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Abstract The aim in this study was detect changes in

landscape-fragmentation patterns resulting from the

expansion of agriculture in the Cerrado region (Brazilian

Savanna) during the period 1988–2011. The study area

covers 7,559,783.69 ha and is restricted to the limits of the

Urucuia Group (Upper Cretaceous), a geological unit

formed by sedimentary rocks of continental deposits where

there has been intense agricultural expansion due to

favorable conditions for the use of mechanized farming.

The temporal analysis considered land-use/land-cover data

from Landsat TM image classification for the years 1988,

1992, 1996, 2000, 2004, 2008 and 2011. Fragmentation

quantification was performed from the morphological

spatial pattern analysis (MSPA) and traditional landscape

metrics analysis. The calculation of MSPA attributes con-

sidered 10 edge widths, between 30 and 300 m. Traditional

landscape metrics were obtained from Path Analyst and

V-Late software. Change detection in MSPA classes was

obtained through cross-tabulation. Cerrado deforestation in

the study area increased from 795,502.61 ha in 1988 to

2804,679.75 ha in 2011. The spatial pattern of Cerrado

deforestation and fragmentation has a spatial concentration

in the western region of the study area that gradually

progresses toward the east. Our results emphasize the

fragmentation process with a reduction in the following

fragmentation indicators over the past two decades: area,

number of patches, core, and edge. In addition, the indi-

cators increased in: complexity, size variation, and coreless

fragments. Change detection enabled the description of

spatial evolution of fragmentation indicators. The results

can help define strategies for landscape planning and

decision making for conservation priorities.

Keywords Fragmentation change detection �
Morphological spatial pattern analysis � Landscape

metrics � Land-use/land-cover change

Introduction

The Cerrado (savanna) biome located in Central Brazil

covers an area of approximately 2 million km2 and contains

a very rich flora with high endemism (Klink and Machado

2005; Ratter et al. 1997). This biome is one of the major

agricultural frontiers of Brazil (Brannstrom 2005). Human
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occupation of this biome intensified from the 1970s with

the introduction of new agricultural technologies (Rada

2013), private agricultural colonization (Jepson 2006),

public policies (Jepson et al. 2010), and expansion of rural

credit (Castro and Teixeira 2012). By 2010, 48.54 % of the

natural area of the Cerrado had been converted into land-

use types according to the Brazilian Institute of Environ-

ment and Renewable Natural Resources (IBAMA), a fed-

eral agency under the Ministry of Environment (MMA;

MMA-IBAMA 2011). This land conversion to agriculture

results in a habitat fragmentation that threatens the biodi-

versity and ecosystem functions (Carvalho et al. 2009;

Grecchi et al. 2014). Therefore, the intensification of

anthropogenic processes has made the Brazilian Cerrado a

biodiversity hotspot for conservation priorities (Myers

et al. 2000; Silva and Bates 2002).

Landscape fragmentation is a process that produces

habitat loss, size reduction, and/or increasing isolation of

habitats (Andrén 1994). The main causes of landscape

fragmentation are agricultural growth, road construction, as

well as implantation of urban areas and infrastructure pro-

jects (Uuemaa et al. 2009). Fragmentation quantification has

been performed using landscape metrics (McGarigal and

Marks 1995; Jaeger 2000), regression analysis (Su et al.

2012), moving window analysis (Fan and Myint 2014),

fractal analysis (Sun et al. 2014), entropy (Zaccarelli et al.

2013), surface metrics (McGarigal et al. 2009), and mor-

phological spatial pattern analysis (MSPA; Soille and Vogt

2009). However, few studies have been performed with a

combination of landscape indicators. Some studies use two

groups of metrics: traditional and those derived from a

mathematical morphology framework (Höbinger et al. 2012;

Salvati 2014; Salvati et al. 2015). This indicator combination

enables a detailed examination of landscape transformation.

In a fragmentation study, characterization and quantifi-

cation of the landscape structure must precede the study of

the implications of their effects on ecological processes

(Turner 1989, 1990; McGarigal et al. 2009). In this context,

many studies have focused on the spatial and/or temporal

analysis of fragmentation patterns without explicit associ-

ation with specific fauna or flora (Tang et al. 2012; Kang

and Choi 2014; Kang and Kim 2015). This is because

landscape changes impact not only on one but on several

species that depend of habitat quality factors (Fahrig 2003).

Furthermore, spatial–temporal analysis of the landscape

pattern assists in environmental planning and management,

which increasingly seek to understand the cause-and-effect

interrelationships between anthropogenic and natural

agents (de Groot 2006; Saura et al. 2011).

Fragmentation change detection has been performed

using morphological classes, since the landscape traditional

metrics are not represented in pixels. Seebach et al. (2013)

focused change analysis on the core class, while

Ostapowicz et al. (2006) and Cao et al. (2015) conducted

studies considering all MSPA classes. In all fragmentation

studies, the change detection method used is that of post-

assessment, which is widely used in studies of change

detection from remotely sensed data (Ardli and Wolff

2009; Soulard and Sleeter 2012; Mascorro et al. 2014).

Post-classification change detection performs a comparison

of two single-date classified images from manual or auto-

matic classification and generates a change matrix, i.e., a

cross-tabulation matrix between the temporal images

(Howarth and Wickware 1981; Singh 1989).

The main requirement in post-classification change

detection is the precise registration of the images to avoid

mis-registration, which is one of the main sources of error

(Carmel et al. 2001). Seebach et al. (2013) proposed

morphological change detection (MCD), which performs

post-classification for binary maps (core and background

classes) with morphological post-processing to improve

change detection accuracy, removing the unwanted spuri-

ous changes from mis-registration and classification errors.

However, the proposed method is limited to binary images,

considering only the core class. An alternative is the

adoption of a visual classification that performs a retro-

analysis (from newest to oldest), maintaining the same

lines of vegetation polygons for unchanged areas. This

prevents error propagation from registration as well as

supervised and unsupervised classifications, such as those

from changes in weather conditions, salt and pepper noise,

phenological changes and soil moisture.

The aim in this paper is to detect changes in landscape

fragmentation using MSPA and traditional landscape

metrics, during the period 1988–2011. The study area is

located in Bahia State (Brazil), in the Cerrado Biome,

where mechanized agriculture is rapidly expanding. Tra-

ditional landscape metrics and MSPA classes were

obtained from land-use and land-cover (LULC) dataset

generated via classification of Landsat thematic mapper

(TM) images for the years 1988, 1992, 1996, 2000, 2004,

2008, and 2011 (Oliveira et al. 2014). Traditional land-

scape metrics enable a fragmentation analysis at the gen-

eral level, while the morphological analysis allows

detailing and spatial evolution of the patches. Changes in

MSPA classes were obtained from cross-tabulation show-

ing the changed locations.

Materials and methods

Study area

The study area encompasses the Urucuia Group geological

formation, which includes nine municipalities of Bahia

State, Brazil: Formosa do Rio Preto, Riachão das Neves,
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Barreiras, Luı́s Eduardo Magalhães, São Desidério, Baia-

nópolis, Correntina, Jaborandi, and Cocos (Fig. 1). This

area has 7,559,783.69 ha and extends from 10� 040 3600 S to

15� 140 3800 S latitude and from 44� 080 0900 W to 46� 370

4800 W longitude.

The Urucuia Group (Upper Cretaceous) is subdivided

into Posse and Serra das Araras formations (Campos and

Dardenne 1997a, b). The sedimentology and facies asso-

ciation suggests a desert environment with field dune

deposits that changed to a fluvial-eolian system represented

by sandy sheet deposits (Spigolon and Alvarenga 2002).

The terrains of the Urucuia Group are flat and composed

mainly of well-drained medium texture Oxisols, which

favor the development of mechanized agriculture. This

geological group contains the Urucuia aquifer that is

responsible for flow regulation of the left-bank tributaries

of the São Francisco River in the dry season (Gaspar et al.

2012). The groundwater has been used to supply farms,

villages and irrigation projects. The study area has a cuesta

landform associated with extensive and gently east-dipping

surface. Therefore, the altitude decreases from west to east

and the rivers have a parallel drainage pattern toward the

São Francisco River (Fig. 2a). Fluvial incision into

sedimentary layers generates slope areas bordering the

rivers (Fig. 2b).

The region has a tropical precipitation regime charac-

terized by well-defined wet (October–April) and dry (May–

September) seasons (Felfili and Felfili 2001). The annual

average temperatures range between 18 and 22 �C. Mean

annual rainfall decreases rapidly to the east, with irrigation

crops replacing rainfed agriculture that relies on rainfall for

water (Flores et al. 2012; Spagnolo et al. 2012; Fig. 2c).

In recent decades, this area represents a large agricul-

tural frontier in the Cerrado biome, with intense conver-

sion of natural vegetation to agricultural cropping

(Brannstrom et al. 2008). The main crops are soybeans,

cotton and corn (Oliveira et al. 2014). This is an appro-

priate study area for landscape-fragmentation change

detection due to agriculture expansion.

Land-use and land-cover maps

Mapping using PRISM/ALOS images

This study used the LULC map at 1:2000 scale developed

by the Laboratory of Spatial Information Systems (LSIE) at

Fig. 1 Study area location
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the University of Brasilia (UnB) in partnership with the

Inter-American Institute of Commerce and Agriculture and

the Ministry of National Integration. Images from Remote-

Sensing Instrument for Stereo Mapping Panchromatic

(PRISM) sensor onboard Advanced Land Observing

Satellite (ALOS) were used for map elaboration. The

panchromatic images had 2.5-m spatial resolution, 8 bits

and a ground swath depending on the acquisition mode:

35 km in triplet mode and 70 km in nadir mode (Saunier

et al. 2010). The product used was L1B2 (radiometrically

and geometrically corrected), and the methodology was the

visual interpretation using manual vectorization from

ArcGIS 9.3 software. The image dates were predominantly

from 2009, but with the possible lack of information for

this year, 2008 or 2010 images were also used. In addition,

fieldwork and other images from Landsat TM, CCD/

CBERS 2 (Charged Couple Device/China-Brazil Earth

Resources Satellite) and Google Earth helped in the inter-

pretation. This LULC mapping identified 26 classes.

However, these classes were simplified to six classes

(water bodies, urban areas, agriculture, reforestation,

altered vegetation and natural vegetation) to be consistent

with the possible mapping performed for other dates with

Landsat TM images. Most of the agglutinated classes had

irrelevant areas.

Multitemporal mapping using Landsat images

Oliveira et al. (2014) conducted a classification of Landsat

TM images for the years 1988, 1992, 1996, 2000, 2004,

2008, and 2011, considering a cloud cover of less than

10 % during the dry season (May–September). The Land-

sat 5 TM images were co-registered using ENVI software,

considering a root-mean-squared error (RMSE) less than

0.2 pixels to achieve an accuracy of 90 % for change

detection (Dai and Khorram 1998; Townshend et al. 1992).

The Landsat TM images were classified by visual inter-

pretation considering six predefined classes. This proce-

dure ensured that the lines of polygons without land-use

changes remain unchanged. Landscape-fragmentation

change detection considered the natural vegetation class

obtained for the study period.

The automatic mapping of LULC classes in agricultural

areas is a complex procedure, because of the high variety

of features (e.g., different types of soil, crops, and planting

times). In addition, the spectral measurements may change

according to the phenology of crop plants. In this context,

the automated classification algorithms generate very dif-

ferent results for the same target (Rozenstein and Karnieli

2011), resulting in classification and change detection

errors (Seebach et al. 2013). However, land-use and land-

Fig. 2 Maps of terrain and rainfall attributes of study area: a elevation map generated from SRTM data, b slope, and c average rainfall (data

from National Agency of Water and National Institute of Meteorology)
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cover classes are easily identified by visual interpretation,

obtaining reliable results for small (Munsi et al. 2010; Ke

et al. 2011) and large areas (Zuo et al. 2014). Additionally,

the visual interpretation of remote sensing data for pho-

tointerpreters is widely used for the validation of super-

vised and unsupervised classifications (e.g., Stow et al.

2007; Sano et al. 2010).

Traditional landscape metrics analysis

Traditional landscape metrics at the class level were cal-

culated from natural vegetation class for the study period

using Patch Analyst 5.0 extensions (Rempel et al. 2012)

and v-LATE 1.1 (Lang and Tiede 2003). In this paper, we

use 15 traditional landscape metrics: class area (CA), total

edge (TE), edge density (ED), mean patch edge (MPE),

number of patches (NumP), mean patch size (MPS), patch

size standard deviation (PSSD), patch size coefficient of

variation (PSCoV), mean shape index (MSI), area-weigh-

ted mean shape index (AWMSI), mean patch fractal

dimension (MPFD), area-weighted mean patch fractal

dimension (AWMPFD), landscape division index (DIVI-

SION), effective mesh size (MESH), and splitting index

(SPLIT). The descriptions of the landscape metrics are

given in the FRAGSTATS User’s Guide (McGarigal and

Marks 1995) and v-LATE User’s Guide (Lang and Tiede

2003). These 15 landscape metrics can be grouped into five

categories: area (CA), edge (TE, ED, and MPS), density,

size, and variability (NumP, MPS, PSSD, and PSCoV),

shape (MSI, AWMSI, MPFD, and AWMPFD), and

aggregation (DIVISION, MESH, and SPLIT).

Morphological spatial pattern analysis

MSPA algorithm consists of a sequence of logic opera-

tions (union, intersection, complementation, and transla-

tion) considering geometric objects called ‘‘structuring

elements’’ of previously defined size and shape (Vogt

et al. 2007b). We apply a sequence of morphological

operators known as erosion, dilation, and anchored

homotopic skeletonization (Vogt et al. 2007a, 2009) in the

30-m resolution binary images (forest/non-forest). Auto-

mated classification was performed by Guidos software

(http://forest.jrc.ec.europa.eu/download/software/guidos),

resulting in seven mutually exclusive classes: core, islet,

bridge, loop, edge, perforation, and branch (Soille and

Vogt 2009).

The calculation of MSPA attributes was conducted for

all study years, considering 10 edge widths, ranging from

30 (one pixel) to 300 m (10 pixels). The adoption of dif-

ferent edge dimensions was due to the distinct interference

of different plant and animal species. In this interface

between native vegetation and deforested areas, there are

significant differences in composition, structure, or func-

tion, which are exposed to diverse abiotic (e.g., wind, light,

and moisture) and biotic processes (e.g., animals, litter,

seeds, pollen, pollutants) which vary with edge distance.

Furthermore, the core area that consists of interior natural

vegetation outside the edge zone is substantially changed

by edge distance. Patch number and percentage of the total

area were obtained for each class.

Fragmentation change detection

Traditional landscape metrics over the years studied

enabled the identification of habitat fragmentation and

landscape change at the general level. Cross-tabulations

between MSPA-image pairs at successive dates and of the

two extreme dates (1988 and 2011) were carried out using

Abı́lio software. The result for each cross-tabulation con-

sists of an image and a table. The cross-tabulation image

has a number of classes matching the number of existing

categorical combinations between two time periods.

Therefore, cross-tabulation images indicate both where and

when these disturbances took place. The cross-tabulation

table, also known as the contingency table, provides an

estimate of the total amount of changes. The columns and

rows of the matrix show the morphological categories of

two time periods for the same study area. The diagonal

elements of table are invariant areas, while the others are

changed areas.

Results

Multitemporal analysis of the LULC classes

LULC classes showed variation in the analyzed period

(Fig. 3). Deforestation distribution pattern in the study area

during the period 1988–2011 began along the western

region and gradually moved eastward. The climatic con-

ditions of western part with highest rainfall favored rainfed

plantations (Fig. 3), which do not depend on additional

costs for irrigation.

The natural vegetation area was reduced in 26.57 %,

ranging from 89.41 % in 1988 to 62.84 % in 2011, i.e., an

average deforestation rate of nearly 1.61 % or

87,355 ha year-1. The agriculture and livestock area

increased 27.13 %, ranging from 5.70 % in 1988 to

32.83 % in 2011. The altered vegetation showed irregular

behavior during the study period, reaching an area of

5.42 % in 2008. The reforestation area decreased 1.51 %,

ranging from 1.87 % in 1988 to 0.36 % in 2011. Propor-

tionally urban areas and water bodies changed little over

the years. Cerrado deforestation in the study area increased

from 79,502.61 ha in 1988 to 2,804,679.75 ha in 2011. The
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pattern of Cerrado deforestation showed spatial concen-

tration in the western part of the study area that gradually

progressed toward the east. The annual deforestation rate

over the Urucuia Group in Western Bahia is approximately

1.16 % per year.

The main growth vector of agriculture begins in the

central west portion and progresses to the eastern region.

Another growth vector is toward the north and south limits

of the study area. Because of lower rainfall in the eastern

portion (Fig. 2), plantations require greater investment in

irrigation. The presence of permanent rivers and ground-

water from Urucuia aquifer allowed for the growth of

irrigated areas.

Landscape-fragmentation change detection

by the traditional landscape metrics analysis

As shown in Fig. 4, there was a percentage reduction for

CA (26.57 %), MPE (38.11 %), MPS (77.06 %), PSSD

(61.28 %), and MESH (2.31 %), and an increase in land-

scape-metric values for TE (89.64 %), ED (169.77 %),

NumP (206.41 %), PSCoV (68.79 %), AWMSI (95.13 %),

AWMPFD (4.37 %), DIVISION (735.42 %), and SPLIT

(7.92 %) in the period 1988–2011. The MSI and frag-

mentation metrics fluctuated over the studied years.

Landscape-fragmentation change detection

by the morphological spatial pattern analysis

(MSPA)

Supplementary Figure A1 shows the area percentage of the

MSPA attributes considering ten edge widths over the

studied years, while Supplementary Figure A2 shows patch

number. Cross-tabulation showed changes detected in

MSPA classes for the period 1988–2011 (Supplementary

Table A1).

The core class was the most representative area for all

scenarios of the studied years (Supplementary Figure A1).

Over time, the core class showed a reduction in total area,

while the islet, edge, bridge, and branch classes increased

(Supplementary Figure A1). The loop class had area

growth in the period 1988–2008 and a small reduction in

the last period. In contrast, the perforation class had area

growth in the initial period (1998–1992) and then a steady

decline (Supplementary Figure A1).

Most classes (core, islet, perforation, bridge, loop, and

branch) had a tendency to increase the patch number in the

period 1998–2008, with a decrease in the last period, while

the edge class showed a tendency for steady growth over

time (Supplementary Figure A2). The increase in edge

width resulted in the following characteristics:

Fig. 3 Area percentage of land-use/land-cover classes in the study area during the period 1988–2011
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(a) reduction in both the total area and patch number for

core class; (b) area growth for islet, edge, perforation,

bridge, loop, and branch; (c) an increase in the islet patch

number.

Supplementary Table A1 shows the change matrix for

the MSPA classes in the period 1988–2011. The percentage

change of bridge, edge, and islet classes were more than

250 %, while in the core this was over -30 %. The

increase in edge width of 30 m to 150 and 300 m signifi-

cantly expanded the changes in the MSPA classes (Sup-

plementary Table A1), since the core reduced in area, the

other classes increased (Fig. 5). The spatial pattern of

Cerrado fragmentation has a spatial concentration in the

western part of the study area (Fig. 5). All MSPA classes

were preferentially converted to the background.

Supplementary Figure A3 shows an exemplification of

changes in morphological classes.

Discussion

The visual interpretation technique used in this study to

facilitate the change detection has the following advantages

(Coppin et al. 2004; Narumalani et al. 2004; Menke et al.

2009): (a) easy updating over time, which favors moni-

toring; (b) minimizes the error propagation for image co-

registration; (c) minimizes the mis-classification derived

from atmospheric variations, salt and pepper noise (i.e., a

type of impulse noise caused by error in image acquisition

and/or recording, where individual pixels in digital image

Fig. 4 Traditional landscape metrics of the study area during the period 1988–2011: a CA, b TE, c ED, d MPE, e NumP, f MPS, g PSSD,

h PSCoV, i MSI, j AWMSI, k MPFD, l AWMPFD, m DIVISION, n MESH, o SPLIT
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are randomly digitized into two extreme intensities, max-

imum and minimum; Toh and Isa 2010), phenological

changes, and soil moisture; (d) allows integration and

comparison of sensor images with different spatial, spec-

tral, temporal, and radiometric resolutions. The main dis-

advantages include: (a) lack of automation; (b) the

classification accuracy depends on user experience; (c) ap-

plication over large areas may require a long time and

involvement of many people.

The evolution of land use in western Bahia has occurred

rapidly in recent decades. In 1992, the agricultural sector

represented 11.42 % of the study area (863,327.30 ha) and

was concentrated in the mid-west portion. Brazil’s agri-

cultural policy enacted in 1991, which extended credit lines

and established harvest plans (Brasil 2001), stimulated the

agricultural sector. In 2000 and 2001, the government of

Bahia created programs to support the agribusiness, espe-

cially for cotton and coffee. Other political factors also

contributed to this expansion, such as government incen-

tives for the development of new techniques for soil fer-

tility correction, tax incentives for agricultural

modernization, and government funding for irrigation

programs (Flores et al. 2012; Spagnolo et al. 2012; Oliveira

et al. 2014). The combination of these factors promoted an

intense migration from all areas of southern Brazil to the

Western Bahia region, promoting rapid agricultural frontier

expansion (Brannstrom and Brandão 2012) and conse-

quently landscape fragmentation. Therefore, there was a

breakthrough especially for the eastern portions at a rate of

7.23 % (546,572.36 ha) from 1992 to 2000 and 14.19 %

(1,072,733.31 ha) 2000–2011. The annual deforestation

rate over the Urucuia Group in Western Bahia (approxi-

mately 1.16 % per year) is higher than the 0.6 % per year

registered for the Brazilian Cerrado Biome as a whole in

the period 2002–2010 (MMA-IBAMA 2011). This

expansion is the result of favorable environmental condi-

tions for mechanization, rainfall at regular intervals, and

water availability for irrigation projects (Menke et al.

2009). Farms are usually large with over 1000 ha, where

several properties exceed 5000 ha (Brannstrom 2009).

However, natural vegetation areas remain in the eastern

portion of the study area, where annual rainfall is lower.

Fig. 5 Effect of edge width variation in MSPA classes: a MSPA classes for 2011 with edge width of 300 m; b detail of the MSPA class for all

years and edge width of 30, 150 and 300 m
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The deforestation pattern of the Western Bahia region is

different from the Amazon agricultural frontier, which has

been extensively studied. In the Amazon, agriculture

growth occurs through conversion of already deforested

land, mostly under degraded pasture (Brown et al. 2005;

Barona et al. 2010), or by direct conversion of forest to

cropland (Carvalho et al. 2002; Fearnside 2005; Morton

et al. 2006). In Western Bahia, the agricultural practice was

predominantly livestock and originated essentially by the

conversion of natural vegetation to cropland, contemplat-

ing large areas in a short period of time. According to

Hessel et al. (2012), the municipality of Cocos presents an

initial deforestation associated with coal producers fol-

lowed by a subdivision of the land in tranches by orthog-

onal feeder roads. In this scenario, the spatial occupation of

agriculture and livestock occurs initially interspersed in the

landscape and progresses to continuous areas.

The deforestation rates in Western Bahia region are

closely related to the occurance of highways, as described

for the Amazon agricultural frontier (Fearnside and de

Alencastro Graça 2006; Fearnside 2006, 2007; Barber et al.

2014). In the study area, the federal highways BR-020 and

BR242 have great influence for agricultural development.

The regions just west of the BR-020 highway, containing

higher rainfall, were the first to be occupied and are now

entirely dominated by agricultural landscape (Fig. 6).

The two landscape indicators (traditional landscape

metrics analysis and morphological spatial pattern analy-

sis) used allowed for an analysis of fragmentation change

detection in both global and local (pixel-by-pixel) scales.

Except for the MSI and MPFD metrics that showed fluc-

tuations in the historical series, the traditional landscape

metrics appointed two changing patterns: (a) continuous

reduction in the value of CA, MPE, MPS, DSSP, and

MESH; and (b) continuous increase in the values of TE,

ED, NumP, PSCoV, AWMSI, AWMPFD, DIVISION, and

SPLIT. These changing patterns are typical for areas with

progressive fragmentation increase (e.g., Jaeger 2000; Su

et al. 2014; Liu et al. 2014; Liu and Yang, 2015; Walz

2015). The main implications of the changes were: (a) de-

crease in sizes and area of patches; (b) increase in irregu-

larity, complexity, size variation, and number of patches;

(c) reduction in the size of the average edge; and (d) in-

crease in total edge and edge density. MSPA results reveal

the fragmentation growth by reduction of core area and by

increase in patch number of core, islet, branch, and edge, as

also described in the other fragmented areas (e.g., Kang

and Choi 2014). The increase in edge width reduced the

core fraction and increased the area of the other MSPA

components. The core class gradually became concentrated

in the eastern part of the study area due to agricultural

expansion, which initially occurred sparsely in the land-

scape and over time progressed to continuous areas without

natural areas preserved in their interior. This occupation

pattern occurs mainly in flat areas in the western part of the

study area, where the remaining vegetation is concentrated

along the rivers in areas protected by law.

Both procedures showed an increase in the vegetation

fragmentation in the study area. The fragmentation of

natural vegetation has severe implications for landscape

dynamics. In the Cerrado Biome, the loss of vegetation

cover can increase soil erosion up to 20 % (Merten and

Minella 2013) and cause damage to endemic species

(Ratter et al. 1997). Furthermore, fragmentation can also

act as a barrier to the movement of wildlife (Mortelliti et al.

2014), interfere with pollination levels and seed production

(Hadley and Betts 2012), reduce the connectivity of habi-

tats (Liu et al. 2014), alter the natural ecosystem processes

Fig. 6 Map of the main highways of the area of study, containing

areas of natural vegetation and anthropic use in 2011
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(Hobbs 1993), reduce species diversity (Ma et al. 2013),

increase mortality of species (Riley et al. 2003), and

increase patch isolation (Fahrig 2003).

With the prospect of further expansion of mechanized

agriculture in Western Bahia, guidelines are necessary to

promote environmental conservation, especially through

legislation for the protected area and improved agricultural

practices (Silva and Bates 2002; Klink and Machado 2005;

Grecchi et al. 2014). In Brazil, the National Forest Act

(NFA; Brasil 1965, 2012a, b) is an important policy for

ecosystem conservation, establishing: (a) Permanent

Preservation Areas (PPA), ecologically sensitive areas

designed to mandatory conservation; and (b) Legal

Reserves (LR), minimum farm percentage of native vege-

tation that the landowner should preserve, specifically for

the Cerrado this value is 20 % of the area. The NFA is the

main strategy for environmental conservation in the Brazil,

having a great influence over land use (Metzger et al. 2010;

Sparovek et al. 2012). In Western Bahia on Urucuia Group,

PPAs are important areas with remaining natural vegeta-

tion. Gurgel et al. (2013) analyzed the PPAs of the

municipality of Riachão das Neves and found that areas

with mechanized agriculture on the plateaus of Urucuia

Group showed 5.5 % of inappropriate uses in 2008, which

is low compared the depression areas on Bambuı́ Group

with 26.5 %. However, only the PPAs are not sufficient to

maintain biodiversity and ecosystem services. The new

Brazilian Forest Code (Brazil 2012a, b) allowed for the

compensation of legal reserves in the same biome, jeop-

ardizing the maintenance of LRs in the study area due to

the high economic value of land for mechanized agricul-

ture. Future research should assess the impact of the agri-

cultural expansion over riparian vegetation and protected

areas, and propose ecological corridors at local and

regional scales. The expansion of preserved areas can

contribute to the maintenance of local biodiversity and

recharge zone of the Urucuia aquifer (Silva et al. 2006;

Gaspar et al. 2012).

Conclusions

The present study used two groups of fragmentation met-

rics (morphological spatial pattern analysis and traditional

landscape metrics analysis), considering a multitemporal

approach. The results contribute to the understanding of

progressive agricultural expansion over the natural savanna

in Central Brazil. Both types of metric demonstrate sig-

nificant alterations in the composition, structure, and

diversity of the landscape due to agriculture use over the

last two decades. The effects of fragmentation over time

are evidenced by the reduction in area, number of patches,

core, and edge, as well as the increase of complexity, size

variation, and coreless fragments. Therefore, the conver-

sion of natural vegetation into cropland areas is the most

relevant landscape transformation in Western Bahia with

negative consequences on the functioning ecosystem. The

cross-tabulation between the temporal-map pairs from

morphological spatial pattern analysis allows the detection

of fragmentation change in the remaining vegetation. This

approach quantifies the fragmentation changes both in the

landscape and in the morphological classes (on the fraction

of habitat). The spatiotemporal variations obtained by this

approach can help define strategies for landscape planning

and decision making on conservation priorities. Further-

more, this methodology permits a constant updating of the

fragmentation dynamics.
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