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Abstract This paper summarizes effects of forage-legume

intercropping on grain and fodder yield, land equivalent

ratio, residual soil fertility, disease and insect pest reduc-

tion in mixed crop-livestock systems in Africa. In partic-

ular, it discusses the potential benefit of forage-legume

intercropping in improving productivity, resource use

efficiency and resilience of the system under climate

change. Research undertaken in Africa demonstrates that

intercropping forage legumes with cereals improves land

intensification due to improvement in overall yield and soil

fertility, and reduced risk of crop failure owing to rainfall

variability, diseases, weeds and pests. Forage from inter-

cropped legumes improves the intake of dietary nitrogen,

digestibility of poor-quality feed, animal performance and

efficiency of roughage feed utilization by ruminants. The

improvement in digestibility alone leads to 15–30%

reduction in methane emission per unit of animal product.

Additional role that legumes may play includes lowering

erosion (20–30%), reducing nitrogen leaching and carbon

losses, and promoting carbon sequestration. Nitrogen fixed

by legumes was on average 45 kg N/ha, and this ranges

between 4 and 217 kg N/ha for herbaceous legumes and 8

and 643 kg N/ha for fodder tree species. Despite the many

benefits of forage-legume intercropping, the current adop-

tion rate in sub-Saharan Africa is very low. Future research

aimed at selection of compatible varieties, appropriate

plant geometry and temporal arrangement of the various

intercrops under different locations and management sce-

narios, and minimizing the confounding effects of water,

soil, light, microclimate and seeds could enhance adoption

of the technology in Africa.

Keywords Adaptation � Africa � Climate change � Forage
legume � Intercropping � Mixed farming

Introduction

Agriculture forms the backbone of the economic growth of

sub-Saharan African (SSA) countries, accounting for 40%

of gross domestic product (GDP) and employing more than

half the labour force (Barrios et al. 2008). In a large frac-

tion of SSA, where most livelihoods depend on rain-fed

smallholder agriculture, agricultural production is sensitive

to climate change (Barrios et al. 2008; FAO 2016). A

general decline in rainfall pattern has been reported in

Africa since the first half of the nineteenth century (Ni-

cholson 1994; 2001). Rising temperatures, associated with

this decline in rainfall, have a direct negative effect on

vegetation cover, which in turn contributes to soil
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degradation because of the exposure of the soil surface to

wind and water erosion. Consequently, Southern Africa is

predicted to loose about 14% of cultivable land and about

20% of its pasture production potential by 2080 because of

climate change (Shah et al. 2008). It is apparent that an

increase in atmospheric carbon dioxide (CO2) might lead to

dichotomous effects, namely stimulating plant growth (Luo

et al. 2004) and contributing to the greenhouse gas effect.

According to Luo et al. (2004) plant growth demands more

nitrogen, water and other essential nutrients, leading to

progressive nitrogen limitation (PNL) in the soil, subse-

quently destabilizing the C/N ratio of organic matter in the

soil (Soussan and Lemaire 2014), which in turn suggests

that the nitrogen cycle has the ability to regulate climate

change through its influence on carbon sequestration

(Liang et al. 2016).

In SSA, smallholder mixed crop-livestock systems are

more important than any other system in terms of their

contribution to total agricultural output (FAO 2010;

Soussan and Lemaire 2014). Mixed crop-livestock farming

systems are held responsible for large greenhouse gas

emissions. However, they could play a significant role in

the mitigation of these emissions (Thornton and Herrero

2014). One of the potential mitigation measures that could

be adopted in crop-livestock systems is the introduction of

forage legumes in areas under grass production as grass-

legume mixtures. This is likely to reduce direct and indirect

greenhouse gas emissions (Soussan and Lemaire 2014),

thereby mitigating and facilitating adaptation to climate

change (Luscher et al. 2014) by replacing inorganic

nitrogen-fertilizer inputs with symbiotic nitrogen fixation.

Thus, legumes may occupy a niche in such systems as

intercrops (Sumberg 2002; Sprent et al. 2010), because

they have the ability to symbiotically fix nitrogen in the

soil (Zahran 1999). This would preclude the occurrence of

PNL due to the increase of nitrogen input into ecosystem as

a result of symbiotic nitrogen fixation into soil. Hence, this

review analyses the potential role of forage-legume inter-

cropping in the mixed crop-livestock system and discusses

the potential of these technologies to adapt to and mitigate

climate-change impacts in the mixed crop-livestock sys-

tems in SSA.

Climate change and agriculture in Africa

Agricultural productivity in SSA is expected to decrease

between 15 and 35% in future as a result of climate change

(Cline 2007; Fischlin et al. 2007), which would affect crop

and livestock production, hydrologic balances, input sup-

plies and other components of the agricultural systems. The

impact is expected to be aggravated by rapid human pop-

ulation growth in the region. Although many non-climate

factors affect agriculture, climate change overlays and

interacts with other factors to worsen conditions (Fischlin

et al. 2007). Rain-fed agriculture is sensitive to climate

variability and change, because of its direct dependence on

the amount and distribution of rainfall. The vulnerability of

the system varies from region to region, and countries in

SSA region have limited capacity to adapt to and mitigate

the impacts of climate change. This problem is aggravated

by lack of awareness of climate-change adaptation and of

mitigation measures by rural communities (Lobell et al.

2008).

Impacts of climate change on livestock production

Livestock production supports the livelihoods of more than

600 million poor smallholder farmers in the developing

world and is an important source of food (meat and dairy

products), animal products (leather) and income in the

event of crop failure (Seo and Mendelsohn 2007). Climate

change is expected to have several impacts on feed crops,

grazing systems, animal physiology and health (Thornton

et al. 2009), thereby negatively affecting livestock pro-

duction in SSA (Serdeczny et al. 2016). The impact on

crops and forages includes changes in herbage growth and

quality, the species composition of pastures, concentrations

of water-soluble carbohydrates and nitrogen (N) and N

leaching in certain systems because of high rainfall events

(Ngongoni et al. 2007). Higher temperatures (in the

prevalence of moisture) may increase the rate of develop-

ment of pathogens and parasites that spend some of their

lifecycle outside their host animal (Harvell et al. 2002). In

addition, heat stress may decrease cow fertility, fitness and

longevity (King et al. 2006), while livestock death asso-

ciated with recurrent drought is a common phenomenon in

the arid and semi-arid rangelands of East Africa (Oba

2001). However, the vulnerability of livestock to climate

change varies according to species, genetic potential, life

stage and nutritional status of the animals (Thornton et al.

2009).

The role of forage-legume intercropping
in adapting to climate change under different
agro-ecological zones in Africa

In Africa forage legumes are commonly intercropped with

cereals such as maize (Hassen et al. 2006; Carlson 2008;

Birteeb et al. 2011; Kabirizi et al. 2012), sorghum (Mo-

hammed et al. 2008; Lithourgidis et al. 2011), millet

(Mohammed et al. 2008) and wheat (Astatke et al. 1995),

as well as root crops (cassava) (Mba and Ezumah 1985).

The forage-legume species that have been successfully
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intercropped in each of the major agro-ecological zones of

Africa (Fig. 1) are discussed below.

Arid to moist semi-arid zones

The net effects of intercropping on grain yield, forage

biomass yield of the companion crops and the land

equivalent ratio (LER) of the intercropping system for

major African climatic zones are summarized in Table 1. It

was apparent that intercropping maize with legumes (Vig-

nia ungulata, Lablab purpurius, Stylosanthes guianensis

and Macroptilium atropurpurium) improved grain and

forage yield of maize compared with maize alone planted

in sandy loam to loamy sand soils in areas receiving at least

600 mm of mean annual rainfall (Alhaji 2008; Birteeb

et al. 2011). The LER in these areas was also more than

unity. In contrast, in areas receiving less than 500 mm of

mean annual rainfall, maize yield under intercropping was

less than when maize was planted alone, though the LER

was more than unity (Vesterager et al. 2008), probably

because of competition for resources, especially water.

Sorghum–cowpea intercropping studies in the semi-arid

regions of Burkina Faso reduced run-off losses of soil by

20–30% compared with sorghum monoculture and by

45–55% compared with cowpea monoculture (Zougmore

et al. 2000). This area received mean annual rainfall of

800 mm during the study period and is characterized by

high rainfall intensity and therefore high run-off losses

(about 40% of the annual rainfall), reducing the effective

rainfall. The soil in this study site was reported to be low in

N, and no fertilizer application was reported for the study

period. Reports from this study showed that the yields of

both sorghum and cowpea doubled under intercropping

compared with monoculture. In contrast, studies conducted

by Oseni (2010) reported lower sorghum yield under sor-

ghum–cowpea intercropping compared with sorghum

monoculture in a higher rainfall (970 mm) environment.

The observed higher yield for sorghum monoculture was

attributed to the inorganic fertilizer that was applied at

planting.

Sub-humid to humid zones

The forage legumes commonly used for intercropping with

food crops in sub-humid to humid zones are shown in

Table 2. Except for maize–lablab and cassava–cowpea

Fig. 1 Major climate zones of

Africa based on the length of the

growing period (Source:

adapted from FAO/IIASA 2000)
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intercropping systems, grain yield was not affected nega-

tively by intercropping. The reduction in grain yield of

maize and tuber yield of cassava when planted with lablab

and cowpea in humid regions was attributed to the fast and

vigorous growth of legumes (Mba and Ezumah 1985;

Hassen et al. 2006). The higher LER of cassava–cowpea

intercrops suggests there may still be an economic advan-

tage of this combination, despite the reduction in tuber

yields.

Maize grain yield was higher when intercropped with

Vicia dasycarpa, but in other combinations, yields were not

suppressed, especially where delayed planting of the

legumes was practised (Hassen et al. 2006).

Tropical to warm-temperate zones

The crops used mainly for intercropping in warm-temper-

ate and tropical zones are indicated in Table 3. Except for

maize-velvet bean and wheat-alfalfa intercropping combi-

nations, grain yield was higher or similar in these

combinations compared with sole crop. The forage bio-

mass, however, was higher in the intercropping systems

than in sole crops for all combinations.

Does forage-legume intercropping have
the potential to adapt to climate-change impacts
in the mixed crop-livestock farming system
in Africa?

Forage-legume intercropping could play a significant role in

adaptation to climate change by reducing soil degradation

(chemical and physical), improving soil fertility through

nitrogen fixation, reducing the prevalence of weeds, pests

and disease and improving yield, feed quality and animal

performance. In addition, it would provide a co-benefit in

terms of reduction of greenhouse gas emissions. Details of

the roles of forage-legume intercropping in mitigating and

adapting to climate change in the mixed crop-livestock

farming system in Africa are presented below.

Table 1 Grain yield, forage biomass yield and land equivalent ratio of legumes intercropping in arid to moist semi-arid agro-ecological zones of

Africa

Intercrops Grain

yield

Forage

biomass yield

LER AEZ Reported benefits References

Maize-cowpea ? ?? 1.40–2.29 Arid

(savannah)

Economic advantage is high Alhaji (2008)

Maize–lablab ? ?? 1.12 Arid

(savannah)

77.6% ground cover Birteeb et al. (2011)

Maize-Stylo ? ?? 1.4 Arid

(savannah)

38% ground cover Birteeb et al. (2011)

Maize-Siratro ? ?? 1.11 Arid

(savannah)

42.9% ground cover Birteeb et al. (2011)

Maize-cowpea - ?? 1.44–1.63 Moist semi-

arid

Weed reduced by 46.2%; Striga

infestation reduced

Katsaruware and

Manyanhaire (2009)

Maize-cowpea ? ?? na Sub-arid 35% additional monitory value Carlson (2008)

Maize–lablab ?? ?? 1.11 Semi-arid CP of stover improved by 7.6% Kabirizi et al. (2012)

Sorghum–

cowpea

? ?? na Semi-arid Reduced run-off by 20–30% Lithourgidis et al. (2011)

Sorghum–

cowpea

- ? 1.08 Semi-arid Monetary index advantage Oseni (2010)

Sorghum–

cowpea

??? ??? 1.88 Arid Grain and fodder yield increased Mohammed et al. (2008)

Sorghum–

cowpea

??? ?? na Semi-arid 9.4% yield advantage Samuel and Mesfin (2003)

Millet-cowpea ? ?? 1.92 Arid Drought resistant Hulet and Gosseye (1986)

Maize-cowpea ? ?? 1.35 Semi-arid 18% yield advantage Vesterager et al. (2008)

Sorghum–

cowpea

- ??? 1.63 Savannah Grain yield increased Zougmore et al. (2000)

LER land equivalent ratio, AEZ agro-ecological zone, na not available, RF rainfall, CP crude protein

Grain and forage biomass yield: - (minus) means yield reduced; LER\1 ? means yield reduced, but LER above unity ([1); ?? means yield

is not affected, with LER above unity (1); ??? means yield improved with LER above 1.5; Stylo-Stylosanthes guianensis, Siratro-Macrop-

tilium atropurpurium
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Reduction of soil degradation through land cover

and soil erosion control

Intercropping forage legumes as cover crops has shown

positive effects on soil structure by enhancing the forma-

tion and maintenance of soil aggregates (Lupwayi et al.

2011) through better ground cover (Brandt et al. 1989;

Tomm and Foster 2001). This leads to an increase in soil

organic matter relative to sole crops and increases water

infiltration and air circulation (Lupwayi et al. 2011), thus

improving soil water-holding capacity (Dovel et al. 1995;

Murphy and Colucci 1999; Samuel and Mesfin 2003). For

example, 62% ground cover has been achieved by clover

species (Tomm and Foster 2001) and 53.2% by Lablab

Table 2 Grain yield, forage biomass yield and land equivalent ratio obtained by legume intercropping in humid to sub-humid agro-ecological

zones

Intercrops Grain

yield

Forage

biomass yield

LER AEZ Descriptors/comments References

Maize-cowpea ? ?? 1–1.4 Sub-

humid

Early maturing could be best

compatible

Adeniyan et al. (2011), Surve

et al. (2012)

Maize-cowpea ? ?? na Sub-

humid

Did not suppress grain yield Maasdorp and Titterton (1997)

Cassava–cowpea ? ?? 1.2 Humid Improve total yield and starchiness,

protect soil

Mustaers et al. (1993)

Maize–lablab - ?? na Humid 14–69% forage biomass contribution

from legumes

Ngongoni et al. (2007)

Cassava–cowpea - ?? 1.48–2.02 Humid Late harvesting of cassava Mba and Ezumah (1985)

Sorghum-Vicia* ??? ?? na Humid Intercrops gave 3.4% more grain

yield

Samuel and Mesfin (2003)

Maize–Lablab* ?? ??? 1.46 Humid Highest lablab yield at later stages of

maize growth

Hassen et al. (2006)

Wheat-lablab ?? ?? 1.35 Sub-

humid

At no N level Astatke et al. (1995)

Wheat-clover ?? ?? 1.35 Sub-

humid

At no N level Astatke et al. (1995)

Maize-vetch ?? ?? 1.1 Sub-

humid

At no N level Astatke et al. (1995)

LER land equivalent ratio, AEZ agro-ecological zone, na not available

Grain and forage biomass yield: - (minus) means yield reduced, LER\1, ? (plus) means yield reduced, but LER above unity ([1); ?? means

yield is not affected with LER above unity (1); ??? means yield improved with LER above 1.5 Vicia-Vicia dasycarpa, Lablab-Lablab

purpureus

Table 3 Grain yield, forage biomass yield and land equivalent ratio of forage-legume intercropping in warm-temperate and tropical agro-

ecological zones

Intercrops Grain

yield

Forage biomass

yield

LER AEZ Descriptors/comments References

Maize-velvet

bean

- ?? 0.77–1.08 Warm

temperate

N concentration is 4.9% Murungu et al. (2011)

Maize-sun hemp ? ?? 0.98–1.13 Warm

temperate

N concentration is 2.6% Murungu et al. (2011)

Wheat-alfalfa - ? na Tropics Reduced incidence of a soil-borne

pathogen

Lithourgidis et al.

(2011)

Sorghum-

Desmodium

? ? na Warm

temperate

100% Striga control Ejeta (2007)

Cassava-pigeon

pea

? ?? na Tropics Planting date is important Cenpukdee and Fukai

(1992)

LER land equivalent ratio, AEZ agro-ecological zone, na not available

Grain and forage biomass yield: - (minus) means yield reduced; LER\1, ? (plus) means yield reduced, but LER above unity ([1); ?? means

yield is not affected with LER above unity (1); ??? means yield improved, with LER above 1.5
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purpureus and Centrosema pubescens (Birteeb et al. 2011).

Such cover crops play positive roles by reducing the impact

of rainfall on soil erosion during heavy rain events and of

wind erosion (Birteeb et al. 2011). Similarly Murphy and

Colucci (1999) and Tomm and Foster (2001) observed

similar benefit in studies in Oregon and Brazil, respec-

tively, where a reduction in soil loss of up to 50% (Dovel

et al. 1995; Tomm and Foster 2001) was reported under

intercropping legumes with grain crops compared to grain

crop alone. Similar findings have been reported by Birteeb

et al. (2011) and Bryan et al. (2011).

Nitrogen fixation and improvement in soil nitrogen

content

A large portion of SSA is situated in belts of uncertain

rainfall, thus with uncertain response to nitrogen fertilizer

(Kahurananga 1990). In such situations, maximizing bio-

logical nitrogen (N2) fixation by utilizing suitable legumes

is crucial. Estimates of the amount of nitrogen fixed by

legumes under different agro-ecological zones of Africa

under forage-legume intercropping with cereals and other

crops are presented in Table 4. The amount of N2 fixed

varied in the range of 4 to 581 kg N2/ha, depending on

nodule formation of the intercropped forage-legume culti-

vars (Ayisi et al. 2004), the fertility status of the soil and

competition between the intercrops.

According to Giller et al. (1997), the amount of N2 fixed

by grain and forage legumes in SSA ranged between 11

and 201 kg N2/ha for sole-cropped cowpea and inter-

cropped cowpea. Assuming an average N2 fixation of

45 kg N2/ha for cowpea, and multiplying these amounts by

the land coverage of about 11.1 million hectares, it is

estimated that about 500 million kg N2 could be fixed by

cowpea in SSA (Lupwayi et al. 2011). The level of N2

fixation by forage legumes, however, is influenced by soil

fertility status. For instance, Ojiem et al. (2007) observed a

44% decrease in N2 fixed by legumes under less fertile soil

relative to high fertility soils. In such low fertility soils, a

starter dose (about 30 kg/ha) of N fertilization could

improve N2 fixation with the legume component (Hassen

et al. 2006) as long as other nutrients, especially phos-

phorus and pH, are not limiting. These natural fertilizers

enable smallholder farmers to improve the soil fertility

without increasing debt (Murphy and Colucci 1999) due to

rising prices of inorganic fertilizers, while reducing the

environmental footprint of the agro-ecosystem.

Weed, pest and disease control

Intercropping provides the forage legume and the com-

panion crop with greater competitive advantage against

weeds. Increased barley grain yield was reported by Dovel

et al. (1995) because of suppression of weeds by

Table 4 Estimates of N2 fixation (kg/ha) by legumes commonly used for intercropping in Africa

Country Legume N-fixed (kg/ha) Yield (t/ha) AEZa References

Ghana Cowpea 200 6.7 Arid–semi-arid Dakora and Keya (1997)

Zimbabwe L. purpureus 45–60 na Sub-humid Mohammed-Saleem (1986)

South Africa S. sesban 28–63 na Semi-arid Snap et al. (1998)

Nigeria Cowpea 122 na Sub-humid Eaglesham et al. (1981)

Zimbabwe Cowpea 68–138 1.4 Sub-humid Rusinamhodzi et al. (2006)

Zimbabwe Cowpea 4–29 0.1–0.6 Sub-humid Ncube et al. (2007)

Namibia Cowpea 13 (30–60%) 0.8 Semi-arid McDonagh and Hillyer (2003)

SSA Cowpea 9–125 1.5–2.7 Arid–semi-arid Giller et al. (1997)

Ghana Cowpea 29–179 na Savannah Belane and Dakora (2009)

South Africa Cowpea 25–217 0.04–1.5 Semi-arid Ayisi et al. (2004)

South Africa Cowpea 46–87 1.6–2.7 Semi-arid Makoi et al. (2009)

Tanzania Cowpea 70 1.2 Semi-arid Vesterager et al. (2008)

Senegal Sesbania sesban 8–18 2–3.8 Semi-arid Ndoye and Dreyfus (1988)

Senegal Sesbania rostrata 85–102 4–5.2 Semi-arid Ndoye and Dreyfus (1988)

Tanzania L. luecocephala 110 0.9 Sub-humid Hogberg and Kvarnstrom (1982)

Nigeria G. sepium 108 na Sub-humid Liya et al. (1991)

Kenya Cajanus cajan 161 8.5 Semi-arid Onim et al. (1990)

Kenya L. leucocephala 643 9.3 Semi-arid Onim et al. (1990)

Togo Calliandra 26.5 na Sub-humid Schroth and Lehmann (1995)

a Agro-ecological zone
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interseeded legumes. Other studies by Jeranyama et al.

(2000) reported the suppression of weeds in a lablab-cereal

intercropping. Similarly, in a sorghum-Desmodium inter-

cropping, 100% control of Striga was achieved (Reinhardt

and Tesfamichael 2011). Ejeta (2007) reported consistent

reduction in Striga infestation in maize-cowpea intercrop-

ping relative to continuously cropped sole maize.

Intercropping improves crop resistance to pests. Based

on a review of more than 150 published field and desktop

studies on more than 200 herbaceous species, Lithourgidis

et al. (2011) reported that 53% of the pest species were less

abundant in the intercrop, 18% were more abundant, 9%

showed no difference, and 20% showed a variable

response. A separate study conducted by Khan et al. (2001)

showed that intercropping Desmodium species with sor-

ghum and maize enhanced soil fertility and increased the

effectiveness of applied N in suppressing parasites. Simi-

larly, studies by Skovgard and Päts (1997) reported a

reduction in stem borer infestation when Striga-tolerant

maize variety Acr. 97TZL Comp. 1-W was intercropped

with cowpea (Vigna unguiculata L.).

Intercropping of forage legumes enhances the disease

resistance of companion crops. A general disease reduction

of 20–40% because of intercropping has been reported

elsewhere (Hauggard-Nielson et al. 2001). Similarly, a

review by Lithourgidis et al. (2011) showed that the inci-

dence of pathogens of soil-borne take-all disease was

reduced by maize-alfalfa intercropping. Monoculture fields

require more chemicals to control weeds, pests and dis-

eases compared with intercropping (Singh and Adjeighe

2002). Intercropping could therefore be useful in reducing

the risk of crop failure because of the predicted increases in

diseases and pests incidence related to climate change

(Jeranyama et al. 2000, Lithourgidis et al. 2011).

Overall yield improvement (grain and biomass)

and land equivalent ratio

Forage-legume intercropping improves yield, LER or both,

thus improving land-use efficiency. A yield advantage of

20–60% was observed under legume-grain crop inter-

cropping, mainly because of improved soil water-holding

capacity in Oregon USA (Murphy and Colucci 1999),

reduced pest incidence and more efficient use of nutrients,

water and solar radiation (Lithourgidis et al. 2011). Sty-

losanthes species intercropping improved the grain yield of

maize under low fertility soils (Vesterager et al. 2008;

Birteeb et al. 2011). Sorghum-Vicia species intercropping

also showed a higher grain and biomass yield of sorghum

(Samuel and Mesfin 2003). Although farmers are not tar-

geting increased stover yield, they could practise legume-

cereal intercropping to produce livestock feed without

compromising grain yield (Birteeb et al. 2011), while

ensuring the stability of both grain and forage yields

(Mohammed et al. 2008).

Other studies demonstrated that the grain and stover

yields of cereal crops in cereal-legume intercropping sys-

tems were lower than yields of sole crops. Nonetheless, the

total productivity per unit of land (LER) remained greater

for intercropping than for sole crops (Kahurananga 1990;

Mpairwe et al. 2002). For instance, high LERs of 1.88 and

1.51 were reported in a sorghum–cowpea intercropping

(Mohammed et al. 2008; Surve et al. 2012), indicating the

overall yield advantage of intercrops over sole crops in

terms of land-use efficiency. Similarly Lemlem (2013)

reported higher net return in monetary values from maize–

lablab (44.5%) and maize-cowpea (58.9%) intercropping

compared to maize alone due to the observed higher LER

of 1.65 and 1.71 for maize–lablab and maize-cowpea

intercropping, respectively. Cenpukdee and Fukai (1992)

also reported that intercropping of cassava-pigeon pea

decreased tuber yield slightly, but the overall economic

return was higher than the sole crops because of improved

soil fertility. In those intercropping systems, pigeon pea

was able to fix up to 161 kg N/ha (Onim et al. 1990).

Improvement of feed quality and animal

performance

Protein is the most important and expensive supplement for

livestock under smallholder conditions in Africa. A protein

content of 8–16% in a given feed is usually required to

meet the maintenance, growth, production and normal

functioning of rumen microflora (Van Soest 1982; Eskan-

dari et al. 2009). Forage legumes provide generally high-

quality feed that can be used to supplement crop residues,

which are the main source of animal feed in many small-

holder farming systems (Nnadi LA Haque 1986). In par-

ticular, protein yield of legume intercrops is reported to be

higher than that of sole crops (Kahurananga 1990).

Increases in CP content of 11–51% have been reported for

various intercropping systems compared with sole crops

(Tomm and Foster 2001; Lithourgidis et al. 2011). The CP

contents of maize ? lablab, sorghum ? lablab and whea-

t ? lablab were reported to be 4.2, 3.9 and 2.4 times higher

than their sole stands (Mpairwe et al. 2002), respectively.

Intercropping stylo with sorghum resulted in higher-crude

protein content of stylo-sorghum mix compared to sorghum

alone (Kahurananga 1990) and showed considerable

potential for increasing CP yields per hectare (Birteeb et al.

2011), which improved dry season feed availability and

quality (Ngongoni et al. 2007). Most of the legumes used

for intercropping had CP content above the minimum

threshold (7%) for optimum rumen function and feed

intake (Van Soest 1982). An improvement in digestibility

and nutritive values of forage has been reported by
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intercropping clover spp. and cowpea with wheat and

cassava, respectively (Dzowela 1990).

The reported higher CP content, digestibility and lower-

crude fibre content of forage from forage-legume inter-

cropping systems (Maasdorp and Titterton 1997; Murphy

and Colucci 1999) are likely to result in improved fer-

mentation of roughages in the rumen and release of volatile

fatty acids that support better animal performance (Birteeb

et al. 2011). For example, lablab may possess on average

17% CP (Murphy and Colucci 1999) and could be suit-

able as a supplementary feed to complement poor-quality

roughages such as crop residues often deficient in rumen-

degradable nitrogen. Ensuring the supply of rumen-

degradable nitrogen in the diet of ruminant through sup-

plementation of lablab forage (Sumberg 2002) will

improve rumen microbial fermentation of poor-quality

roughages and overall digestibility of the total diet, leading

to improvements in ruminant production. Access to higher

protein forages will enable better use of low-protein, high-

fibre crop residues (Murphy and Colucci 1999). Similarly

barley straw was used more efficiently by growing steers

when it was supplemented with legume silage (Zhuoga

et al. 2016).

Mitigation co-benefits associated with forage-
legume intercropping

There are many synergies and trade-offs in food production

and climate adaptation and mitigation (FAO 2010). The

majority of the studies on intercropping have shown that

the impact of climate change could be partly mitigated

through integrating forage-legume intercropping into the

farming system to improve the quality of forage supplied to

the animal, because legume supplementation improves the

digestibility of fibrous feedstuffs (FAO 2010). The subse-

quent increase in digestibility is likely to increase intake

and animal performance, but reduce methane emissions per

unit of animal product due to more efficient feed utiliza-

tion. Increasing the digestibility in the diet is the best

mitigation measure because most CH4 emissions are gen-

erated from enteric fermentation (Verge et al. 2007). Pre-

vious studies by Gurian-Sherman (2011) reported a

15–30% CH4 emission reduction with the improvement of

digestibility.

Because legumes fix nitrogen in the soil (Zahran 1999),

the need for industrial nitrogen fertilizer is reduced. The

reduced use of fertilizer N in legume-based cropping sys-

tems means lower use of fossil fuel (CO2 emissions) in

manufacturing, transporting and applying fertilizer N

(Bryan et al. 2011). By reviewing legume-based systems as

compared to fertilized annual crops in eastern Canada and

north-eastern USA, Gregorich et al. (2005) found that

legume crops are grown successfully with little or no

nitrogen fertilizer. Subsequently, the emissions of nitrous

oxide (N2O) are expected to be lower in a legume crop than

in a fertilized cereal crop (Bryan et al. 2011; Birteeb et al.

2011), thus demonstrating the high mitigation potential of

intercropping with legumes. However, excessive nitrogen

fixation from legumes monoculture more than its uptake

means there will be more soil nitrate that potentially

increase the risk of nitrous oxide emission from the area, as

its production is compulsive during the denitrification

process. Thus, inclusion of cereals in cereal-legume inter-

crop will minimize the risk of nitrous oxide emission due to

more uptake of soil nitrate by the cereal component.

Similarly, the introduction of legumes into grass-based

forage production systems is expected to further reduce

N2O emission due to the reduction in soil nitrate levels

through uptake by the intercropped grass. According to a

review study by Jensen et al. (2012), grass-clover inter-

cropping was reported to have lower mean annual N2O

emission (0.54 kg N2O–N/ha) compared to a N-fertilized

pasture grass (4.49 kg N2O–N/ha) and pure legume stands

of white clover (0.79 kg N2O–N/ha). However, there is

little or no information on the level of N2O emissions from

forage-legume intercropping as opposed to sole main crops

fertilized with inorganic nitrogen fertilizer in SSA coun-

tries (Lupwayi et al. 2011). Recently, Senbayram et al.

(2016) reported seasonal N2O fluxes were 35% lower in a

wheat-faba bean mix compared to N-fertilized wheat in

Germany, demonstrating the potential for intercropping to

mitigate fertilizer-derived N2O emissions, although work is

required to quantify the benefits in SSA rainfall conditions.

According to Fischlin et al. (2007), soil carbon seques-

tration has a technical potential to mitigate 89% of

greenhouse gas emission. The amount of carbon that can be

sequestered in the soil depends on the balance between the

carbon inputs and losses (Jensen et al. 2012). Cong et al.

(2015) reported up to 4% higher soil organic carbon in the

top 20 cm for an intercropped system compared to a sole

crop system over a seven-year experiment, demonstrating

the potential of intercropping to mitigate against climate

change. Other studies from various regions of the world

show that forage-legume intercropping enhances carbon

sequestration. For instance, studies by Tarre et al. (2001) in

Brazil showed that the introduction of Desmodium Ovali-

folium into a Brachiaria sward increased the rate of soil

carbon sequestration from 0.66 to 1.17 Mg C/ha per year in

the top 100-cm soil layer over a 9-year period. Other

studies in Columbia by Fisher et al. (1994) also reported an

increase in carbon sequestration by 7.8 Mg/ha per year

with the introduction of a legume (Arachis pintoi) into a

sward compared to sole grass. Studies in the sub-Saharan

African country of Malawi, however, showed that the role

of legume intercropping with cereal crops on carbon
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sequestration is dependent on the rainfall and temperature

of the study site (Simwake et al. unpublished). Reduced use

of insecticides and herbicides as a result of the decreased

weed and pest invasion under legume intercropping com-

pared with a sole plot (Singh and Adjeighe 2002) implies

less energy utilization (CO2 emission) in manufacturing,

transporting and applying insecticides and herbicides

(Bryan et al. 2011).

Adoption of forage-legume intercropping
technologies in Africa

Although this review identified the many benefits of

including forage legumes as intercrop in crop-livestock

systems in SSA, the level of adoption of the technologies

by smallholder farmers is very low. A number of con-

straints, including access to inputs (e.g. seed and fertilizer),

yield depression of cereals, low yields and lack of persis-

tence of legumes, and lack of fencing material and access

to credit, were identified as core factors limiting adoption

of forage-legume technologies (including forage inter-

cropping technologies) in Zimbabwe (Nnadi LA Haque

1986; Mapiye et al. 2006). In addition, gender, literacy

level, size of household, land area per household and

number of animals per household indirectly affected

adoption of forage technologies in Africa (Mapiye et al.

2006; Chijikwa 2016, unpublished report).

Summary

Intercropping forage legumes with cereals and root crop

production is well recognized in mixed crop-livestock

farming systems of Africa for land intensification,

improved grain and forage nutritive value, reduced impacts

of diseases and pests and as cover crops to reduce soil

erosion and degradation. Within an intercrop system,

however, there is a competition for key resources such as

water, nutrients and light, depending on the crop species,

climatic conditions and management practices. In mois-

ture-stressed zones of arid and semi-arid areas, the influ-

ential factors that determine the benefits of intercrops are

water and, to a lesser extent, nutrients. In contrast, in humid

zones nutrient deficiency and light because of the shading

effect are more profound than other factors. Ensuring

optimum spatial and temporal arrangements, nutrient

availability, population density and cropping pattern of the

companion crops for each environment are pre-conditions

to enhancing the overall productivity, resource use effi-

ciency and profitability of the intercrops, as well as

improving the resilience of the system to adapt to and

mitigate climate changes. Future research needs to focus on

testing intercrop technologies for each agro-ecological

zone across soil types to determine optimum spatial

arrangements and geometry of companion crops for effi-

cient utilization of resources (light, water and capital) and

improve adoption of forage-legume intercropping tech-

nology by smallholder farmers in Africa.
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