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Abstract The Tibetan Plateau (TP), the BThird Pole^ of the
world, has experienced significant warming over the past sev-
eral decades. Several studies have investigated the temperature
change in this region, but data scarcity and the uneven distri-
bution of meteorological stations have resulted in uncertainty
concerning the warming trend. Here, we calculated a new av-
erage temperature indicator (area-weighted average tempera-
ture, Tawa) to quantify the warming of the TP during the period
1961–2015 and compared it with the traditionally used arith-
metic average temperature (Taa). The result shows that Tawa is

less sensitive to the irregular distribution and number of stations
than Taa, indicating that it can produce more reliable informa-
tion on temperature change. Based on annual mean Tawa, the TP
showed awarming rate of 0.35 °C/decade in the recent 55 years,
which is higher than the corresponding rate calculated using Taa
(0.30 °C/decade). Seasonal warming rates of Tawa over the TP
were also analyzed. Winter had the highest warming rate
(0.44 °C/decade), followed by autumn, spring, and summer
(0.38, 0.30, and 0.30 °C/decade, respectively). For comparison,
the seasonal warming rates of Taa gave different trends (0.43, 0.
30, 0.25, and 0.25 °C/decade for winter, autumn, summer, and
spring, respectively). The use of Tawa indicated stronger
warming trends in the spring, summer, and fall seasons (but
not in winter), which is important for the impact of the climate
warming on vegetation growth in this region. Both Tawa and Taa
showed more prominent warming at higher elevations during
1961–2015, indicating an elevation dependence of the
warming trend over the TP. Since 2001, the warming rates
calculated with Tawa were lower than those for the previous four
decades across all elevation zones, suggesting a continuing but
decelerating warming tendency since the turn of the twenty-
first century. This tendencywas not shown in calculations using
Taa, which suggested faster warming since 2001. The Tawa,
which is less sensitive to the number and spatial distribution
of meteorological stations, provides an improved understand-
ing of temperature changes on the TP.
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Introduction

As the highest and most extensive plateau in the world, the
Tibetan Plateau (TP) is considered as the BThird Pole^ (Qiu
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2008). It exerts a profound influence on the regional and glob-
al climate through thermal and dynamic forcing mechanisms
(Duan and Wu 2005; Yanai et al. 1992) and is one of the
Earth’s most sensitive areas for climate change (Feng et al.
1998; Liu et al. 2009). In recent decades, the TP experienced
significant warming, with a variety of consequences including
permafrost degradation, glacier shrinkage, and vegetation
phenology change (Wu et al. 2013; Yao et al. 2012; Zhang
et al. 2013). To improve our understanding and better evaluate
the effect of climate warming on the ecosystem health of the
plateau, it is important to quantify the rate and magnitude of
warming (Tao et al. 2014).

Many studies have been carried out to quantify the temper-
ature change in this region. Temperature data reconstructed
from tree rings have been employed to study long-term cli-
mate trends, especially in pre-instrument period. Some such
studies have reported no obvious warming in the recent one or
two centuries (He et al. 2014; Yang et al. 2010; Xing et al.
2014), while other studies have reported significant warming
trends (Chen et al. 2012; Duan et al. 2017; Duan and Zhang
2014; Shi et al. 2015; Zhu et al. 2008). Despite the resulting
uncertainty concerning the long-term warming trend, most of
these studies showed apparent warming in recent decades. In
the 1950s, a lot of meteorological stations were put into oper-
ation over the plateau, providing more detailed information
for climate change studies. Based on these data, studies have
documented warming rates of annual mean temperature since
the middle of the twentieth century varying from 0.16 to
0.50 °C/decade (Cai et al. 2017; Duan et al. 2015; Guo and
Wang 2012; Kang et al. 2010; Lu and Liu 2010; Rangwala
et al. 2009; Song et al. 2014; Wang et al. 2008; You et al.
2015). Recently, it has been suggested that the global warming
featured a stagnation from 1999 to 2008 (Knight et al. 2009).
Whether this warming Bhiatus^ existed over the TP has thus
attracted attention, but meteorological elevations demonstrate
that, in fact, the TP exhibited a persistent and strengthening
warming since the late 1990s (Duan and Xiao 2015; Yan and
Liu 2014), indicating no warming hiatus in this region.
Warming trends may be elevation dependent, and most studies
show that high elevations over the TP have been exhibitingmore
rapid warming in recent decades (Liu and Chen 2000; Liu et al.
2009; Pepin et al. 2015; Tao et al. 2014; Yan and Liu 2014),
though not all studies demonstrate such elevation dependence
(You et al. 2008, 2010b). Variation in the specific warming trend
reported by each study can be attributed to differences in the
period andmeteorological datasets used. Meteorological stations
are sparsely and unevenly distributed over the TP and cover a
wide range of elevations, so different combinations of meteoro-
logical stations are likely to have experienced different tempera-
ture trends. The influence of station selection results in inconsis-
tent findings concerning climate change on the TP.

To reduce the influence of selections of meteorological sta-
tions and achieve a more robust assessment of the warming

trend, a new temperature index, the area-weighted average tem-
perature (Tawa), which considers the extent of the area repre-
sented by each meteorological station, was introduced in this
paper. The traditional simple arithmetic average temperature
(Taa), which is widely used in temperature change studies,
was also employed to compare with Tawa. Based on the tem-
perature data from meteorological stations, Tawa and Taa were
calculated to quantify the warming trend and its dependence on
elevation over the TP during the period 1961–2015. The
warming trends before and after 2001 were also compared to
shed further light on the question of a Bwarming hiatus^ on this
plateau since the turn of the twenty-first century.

Temperature data

Daily mean surface air temperature data were provided by the
China Meteorological Administration, which have been ho-
mogenized to reduce non-climatic errors (Li et al. 2009).
While this dataset contains some observations from the
1950s, most meteorological stations over the TP were not
consistently operational until the 1960s so the time period
from 1961 to 2015 was selected for this study to avoid exces-
sive data scarcity. The daily temperature data from this period
still contained somemissing values, which required additional
pre-processing to produce consistent and robust data on mean
monthly and annual temperature. For this processing, stations
with more than seven missing values in any given month were
removed completely from the dataset, leaving 81 stations with
near-complete daily data during the entire period (dark blue
dots in Fig. 1). Among these 81 stations, 8 stations are located
below 2000 m, 73 stations are above 2000 m, 43 stations are
above 3000 m, and 12 stations are above 4000 m. Figure 1
shows that the spatial distribution of these stations is very
uneven, with most stations located in the more populated east-
ern part of the TP and very few stations located in the western
TP. Monthly mean surface air temperature was calculated for
the 81 stations for the 1961–2015 period, and annual means
were then calculated as the mean of these monthly means. In
addition to these 81 stations, other stations with complete data
for shorter periods also exist (additional dots in Fig. 1). As
meteorological stations have been established on the TP, the
total number of stations with near-daily data coverage has
increased through time. To investigate the influence of the
spatial distribution and the number of stations on the calculat-
ed average temperature over the TP, the complete set of sta-
tions with near-daily data for the periods of 1966–2015,
1971–2015, 1976–2015, and 1981–2015 was employed re-
spectively, and their data were processed as outlined above.

Characterized by a large area (~2.5 million km2) and com-
plex terrain with altitudes ranging from ~1500 to more than
8000 m, the TP exhibits high spatial temperature variability.
The average value and trend of annual mean temperature for
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each meteorological station during 1961–2015 are presented
in Fig. 2. It can be seen that both the average temperatures and
the warming trends of stations exhibit spatial patterns, indicat-
ing broad regional variability. The average annual temperature
generally decreases from the southeast to the northwest.
Stations located in the southeast have average temperatures
generally 6 °C or higher, while stations in the middle and
northwest have relatively lower temperatures (<3 °C). The
warming trend on the TP was also not uniform but showed
an overall spatial tendency of increasing warming from the
southeast to the northwest. The slowest warming occurred in
the southeastern TP, at generally below 0.2 °C/decade. The
central and western stations on the TP have experienced faster
warming that ranges from 0.2 to 0.5 °C/decade, and three
stations have warming rates greater than 0.5 °C/decade. In
addition, though the temperature and warming trends show
general southeast-to-northwest tendencies, several stations
do not follow these broad trends.

However, there are relatively few meteorological stations
scattered over this large area. To examine the areal represen-
tativeness of these meteorological stations, Thiessen polygons
were generated to reflect the contributing area of each station
(Fig. 3). The temperature and warming rate within each poly-
gon were then assumed to be equal to those of the station in it.
From Fig. 3, it can be seen that different meteorological sta-
tions have very different contributing areas. To describe the
distribution of contributing areas and its relation to the tem-
peratures measured at each station, the contributing area, 55-
year average temperature and warming rate for each meteoro-
logical station were calculated and compared (Fig. 4). It is
clear that the stations with large contributing areas generally
show lower average temperatures and higher warming rates.
As the density of meteorological stations is lowest in remote
high-altitude regions, the spatial representativeness analysis
showed that the stations representing large areas had relatively
low temperatures and high warming rates. As a result, simple
arithmetic averaging of the temperature measurements of

these stations to represent the overall temperature characters
of the TP will lead to underestimation of the warming trend.

Method

Traditionally, the arithmetic average temperature (Taa) was
used to depict the temperature variations. Considering the un-
even distributions of meteorological stations on the TP, calcu-
lating climatological statistics for the area using arithmetic
averaging will bias the results toward areas with a high density
of stations, i.e., the extreme eastern part of the TP. This area,
with its lower altitudes and northeasterly position, is not rep-
resentative of the TP as a whole. Simply averaging the tem-
perature of these stations may lead to a biased representation
of the overall temperature and warming trend over TP, while
area-weighted rather than arithmetic averaging will produce
statistics that are more representative for the TP as a whole.

Based on this consideration, the area-weighted average
temperature (Tawa) was calculated to quantify the warming
of the TP during the period 1961–2015 and also compare with
the traditionally used Taa. Tawa was calculated with a Thiessen-
based approach (Trombulak and Wolfson 2004). First, the
Thiessen polygon network was generated based on the loca-
tions of the meteorological stations and the boundary of the
TP. The area of each Thiessen polygon was calculated, and
Tawa was then calculated as a weighted average, using the area
of each polygon to weight the area represented by each mete-
orological station, using Eq. 1

T awa ¼
∑
N

i¼1
Ti⋅ai

∑
N

i¼1
ai

ð1Þ

where Tawa is the area-weighted average temperature, Ti is the
temperature of a particular meteorological station i, N is the

Fig. 1 Spatial distributions of the
meteorological stations on the TP.
The stations that are valid during
five different periods (1961–
2015, 1966–2015, 1971–2015,
1976–2015, and 1981–2015) are
represented by circles in different
blue colors. The background
color ramp from green to brown
and lavender shows the elevation
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number of stations over the TP, and ai is the area of Thiessen
polygon of station i.

The annual and seasonal warming trends were then esti-
mated using simple linear regression

T ¼ a� yr þ b ð2Þ

where T refers to the temperature or temperature anomaly, yr is
the time (in years), a is the slope which represents the rate of

Fig. 2 Spatial heterogeneity of
temperature over the TP during
1961–2015. a The multi-year
average temperature of
meteorological stations. b The
warming rates of meteorological
stations, calculated from annual
mean temperature with least
squares fitting

Fig. 3 The areas represented by
meteorological stations over the
TP. The Thiessen polygons
represent the contributing areas
for meteorological stations, which
were generated based on the
locations of stations. Color
indicates the size of the
contributing area, from light blue
to dark blue
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temperature change, and b is the intercept. The statistical sig-
nificance of the trend was evaluated with Student’s t test.

Results

To assess the influence of using Taa and Tawa, respectively,
over the TP, five different periods (1961–2015, 1966–2015,
1971–2015, 1976–2015, and 1981–2015) were considered
because they had a different number of stations for which data
are available (Fig. 1). At the beginning of the 1960s, most
meteorological stations were installed in the eastern and cen-
tral parts of the TP, especially in the northeastern TP. In the
following two decades, new stations were installed mainly in
the southern and southeastern parts. Therefore, the numbers
and spatial distributions of stations varied in different periods,
which provide a good case to assess the sensitivity of Taa and
Tawa to meteorological stations. For each period, the available
meteorological data were used to calculate the two indicators
of average temperature. Figure 5 shows comparisons between
the temporal variations of Taa and Tawa over the TP for these
five periods. For Taa, the temperature change is remarkably
inconsistent due to the different numbers and spatial distribu-
tions of stations used in the calculations for each period.

However, this inconsistency is greatly reduced by using Tawa
instead, indicating that Tawa is less sensitive to the number and
spatial distribution of meteorological stations. In addition,
Tawa produces an average annual temperature for the TP that
is nearly 2 °C lower than Taa, as the underrepresentation of
areas at high altitude in the dataset is compensated by the area-
weighted averaging.

The temperature anomaly of the TP during 1961–2015 was
calculated based on Tawa and compared with that based on Taa
(Fig. 6). The trends of Taa and Tawa anomalies show similar
tendencies: The overall temperature of the TP increased from
1960 to the mid-1970s, followed by a relatively stable period
until the mid-1980s, after which the temperature increased
again. Despite the similarity in the general trend produced by
these two calculations of the temperature anomaly, there are
also noticeable differences. Generally, the Tawa anomaly was
lower than the Taa anomaly during the 1960s and the 1970s and
higher in the 2000s. This results in a relatively stronger
warming trend depicted by the Tawa anomaly compared to the
traditionally used Taa anomaly. For the whole period (1961–
2015), the Tawa warming rate was 0.35 °C/decade while the
Taa warming rate was 0.30 °C/decade (both p < 0.01).

The seasonal temperature change on the TP, which has a
substantial influence on vegetation phenology, was also

Fig. 4 Temperature
characteristics vs. contributing
area for meteorological stations in
the TP. a The comparison
between the multi-year average
temperature and the contributing
area of meteorological stations. b
The comparison between the
warming trend and the
contributing area of
meteorological stations. The
orange bars indicate the multi-
year average temperature of
stations during 1961–2015, the
red bars indicate the warming
trend of stations during 1961–
2015, and the blue bars show the
contributing area of the
corresponding stations
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examined. The warming trends for each of the four seasons, as
calculated using the Taa and Tawa anomalies, are compared in
Fig. 7. Warming occurred in all seasons but varied notably
between seasons. According to the warming rates calculated
by the Taa anomaly, winter exhibited the highest warming rate
of 0.43 °C/decade, followed by autumn (0.30 °C/decade),
summer (0.25 °C/decade), and spring (0.22 °C/decade, all
trends p < 0.01). The winter warming rate was thus much
greater than the other three seasons, almost double those of
spring and summer, which is consistent with previous studies
(Wang et al. 2014; You et al. 2010a). However, the warming
rates calculated by the Tawa anomaly showed different tenden-
cies. Winter still had the greatest warming rate (0.44 °C/de-
cade), followed by autumn (0.38 °C/decade) and spring and

summer (0.30 °C/decade for both, all trends p < 0.01), show-
ing reduced season-to-season differences. Calculations using
Tawa thus suggest greater temperature increases than previous-
ly indicated by Taa calculations for spring (36%), summer
(20%), and fall (26%). Considering that the alpine vegetation
growth on the TP is highly sensitive to spring and summer
temperatures (Liang et al. 2016), this finding may improve our
understanding of the response of vegetation to climate change
on the TP.

The elevation dependency of warming over the TP was
also assessed using Taa and Tawa. Figure 8 depicts the warming
trends calculated with Taa and Tawa for 500-m elevation ranges
from 1961 to 2015. In general, both Taa and Tawa showedmore
prominent warming at higher elevations than at lower eleva-
tions. This confirmed the results of other studies based on Taa
(Liu et al. 2009; Tao et al. 2014; Yan and Liu 2014), which
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Fig. 5 Influence of selection of meteorological stations on the annual
average temperatures calculated using Taa and Tawa. Annual average
temperatures of the TP based on the different numbers and spatial
distributions of meteorological stations. For five different periods
(1961–2015, 1966–2015, 1971–2015, 1976–2015, and 1981–2015),
data are available from the different numbers of meteorological stations.
For each period, the annual Taa (a) and Tawa (b) were calculated and
compared to assess the relative sensitivity of the two temperature
indicators to the number and distribution of stations used for their
calculation. Note the difference in the absolute values of the calculated
average temperatures
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Fig. 7 Seasonal warming rates based on Taa (blue bars) and Tawa (red
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also suggested the elevation dependency of warming over the
TP since the 1960s. Moreover, Tawa showed more distinct
elevation dependency than Taa, accompanied with remarkable
fluctuation.

To explore the warming hiatus and its dependence on ele-
vation over the TP, warming rates calculated with Taa and Tawa
above 2000, 3000, and 4000 m during the period of 1961–
2000 and 2001–2015 were calculated and compared (Fig. 9).
The Taa warming rates in all three elevation zones since 2001
(0.26, 0.29, and 0.30 °C/decade, respectively) were higher
than those before 2000 (0.22, 0.22, and 0.24 °C/decade, re-
spectively), which is consistent with Yan and Liu (2014).
However, the Tawa warming rates in these three elevation
zones since 2001 (0.20, 0.21, and 0.17 °C/decade, respective-
ly) were lower than those before 2000 (0.29, 0.29, and
0.32 °C/decade, respectively), suggesting that the TP exhibit-
ed continued but relatively slower warming since 2001, com-
pared to the previous period. Moreover, the high-elevation
areas did not experience faster warming than low-elevation
areas in the period of 2001–2015, which is different from
the previous period (1961–2000). The different trends de-
scribed by Taa and Tawa are caused by the presence of a few
remote stations at high elevations, which have experienced
slower warming rates since 2001. This includes stations no.
55228 and no. 55472, which have the two largest contributing
areas on the TP, as shown in Fig. 3. These remote stations are
heavily weighted in the Tawa calculation, resulting in lower
Tawa values during 2001–2015 and also at higher elevations
during this period. It should also be noted that all warming
trends during the period of 1961–2000 were significant at the
p < 0.01 level, but all except one of those during the period of
2001–2015 showed no significant effect (p > 0.1) due to the
relatively short period since 2001. Temporally changing
warming rates and their variability across elevation remain
an issue to be further explored. In recent years, an increasing
amount of satellite data with good spatial and temporal

resolution has become available to observe temperature in
areas not covered by meteorological stations. This constitutes
a new data source that can be helpful in the analyses of
twenty-first century warming trends on the TP.

Conclusions

In this paper, the warming trend on the TP during 1961–2015
was examined. Considering the sparsely and unevenly distrib-
uted meteorological stations on the TP, a new area-weighted
average temperature, Tawa, indicator was compared with the
traditionally used arithmetic average temperature, Taa. Tawa
was less sensitive to the irregular distribution and varying num-
bers of stations than Taa, suggesting its use may provide more
robust information on temperature changes across the TP.

According to calculations based on Tawa, the TP experi-
enced an annual warming rate of 0.35 °C/decade in the recent
55 years, which was higher than that indicated by calculations
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based on Taa (0.30 °C/decade). Tawa also indicated much
higher warming rates in spring, summer, and fall, suggesting
that the vegetation on the TP experienced more rapid warming
during the growing season than indicated by previous studies.
Elevation-dependent warming over the TP was demonstrated
by both Taa and Tawa in the period of 1961–2015, and Tawa
indicated more distinct elevation dependency. As for the
warming trend before and after 2001, Taa and Tawa gave dif-
ferent patterns. Tawa indicated a persistent but slowing
warming trend since the turn of the twenty-first century with-
out an obvious elevation dependency, while Taa showed a
faster warming and stronger elevation dependency in the same
period. The warming trend on the TP may be inaccurately
estimated by using a simple arithmetic average, as has been
done in previous studies. The use of area-weighted averaging
rather than arithmetic averaging of temperature measurements
provides an improved understanding of long-term temperature
changes on the TP. This is likely to also be the case for other
regions that have sparsely and unevenly distributed meteoro-
logical stations in an area with high spatial climate variability.
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