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Abstract The analysis of landscape pattern changes is of

significant importance for understanding spatial ecological

dynamics and maintaining sustainable development, espe-

cially in wetland ecosystems, which are experiencing

indirect human disturbances in arid Central Asia. This

study attempted to examine the temporal and spatial

dynamics of landscape patterns and to simulate their trends

in the Ili River delta of Kazakhstan through quantitative

analysis and a cellular automata (CA)-Markov model. This

study also sought to examine the effectiveness of using the

CA-Markov model for investigating the dynamics of the

wetland landscape pattern. The total wetland area, includ-

ing the river, lake, marsh, and floodplain areas, and the area

of sandy land have remained steady, while that of desert

grassland has decreased slightly, and shrublands have

increased slightly from approximately 1978 to 2007.

However, the wetland and shrubland areas exhibited a

trend of increasing by 18.6 and 10.3 %, respectively, from

1990 to 2007, while the desert grassland and sandy land

areas presented the opposite trend, decreasing by 30.3 and

24.3 %, respectively. The landscape patterns predicted for

the year 2020 using probabilistic transfer matrixes for

1990–2007 (Scenario A) and 1990–1998 (Scenario B),

respectively, indicated that the predicted landscape for

2020 tends to improve based on Scenario A, but tends to

degrade based on Scenario B. However, the overall Kappa

coefficient of 0.754 for the 2020 predicted landscapes

based on Scenarios A and B indicates that the differences

in the predicted landscapes are not distinct. This research

indicates that the applied CA-Markov model is effective

for the simulation and prediction of spatial patterns in

natural or less disturbed landscapes and is valuable for

developing land management strategies and reasonably

exploiting the wetland resources of the Ili River delta.
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Introduction

The dynamics of landscape patterns are regarded as one of

the most important sources of alterations in land surfaces,

and they have a significant influence on the climate vari-

ability, biodiversity, water runoff and erosion, and soil

degradation (Georgescu et al. 2009). Studies on landscape

pattern dynamics generally focus on examining land use/

land cover (LULC) changes and their driving forces

(Loveland et al. 2002; Burgi et al. 2004) via modeling

historical LULC changes and predicting future trends

(Veldkamp and Lambin 2001; Verburg et al. 2004a, b;

Hepinstall et al. 2008). Moreover, human-disturbed land-

scapes are often selected to analyze the dynamics of these

patterns due to the difficulty of finding natural landscapes

that have rarely been affected by human activities. How-

ever, determining the dynamics of natural landscape pat-

terns is necessary for understanding human contributions to

ecological processes through comparisons between natural

and human-induced landscapes.

A number of simulation models have been developed

for examining landscape dynamics (Verburg et al. 2004a,

b), such as the conversion of land use and its effects

(CLUE) (Verburg et al. 2002), cellular automaton (CA),

Markov model, vegetation dynamic development tool/tool

for exploratory landscape scenario analysis (VDDT/

TELSA), simulating patterns and processes at landscape

scales (SIMPPLLE), and rocky mountain landscape sim-

ulator (RMLANDS). However, each model has its own

weaknesses and strengths, and no single approach is

optimal and applicable to all cases (Verburg et al. 2008).

To capture the scale, temporal, and spatial characteristics

of landscape and explicitly address them, the integration

of currently existing models of landscape dynamics could

be a feasible solution (Luo et al. 2010). A Markov process

is a discrete random process whose future probability

depends only on its probability of the previous state.

Although Markov models, as a type of stochastic model,

provide a good analogy to natural landscape systems, they

are not appropriate for strongly human-disturbed land-

scape, whose dynamics are not stochastic (Boerner et al.

1996; Weng 2002). However, a discrete-time Markovian

model could lead to unreliable results and a misinterpre-

tation of complex patterns because spatial relationships

can strongly alter persistence and coexistence. As a result,

it is necessary to incorporate a spatially explicit analysis

of the interaction between neighboring landscape patterns

to understand complex and dynamic landscape patterns

(Verburg et al. 2004a, b). An explicitly spatial CA model

has been developed to represent spatial and time-depen-

dent processes and the nonlinear behavior of complex

systems, such as forest dynamics or planning (Lett et al.

1999), urban growth, and land use change (Stevens and

Dragicevic 2007; Stevens et al. 2007). CA means that the

model’s decision concerning whether to change the state

of a pixel explicitly takes the state of the neighboring

pixels into consideration (Pontius and Malanson 2005).

Therefore, an integrated model that is obtained by com-

bining Markov chains and CA might represent an effec-

tive way to model the landscape dynamics (Caruso et al.

2005; Pontius and Malanson 2005; Guan et al. 2011)

because the temporal and spatial dynamics of landscape

patterns are controlled by the stochastic behaviors of the

Markov chain process and the spatial dimension of the

transition rules.

To identify the characteristics of natural landscape pat-

tern dynamics, the Ili River delta in Central Asia was

selected as the study area. The landscape pattern dynamics

of this region correspond to natural landscape characteris-

tics, which show random evolution and ecological stability

overall, and their principal driving forces are physical

environmental factors, such as the climate variability and

runoff flow (Kipshakbaev and Abdrasilov 1994; Sivanpillai

et al. 2006). Although the effects of human-induced dis-

turbances (e.g., the construction of the Kapchagai reservoir

and land reclamation in the upper or middle reaches of the

river) are obvious in this area, the direct human distur-

bances have had relatively weak impacts on the Ili River

delta between 1978 and 2007. Furthermore, the Ili River

delta, which is one of the largest inland deltas in Central

Asia, exhibits a high scientific and educational value,

which is associated with increasingly widespread human

disturbance (Kezer and Matsuyama 2006; Propastin 2008).

Most studies that have been conducted in the region to date

have focused on the investigation of the dynamic charac-

teristics of the hydrology and climate of the Balkhash Lake

basin (Mikhailov 2004; Lal et al. 2007; Hwang et al. 2011),

but there is little information that is available about the

dynamics of the landscape patterns in the area, mainly

because there is limited accessible monitoring data and a

lack of appropriate research methodologies.

The objectives of this study were (1) to analyze the

landscape pattern changes and their possible driving

forces in the Ili River delta during the period of from

approximately 1978 to 2007, (2) to develop an integrated

model that is based on a Markov model and a CA model

and to validate that model using landscape type data that

is derived from Landsat images that were obtained from

approximately 1978 to 2007, and (3) to apply the

developed model to predict future trends in landscape

patterns for the next 20 years. This research will provide

a fundamental resource for analyzing the underlying

causes of landscape pattern changes, and its results have

environmental and socioeconomic implications that are

related to sustainable land use planning and decision-

making.
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Materials and methods

Study area

The Ili River delta in southeastern Kazakhstan (46�150

N, 74�30 E0) (Fig. 1) is the largest wetland in the Lake

Balkhash basin. The Ili River has a length of 1,439 km,

815 km of which lies within Kazakhstan. This river is

formed by the confluence of the Kunges and Tekes

Rivers flowing from the eastern Tianshan Mountains.

The river flows west across the China–Kazakhstan

border through the sandy Saryesik-Atyrau Desert and

the Kapchagai reservoir, and finally, it flows into Lake

Balkhash, forming the Ili River delta, which has vast

wetland regions that consist of lakes, marshes, and

jungle-like vegetation. The total area of the Ili River

delta exceeds 10,000 km2 (Propastin 2008), of which

the wetland areas occupy over 4,000 km2, accounting

for approximately 37 % of the total area. The Kap-

chagai reservoir is located in the middle reaches of the

Ili River and began to be filled in 1970. It exhibits an

area of 1,850 km2, with a water storage capacity of

28.1 km3, and it is used for the production of electric

energy and the long-term regulation of water flow. The

climate of the Ili River delta is temperate continental,

with distinct variations between seasons. The annual

average temperature is approximately 5.6 �C, and the

annual precipitation is approximately 150 mm (Sivan-

pillai et al. 2006). The dominant vegetation in the study

area consists of reeds, including Calamagrostis

pseudophragmites and Phragmites communis in the

floodplain areas.

Data collection and processes

Four types of data sets were used (see Table 1), including

(1) Landsat MSS, TM, and ETM images that were used to

map the land cover distribution; (2) land cover survey data

that were collected in May 2009 and June 2012, and Go-

ogle EarthTM images that were used for selecting sampling

plots for accuracy assessment; (3) hydrological data on the

fluvial runoff volume of the Ili River over the past 40 years

(1953–1992) and water levels of Lake Balkhash over the

past 53 years (1953–2005) (Tacis Central Asia Action

Programme 2006 2010a, b), which were used to account

for the landscape dynamics; and (4) socioeconomic data

that were obtained between 1970 and 2007, and ancillary

topographic data that were used to develop criteria for

making decisions for various land cover type transitions in

the simulation of the CA-Markov approach.

Radiometric and atmospheric calibration was conducted

for the Landsat images using the image-based dark-object

subtraction method (Chander et al. 2009). The MSS images

generally exhibit an original spatial resolution of

Fig. 1 Map showing the

location of the study area
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57 m 9 79 m, whereas Landsat TM or ETM images show

a spatial resolution of 30 m. All of the images were geo-

metrically registered in the WGS_1984 UTM coordinate

system (Zone 44, North) using Transverse_Mercator pro-

jection with a geometric error of less than one pixel, in

such a way that all of the images exhibit the same coor-

dinate system. The nearest-neighbor resampling technique

was employed to resample the Landsat images to a pixel

size of 30 m 9 30 m during the image-to-image

registration.

The land cover classification system that was used in

this study consisted of wetland (e.g., rivers, lakes, marshes,

floodplains), shrubland, desert grassland, and sandy land,

according to the wetland classification system of China

(Niu et al. 2009; Gong et al. 2010) and the international

land cover classification system for arid landscapes

(Anderson et al. 1976). Online Resource 1 describes the

definitions of the land cover classes.

For historical remote sensing data, land use/land cover

classification is often difficult due to the lack of sufficient

training samples that can be used for image classification.

A supervised classification algorithm based on a decision

tree classifier coupled with principal component and tex-

tural analyses was employed for image classification in this

study, which was useful for distinguishing different types

of wetlands and other landscape types (Baker et al. 2006).

Decision tree learning is a supervised classification method

in which the learned function (based on the training data) is

represented by a decision tree. This method is a hierarchal

top-down approach that performs binary recursive parti-

tioning on the basis of a set of tests that are defined at each

branch (or node) in the tree to automatically allocate the

maximum information-carrying features for classification

and discards the remaining features at that transitional

stage. Thus, it is an efficient tool for land cover classifi-

cation. This hierarchically based classification approach

allowed us to avoid the dilemma of the lack of training

samples that were available for historical remote sensing

data and made full use of analysts’ experiences and

knowledge for accurately mapping the land cover

distribution.

A post-classification comparison/refinement method that

involves visual manual editing was applied to detect land

use/land cover change trajectories. The errors that occurred

at the class boundaries due to a spectral mixture within the

pixels were replaced with values that were based on their

surroundings using majority analysis. Any other spectrally

confused pixels were re-coded into their correct land cover

classes, while referring to visual interpretations. Finally,

land cover maps were generated for four dates (Fig. 2): a

circa 1978 land cover map based on Landsat MSS images

from 22 August 1977 and 31 August 1979; and land cover

maps for 1990, 1998, and 2007, which were based on TM

images (25 May 1990, 2 May 1990; 28 September 1998, 3

September 1998), and ETM images (13 September 2007

and 19 September 2007).

An accuracy assessment of the classification results

from the 2007 Landsat TM images was conducted using a

total of 300 ground reference points from high-resolution

images (1–5 m) of Google Earth and topographic maps.

The Kappa coefficient can be used to analyze the accuracy

assessment of the land cover classification by comparing

the classification results with ground reference points from

high-resolution images of Google Earth, and in addition, it

can also be used to measure the similarity of two images,

which can be applied to assess the stationarity of the

landscape. The Kappa coefficient (KC) is calculated as

KC ¼ ðPo � PeÞ=ð1� PeÞ ð1Þ

where Po is the percentage of the observed agreement, and

Pe is the percentage of the expected agreement. The values

of KC C 0.75 were considered to have excellent agree-

ment, 0.4–0.75 good agreement, and less than 0.4 poor

agreement (Donker et al. 1993).

Model description

Although a Markov model can be used as a convenient tool

for land cover modeling through a transition probability

matrix over a specified time period, it provides no spatial

information on the occurrence of land cover transforma-

tions. The integration of a Markov model with a dynamic

spatial CA model, i.e., the CA-Markov model, can over-

come the inherent limitations in each model and provides a

means of simulating and predicting the temporal and

Table 1 Landsat images used in this research

Sensor

data

Acquisition date;

path/row; cloud cover

(%)

Spectral and spatial resolutions

MSS 22 Aug. 1977; 162/29;

0 %

31 Aug. 1979, 163/28;

0 %

Four visible and near infrared

bands with a 79-m spatial

resolution

TM 26 May 1990; 150/29;

0 %

2 June 1990; 151/28;

0 %

28 Sept. 1998;

151/29; 1 %

3 Sept. 1998; 152/28;

0 %

Three visible bands (blue, green,

and red), one near infrared (NIR)

band, and two shortwave

infrared (SWIR) bands with a

30-m spatial resolution

ETM 13 Sept. 2007;

151/29; 0 %

19 Aug. 2007; 152/28;

0 %

The same as TM, but including

one panchromatic band with a

15-m spatial resolution
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spatial dynamics of the landscape patterns (Shafizadeh and

Helbich 2013; Mondal and Southworth 2010; Guan et al.

2011; Kamusoko et al. 2009).

The IDRISI program involves two techniques, i.e.,

Markov chain analysis and cellular automata (Eastman

1999). The task of the CA-Markov model was

accomplished in the IDRISI software package. The main

procedures for this operation in this study are given in

Online Resource 2.

The CA-Markov model in the IDRISI program uses land

cover maps, transition probability matrices produced via

Markov analyses, and a collection of suitability maps to

Fig. 2 Land cover changes for

the Ili River delta during circa

1978–2007
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output land cover projections (Schneider and Pontius

2001). This approach begins with an iterative process of

reallocating the land cover until it meets the areal totals

that are predicted by the Markov model, where the land

cover changes develop as a growth process in the areas of

high suitability that are proximate to existing areas

according to transition rules, which are based on local

spatiotemporal contiguity (Pontius and Malanson 2005).

It is essential to test whether the landscape pattern

dynamics of the Ili River delta can be characterized by

independence/randomness and stationarity/homogeneity.

Only when it meets the assumptions of randomness and

stationarity of landscape change, can a Markov model be

used to describe or project the landscape processes. The

Kappa coefficient of agreement can be used to test the

stationarity of the landscape processes.

Pearson’s chi-square (v2) test was also applied to test the

independence of the landscape processes between succes-

sive time steps. Pearson’s v2 is a distributed v2 that has

(n - 1)2 degrees of freedom, where n indicates the number

of land cover classes.

Results

Accuracy assessments of land cover classifications

The classification accuracies for the 2007 land cover

classification are summarized in Online Resource 3. The

2007 Landsat ETM produced a high overall classification

accuracy of 88.7 % and a Kappa coefficient of 0.845,

which means that there was a good classification result

(Donker et al. 1993).

Accuracy assessments were not conducted for other land

cover classification results due to the lack of reference data.

However, the accuracy of these results was believed to be

similar to the accuracy of the 2007 land cover map, partly

because of the applied hierarchically based classification

approach. The stratification of land cover classes reduced

the spectral confusion among the different land use/land

cover classes; the analyst’s knowledge and experience

obtained from field surveys and Google EarthTM images

were employed in merging the clusters into meaningful

land cover classes, and manual editing in each step and

post-processing further removed the misclassified classes

that could not be automatically separated from the spectral

signatures. One advantage of this method is that it does not

require training samples during image classification, which

is critical for the land use/land cover classification that is

based on historical remote sensing data.

Based on the analysis described above, the results and

accuracy of the classification from approximately 1978 to

2007 can be applied to the analysis of landscape pattern

changes in this study.

Land cover changes from approximately 1978 to 2007

Wetlands, shrublands, and desert grasslands were found to

be the dominant landscape types in the Ili River delta

(Fig. 2; Table 2). The total wetland area, including river,

lake, marsh, and floodplain, and sandy land area remained

the same from approximately 1978 to 2007. However, in

the areas that fall under wetland classification grade II, the

lake, marsh, and floodplain areas initially experienced a

decrease from approximately 1978 to 1990, and then, they

gradually increased from approximately 1990 to 2007. The

area of desert grassland expanded by 20 % from approxi-

mately 1978 to 1990 and then continually decreased,

mainly being replaced with shrubland, marshes, and

floodplains. The area of sandy land was expanded by

50.6 % from approximately 1978 to 1990 due to conver-

sion from desert grassland and shrubland. After 1990, the

area of sandy land decreased and gradually returned to the

level that was observed from approximately 1978 to 2007.

The area of shrubland continued to increase, mainly due to

a transition from wetlands and desert grasslands. It was

evident that the patterns of landscape change in the Ili

River delta remained relatively stable from approximately

1978 to 2007, although periodic changes occurred in

marsh, lake, floodplain, desert grassland, and sandy land

areas. However, wetland and shrubland areas increased by

18.6 and 10.3 %, respectively, from 1990 to 2007, whereas

desert grassland and sandy land areas presented the oppo-

site trend, decreasing by 30.3 and 24.3 %, respectively.

The spatial distribution of the landscape in the Ili River

delta presented vertical and horizontal characteristics due

to the topographic and hydrological gradients in the area

(Fig. 2). In general, wetlands tended to be situated next to

the major river and were characterized by a vertical dis-

tribution along the major river course, giving priority to the

marsh and floodplain areas on both sides of the river,

whereas shrubland, desert grassland, and sandy land areas

were distributed in the horizontal direction along the major

river course. The desert grassland areas were aggregated in

the southwestern delta, where the river network was sparse.

Testing and validation of the CA-Markov model

With a critical region of 0.05 for the chi-square test for the

significance levels, the values of the test statistics were

much larger than v2
0:05 ð7�1Þ2 ¼ v2

0:05 36 ¼ 50:99; which

would indicate that the temporal landscape processes in

the Ili River delta were independent from 1990 to 2007

(Iacono et al. 2012) (Table 3). Excluding the period of
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approximately 1978–1990, the Kappa coefficients for the

period from 1990 to 2007 were all greater than 0.75

(Table 3). This finding means that the landscape change in

the Ili River delta could be described by a Markov process

from 1990–2007.

Three data sets, i.e., the land cover base map for 1990,

the transition suitability maps for 1998, and the 1990–1998

transition area matrix (see Online Resource 4), were inte-

grated using a CA spatial filter to simulate the landscape

pattern for 2007. Assuming 1998 as the initial time point of

the prediction, a total of nine iterations were specified

during the simulation because of the 9-year difference

between 1998 and 2007. With each CA spatial low-pass

filter, each land cover suitability map is re-weighted based

on a 5 9 5 contiguity filter, which determines the location

of the simulated landscape type (Pontius and Malanson

2005). Within each time step, the re-weighted suitability

maps are run through a multi-objective land allocation

(MOLA) process to spatially and explicitly allocate land

cover classes. The MOLA process resolves land allocation

conflicts by allocating the cell to the objective for which its

weighted suitability is highest, thus reducing the size of the

area to be assigned to each land cover class (Houet and

Hubert-Moy 2006). The allocation considers land use

suitability, the inherited attribute and the neighborhood

effect using the CA model. How much land is allocated to a

land cover type over the n-year period is determined by the

transition area matrix derived from the Markov model

(Myint and Wang 2006). At the end of each step, a new

simulated landscape map is generated by overlaying all of

the results of the land allocation procedure.

The simulated map for 2007 was compared with the

observed land cover map that was obtained from ETM

images for 2007 (Table 2; Fig. 3). The overall Kappa

coefficient between the simulated and observed landscape

maps for 2007 was 0.765, which basically meets the

model’s simulation accuracy requirement. However, the

Kappa indexes for the land cover classes were different

from one another. The Kappa coefficients of the simulated

versus the observed river, desert grassland, and sandy land

areas were greater than 0.84. Conversely, the accuracies of

the simulations for the lake and marsh areas were poor,

showing values of 0.1008 and 0.324, respectively. There-

fore, the CA-Markov model cannot generally predict the

changes in the lakes and marshes, which slightly reduces

the overall prediction accuracy for the landscape. The

reason for this result is that the lake and marsh areas in the

study area show significant temporal changes because of

periodic fluctuations in the water levels of Lake Balkhash

and the indirect effects of increasing intense human

activities since the 1960s, especially after the Kapchagai

reservoir was filled in 1970.

Based on the analysis described above, the landscape

change in the Ili River delta could be described by a

Markov process from 1990 to 2007, and the CA-Markov

model can be used to project future landscape changes

based on the landscape changes observed in the Ili River

delta from 1990 to 2007.

Prediction of the landscape patterns for 2020

The transition probability matrices obtained for 1990–2007

(Scenario A) and 1990–1998 (Scenario B), respectively,

were applied to the landscape prediction for 2020. The

Table 2 Observed areas of different landscape types in the Ili River delta in circa 1978, 1990, 1998, and 2007 and simulated areas for 2007

(km2)

Total area Wetland Shrubland Desert grassland Sandy land

Area/% River Lake Marsh Floodplain Area/% Area/% Area/%

Circa 1978 (observed) 11,257 4,956/44.0 161 398 3,340 1,057 3,240/28.8 2,629/23.4 431/3.8

1990 (observed) 11,257 4,030/35.8 143 101 2,905 881 3,448/30.6 3,142/27.9 637/5.7

1998 (observed) 11,257 4,114/36.5 150 53 2,176 1,734 3,632/32.3 2,861/25.4 649/5.8

2007 (observed) 11,257 4,781/42.5 129 212 3,258 1,182 3,804/33.8 2,190/19.5 482/4.3

2007 (simulated) 11,257 4,231/37.6 155 34 2,000 2,040 3,669/32.6 2,709/24.1 650/5.8

Kappa coefficient (2007) 0.895 0.878 0.101 0.324 0.635 0.658 0.838 0.862

RE (%) (2007) 11.50 16.93 517.96 62.87 42.11 3.66 19.18 25.89

RE relative error = (simulated - observed)/observed 9 100 %

Table 3 Values of the v2 (significance level: 0.05) and Kappa

coefficients in different periods

1990–1998 1998–2007 1990–2007

v2 1.0 9 107 1.65 9 107 1.37 9 107

Kappa coefficients 0.815 0.788 0.762
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transition probability matrices for 1990–2007 and

1990–1998 are given in Online Resource 4. The landscape

pattern maps predicted for 2020 were generated using the

calibrated and validated CA-Markov model, assuming

1998 and 2007, respectively, as the initial time points of the

prediction (Fig. 4; Table 4). Compared to the landscape

pattern observed in 2007, for Scenario A, the wetland and

shrubland areas were predicted to increase by 11.5 and

9.9 %, respectively, whereas those of desert grassland and

sandy land would decrease by 33.0 and 38.4 %, respec-

tively; for Scenario B, the wetland and shrubland areas

were predicted to decrease by 7.3 and 3.4 %, respectively,

whereas those of desert grassland and sandy land would

increase by 14.6 and 32.5 %, respectively. The predicted

landscape for 2020 tends to improve ecological conditions

based on Scenario A but to generally degrade due to an

increase in desert grassland and sandy land based on Sce-

nario B. However, the overall Kappa coefficient of 0.754

for the 2020 predicted landscapes based on scenarios A and

B indicates that the predicted landscapes have excellent

agreement (Donker et al. 1993). The wetlands do not

experience large changes and generally stay steady in total

amount in both scenarios, but several changes occur in the

subclasses and the other main classes, and the differences

and representation of the land cover classes also vary from

one to another. The desert grasslands and sandy lands

presented a high goodness-of-fit, with Kappa coefficients

[0.75, while the lakes and marshes had the lowest degrees

of agreement, with Kappa indexes that were under 0.30.

The spatial characteristics of the predicted landscape

patterns for 2020 are similar to that of the landscape in

1998 and 2007. The landscape types that are related to

Fig. 3 Simulated versus actual

landscape pattern in 2007
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Fig. 4 Predicted distributions

of land cover classes for 2020

with transitional probability

matrices of 1990–2007

(Scenario A) and 1990–1998

(Scenario B), respectively, and

their spatial differences

Table 4 Observed areas of different land cover classes in 2007 and projected areas for 2020 based on the transitional probability matrices for

1990–1998 and 1990–2007, respectively (km2)

Total area Wetland Shrubland Desert grassland Sandy land

Area/% River Lake Marsh Floodplain Area/% Area/% Area/%

Actual/2007 11,257 4,781/42.5 129 212 3,258 1,182 3,804/33.8 2,190/19.5 482/4.3

Projected/2020 Scenario A 11,257 5,312/47.6 101 289 3,891 1,031 4,180/37.1 1,468/13.0 297/2.6

Scenario B 11,257 4,434/39.4 60 118 1,938 2,318 3,674/32.6 2,511/22.3 639/5.7

Change Scenario A 531 -28 77 633 -151 376 -722 -185

Scenario B -347 -69 -94 -1,320 1,136 -130 321 157

Change (%) Scenario A 11.5 -21.7 36.3 19.4 12.8 9.9 -33.0 -38.4

Scenario B -7.3 -53.5 -44.3 -40.5 96.1 -3.4 14.6 32.5

Scenario A: The projection situation for 2020 based on the transitional probability matrices for 1990–2007

Scenario B: The projection situation for 2020 based on the transitional probability matrices for 1990–1998

Change = projected - actual; Change (%) = (projected - actual)/actual 9 100 %
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wetlands are mainly distributed along the direction of the

Ili River, giving priority to the marsh, floodplain, and

shrubland on both sides of the river, the total area of which

occupied 70.4–80.9 % of the entire delta. The desert

grassland aggregated southwest of the sparse river network

of the delta, where most of the marsh and desert grassland

occurred. However, the distributions of the lake and sandy

land have a degree of uncertainty. High potential transi-

tions among the marshes, floodplains, and shrublands could

result in more fragmentation of the landscape, weakening

the landscape connectivity in the future. This circumstance

will play an important role in the evolution of the land-

scape patterns of the Ili River delta.

Possible driving forces of the landscape dynamics

Regional climate variability and indirect human activities

have contributed to altering the natural wetlands in the

delta. The inflow of the Ili River to the delta is dependent

on its upstream characteristics. Upstream, the annual

precipitation of 386.8 and 406.5 mm during 1987–2009

and 1997–2007, increased by 10.1 and 15.7 %, respec-

tively, compared with that of 351.4 mm during 1957–1986

(Sun et al. 2010; Abulaiti 2012). An average annual runoff

yield of 15.9 km3 upstream constitutes 69.5 % of the

entire runoff of the Ili River (Wang and Lu 2009). The

intense development of agricultural activities along the Ili

River and Karatol River accelerated the water loss from

Lake Balkhash from 1960 to 1985. The volume of the

inflow of the Ili River to Lake Balkhash was 15 km3 in

1970, which was sharply reduced to 7 km3 in 1983 due to

the construction of the Kapchagai hydroelectric power

station in the 1970s (Hwang et al. 2011). The primary

reason for the decrease in the area of the wetlands was the

decline of the water level in the lake from 1970 to 1985,

which is caused by a decrease in the inflow to Lake

Balkhash. Figure 5 was created by integrating the scat-

tered public references, including the upstream inflow, the

inflow to Lake Balkhash, the water usage of the Ili River

delta, the irrigation abstraction, and the water level of

Balkhash (Wang and LU 2009; Tacis Central Asia Action

Programme 2006 2010a, b; Xie et al. 2011; Abulaiti

2012). The upstream inflow of the Ili River was relatively

stable, whereas the inflow to the lake was reduced sig-

nificantly following the initiation of the filling of the

Kapchagai reservoir in 1970 for agricultural irrigation and

the production of electric energy. This change led to a

continuous increase in water extraction for irrigation from

the Ili River until 1991. The construction of the Kapchagai

reservoir led to some additional adverse effects on the

wetland ecosystems, such as altering the natural hydro-

logical patterns, decreasing the size of the wetland areas,

and decreasing the biodiversity (Tacis Central Asia Action

Programme 2006 2010a). However, following the collapse

of the former Soviet Union in the early 1990s, the irri-

gated area of the Ili River basin significantly decreased, by

30 %, and the volume of water used for irrigation

decreased by up to 53 % from 1990 to 2006 (Tacis

Central Asia Action Programme 2006 2010a). The Kap-

chagay Dam was completed in late 1969 and began slowly

filling the reservoir in 1970. Over a period of 16 years

between 1970 and 1985, the volume of Lake Balkash

declined by 39 km3 to directly feed the Kapchagay Res-

ervoir, and by 1987, Lake Balkash had reached the lowest

lake level ever recorded. However, in 1988, this situation

improved when the volume of Balkash increased once

more from the river discharge from the east. In addition,

the climate conditions favored an increased river runoff

upstream of the Ili River watershed from 1986 to 2007

(Sun et al. 2010; Abulaiti 2012). These factors signifi-

cantly increased the inflow to Lake Balkhash, contributing

to the rise in the lake water level from 1990 to 2007 and a

corresponding increase in the wetland areas in the Ili

River delta.

However, regulation of the runoff of the Ili River has

primarily altered the hydrological regime of the streams

in the delta since the early 1990s, which would be highly

advantageous for improving the maintenance of the

vegetation system of Lake Balkhash and for the reha-

bilitation of wetland ecosystems in the Ili River delta

(Abdrasilov and Tulebaeva 1994). The wetland landscape

pattern of the Ili River delta presented significant fluc-

tuations due to hydrological variability and indirect

human disturbances.

Figure 5 shows that the changes in the lake water level

and wetland landscape patterns in the Ili River delta have

responded to climate-driven hydrological processes and

human disturbances in the Ili-Balkhash basin. However,

these changes were inconsistent, with the former lagging

Fig. 5 Hydrological changes in the Ili River delta (derived from the

scattered references related to lake Balkhash)
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behind the latter. For example, despite the relatively high

water flow of the Ili River from 1988 to 1990 and the sharp

reduction in the area of the irrigated lands in the Kazakh-

stan portion of the basin in the 1990s, desertification has

become apparent along the Ili River as well as in the

easternmost portion of the delta (Starodubtsev and Trus-

kavetskiy 2011).

Discussion

Although the CA-Markov model is effective in simulating

the overall dynamics of the natural landscape of the Ili

River delta, it cannot precisely simulate the change in the

landscape due to human disturbances, and certain errors

and uncertainties exist in the results of the simulation.

Some of these errors are mainly explained by the limita-

tions of the image classification procedure and the inherent

uncertainties in the model that result from the transition

rules; some result from the neighborhood configuration, the

time step, stochastic variables of the CA-Markov model,

and the uncertainty in the natural factors coupled with

human disturbances, such as fluctuations in the water

inflow of the Ili River, which are primarily driven by cli-

mate variability.

Sensor noise, atmospheric disturbances, and limitations

of the classification algorithms are possible sources of

classification errors (Lu and Weng 2007). For example,

some of the pixels could be misclassified with respect to

their land cover types by employing classification tech-

niques on remote sensing data. The existence of mixed

pixels in remote sensing images also causes uncertainty for

remote sensing classifications due to spatial resolution

limitations. The land cover types that share similar spectral

response patterns in the images make it difficult to identify

pure patches and result in confusion in classification,

especially in the nonvegetated area. Nevertheless, these

result in uncertainties in the data sources for the simulation.

In addition to data source errors, common GIS operations

or transformations (e.g., vector–raster transformations or

raster–raster transformations) can also bring about uncer-

tainties in the CA modeling due to a loss in the spatial

detail.

One of the inherent model uncertainties is the errors in

the estimations of the parameters and calculating the

transition rules using a predefined parameter matrix. In this

study, two scenarios were designed to predict future land-

scape patterns with a validated CA-Markov model. There

are some differences in the landscape patterns for 2020

because two different transition probability matrices were

applied to landscape predictions during the simulation of

the model. On the one hand, this approach can explain, to

some extent, the inherent uncertainties in the model that

result from the transition rules, and on the other hand, the

degree of uncertainty in the model is also partly specified.

The CA-Markov model considers a probability matrix of

plausible future states with respect to a general trend for

each landscape type and does not consider fluctuating

changes that are derived from having a succession of

landscape types driven by climate change (White and

Engelen 2000; Yeh and Li 2003).

The neighborhood configuration is another problem in

implementing the transition rules into computational

models using discrete cells, which are only approximations

to continuous space and have a loss of spatial detail; thus,

how to choose the proper cell size and cell shape within a

neighborhood can affect the outcome of the simulation. It

is important to account for the influence of the total number

of iterations (time steps) on the location of the simulated

landscape types when the contiguity rule is applied because

the definition of the edges is updated at each iteration of the

time step. A small number of time steps will not allow

spatial details to emerge during the simulation process,

while a larger number of time steps can lead to more

iterations and generate more accurate simulation results

(Yeh and Li 2006).

Therefore, it is difficult to accurately predict the trends

in some classes, such as lakes, marshes along the shoreline,

and floodplains, which have shown nonstationarity to some

extent. This finding suggests that the model’s simulation

accuracy increases with the stationarity of the natural

landscape.

Conclusions

Using Landsat image-derived land cover data (obtained

circa 1978, 1990, 1998 and 2007), our proposed combi-

nation model linked Markov chain analysis with a cellular

automata model and was applied to simulate landscape

pattern changes in the Ili River delta. This model was

demonstrated to be an effective tool for conducting detailed

research on a wetland landscape that is characterized by

indirect human disturbances. The evolution of the land-

scape pattern from approximately 1978 to 2007 and the

prediction for 2020 revealed that there is a different trend

of landscape changes in the Ili River delta. The patterns of

landscape change in the Ili River delta remained relatively

stable from 1990 to 2007, although periodic changes

occurred in marsh, lake, floodplain, desert grassland, and

sandy land areas. However, wetland and shrubland areas

showed an increasing trend from 1990 to 2007, whereas

desert grassland and sandy land areas presented the oppo-

site, decreasing trend. These observations could be closely

related to the impacts of natural factors, such as climate-

driven hydrological processes. The 2020 predicted
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landscapes that are based on both scenarios indicate that

the predicted landscapes have excellent agreement. The

wetlands do not experience large changes and usually

remain steady with respect to the total amount in both

scenarios, but several changes occur to subclasses and

other main classes. The errors in the land cover classifi-

cation and the inherent uncertainties in the model might

contribute to the uncertainty of the simulation and the

projection that is based on the CA-Markov model.

Due to the inherent characteristics of the lake and river,

the changes in lake water levels and wetland landscape

patterns detected in the Ili River delta were inconsistent,

and the former generally lagged behind the latter. This

situation will result in some projection errors for the CA-

Markov model.

As the CA-Markov model has been demonstrated to be

useful for investigating certain types of landscapes with

different landscape structures, CA-Markov projections for

such landscapes can serve as an early warning system for

the future effects of potential landscape changes. Land

managers and decision makers could therefore evaluate the

ecological and economic impacts of predicted landscape

changes more effectively and implement alternative land

use policies and conservation strategies as necessary.
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