
opening to prevent hypoxia (Twomey and Thompson 2001;
Human et al. 2016). Finally, other options to reduce sensitivity
may need to be implemented in the estuary catchment, such as
measures to reduce nutrient inputs from both diffuse (e.g.
agricultural) and point sources (e.g. septic tanks). For exam-
ple, back-up generators could prevent the dumping of sewage
into estuaries following storm-induced power failures at treat-
ment plants, as occurred in the Swan-Canning Estuary in
2010.

Increasing adaptive capacity, to allow estuaries in
Mediterranean climate regions to cope with increased temper-
atures and lower rainfall, is possible via protective measures
that enhance natural processes. For example, a proactive strat-
egy of maintaining natural water flows and decreasing water
removals represents a robust approach to reducing vulnerabil-
ity (Palmer et al. 2008). Similarly, ecosystem restoration is
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possible, and usually has few side effects, but must be imple-
mented at a suitably large scale to be effective. These ap-
proaches can be difficult to implement in highly modified
landscapes where there are competing demands for water, or
modifications to geomorphology have occurred.

Overall, the need for adaptation is increasingly critical giv-
en the continuing failure to effectively address the causes and
thusmitigate the effects of global warming. Loss of ecosystem
services will mean that proactive adaptation is likely to be
more cost-effective than reacting once impacts are established.
To implement some of these options, new or revised gover-
nance frameworks across sectors may be needed, the estab-
lishment of which represents an additional adaptation chal-
lenge (Hallett et al. 2016c).

Conclusions

The natural features of estuaries in Mediterranean climate re-
gions make these systems particularly vulnerable to long-term
drying and warming trends. These features include their gen-
erally shallow nature, relative lack of tidal influence, signifi-
cant seasonal and inter-annual hydrological variability and, in
many cases, their periodic closure by sand bars. As a result,
many such estuaries tend to be poorly flushed for much of the
year, encouraging the retention of organic material and nutri-
ents and the development of stratified conditions, algal
blooms and environmental hypoxia. The interacting pressures
of climate change and human development will profoundly
affect the environments and ecology of estuaries in
Mediterranean climate regions worldwide and the societies
and ecosystem services that they support. The key challenge
is determining how best to manage and adapt our use of these
systems to make them less sensitive and more resilient to the
effects of future pressures, including climatic extremes.
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