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Abstract Globally, tropical forests are being perturbed

by human activity. Tropical vegetation constitutes some of

the largest terrestrial carbon stocks against the build up of

greenhouse gases. In this paper, a local-scale case study

utilising remote sensing methodology in estimating forest

loss is presented, for a section of tropical South Africa’s

Soutpansberg Mountains where land use pressure threatens

some of the last remaining indigenous forests. Landsat TM

images from October 1990, August 2000 and September

2006 were used, together with municipality level demo-

graphic data. Hybrid image classification techniques

distinguished forest cover on the images, which were

classified into vegetation density categories. About 20% of

forest and woodland cover was lost in the 16-year analysis

period, mainly due to pine and eucalyptus plantation and

residential housing expansions. The local-scale key drivers

behind the deforestation are examined.

Keywords Deforestation � Vegetation � Remote sensing �
South Africa

Introduction

Removal of forest and woodland is of ecological concern in

the contexts of, among others, biodiversity conservation

and groundwater recharge (Shimabukuro et al. 1998), and

carbon stock provision in buffering the build up of CO2 as

a greenhouse gas (Foody et al. 1996; Patenaude et al.

2005). Globally, tropical forests are being destroyed,

mainly by human activity. In Africa, tree cover is perturbed

by several natural and human factors, including fire, live-

stock grazing, human population and cultivation (Bucini

and Hanan 2007), thereby contributing to deforestation.

Deforestation is defined as conversion from forest land to

non-forest land (subject to the definition of ‘forest’)

(DeFries et al. 2007).

In South Africa’s Limpopo Province, provision of

energy from wood, urban expansion and agriculture are

some of the key issues behind deforestation (Department of

Environmental Affairs and Tourism 2003). Historical

government settlement policies saw the relocation and

concentration of native South Africans in ‘homelands’. In

the former Venda homeland, these high human concen-

trations affect the eastern edge of the Soutpansberg

mountain range and have resulted in localised pressure on

woodlands and forests for purposes of settlement and

subsistence agriculture in places. The conservation status

of the Soutpansberg mountain bushveld vegetation unit of

the savannah biome is officially categorised as ‘vulnerable’

(Mucina and Rutherford 2006). The unit consists of a

rainfall gradient distribution of dense deciduous woodlands

and evergreen montane forests with a poorly developed

grassy layer, as well as relatively open savannah in places

(Mucina and Rutherford 2006). Outside the area under the

former Venda homeland, exotic eucalyptus and pine

plantations on the Soutpansberg range put added pressure
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on the maintenance of the status of the Soutpansberg

mountain bushveld vegetation unit.

Multitemporal remote sensing is useful in monitoring

the trends in status of tropical forests and woodlands

(Myers 1988; Foody et al. 1996; Phua et al. 2008), and can

provide data in support of decision making for the man-

agement of harvesting and protection of threatened tropical

forests and woodlands, including in the context of inter-

national protocols (Stoms and Estes 1993; Archard et al.

2002; Patenaude et al. 2005; DeFries et al. 2007; Buchanan

et al. 2008). The methods utilised in monitoring forest

degradation and deforestation by remote sensing broadly

measure indicators of the biophysical attributes of the

surface (spectral information), the seasonality of these

attributes (temporal information), and their fine-scale spa-

tial pattern (spatial information) (Lambin 1999). One of the

most commonly used approaches is pixel-based classifi-

cation comparisons, in which the multitemporal images of

forest locations are classified into categories that enable

forest cover change mapping in a GIS framework (e.g.

Prins and Kikula 1996; Sánchez-Azofeifa et al. 2001;

Alves 2002; Dezso et al. 2005; Vågen 2006; Buchanan

et al. 2008). Sub-pixel classification comparison approa-

ches have also been used, for example spectral mixture

analysis in which the relative abundance of specific com-

ponents (end members) of the forest landscape is quantified

on the multitemporal images to enable forest area change

assessment. Brandt and Townsend (2006) used green

vegetation, non-photosynthetic vegetation, dark soil, light

soil and shade as end members on multitemporal imagery

in a forest degradation study. Phua et al. (2008) have used a

related technique involving change vector analysis and

image differencing of multitemporal image pattern

decomposition coefficients. Image segmentation, in which

homogenous forest pixels are connected according to their

properties, has also been utilised in deforestation assess-

ment (e.g. Shimabukuro et al. 1998).

Coppin et al. (2004) provide an overview of the com-

mon change detection methods in remote sensing applied

to ecosystem monitoring, and note that pixel-based clas-

sification comparisons have the advantage that separately

classifying the multitemporal imagery minimises the

problem of radiometric calibration between dates. A further

advantage of classification comparisons is the capability to

produce a matrix of change information (Lu et al. 2004).

Key pre-requisites of successful post classification change

detection include accurate image registration (Mouat et al.

1993; Serra et al., 2003; Lu et al. 2004; Lillesand et al.

2004; Jensen 2005) and accurate image classification

(Serra et al. 2003; Coppin et al. 2004; Lillesand et al.

2004). However, often there is inadequate information for

interpretation of historic images, making the classification

process difficult (Lu et al. 2004). Classification and

registration errors are compounded in the resulting change

detection (Serra et al. 2003; Lillesand et al. 2004).

In this study, multitemporal image classification was

utilised to quantify and map forest cover change on parts of

the Soutpansberg mountain range in South Africa’s

Limpopo Province, which included the Venda region. A

pixel-based classification approach was employed in the

study. Deforestation is of concern in South Africa in

general, with negative ecological and socioeconomic con-

sequences on the livelihoods of some already impoverished

people (Smith 1991; Du Plessis 2000; Binns et al. 2001).

Mapping and quantifying the deforestation is potentially

beneficial in the context of planning remedial measures.

The study presents remote sensing derived data from a

localised area on rates of tropical forest conversion.

The study area

The study area is located in Vhembe District in the north-

eastern part of South Africa, in Limpopo Province (previ-

ously Northern Province) (Fig. 1). Administratively,

Vhembe district is divided into four local municipalities:

Makhado, Musina, Mutale, and Thulamela. The most

densely populated areas are in Thulamela and Makhado

municipalities. The area has a tropical climate favouring

the fruit plantation agriculture that is common, with a

distinct (summer) rain season from October/November to

March/April.

Large parts of the region in which the study area is

located were under nominal autonomy as the Venda

‘homeland’ from 1979 until the political changes of 1994

when it was reincorporated into the Republic of South

Africa. Most of the homeland encompassed either eastern

parts of the scenic hilly terrain landscape of the Sout-

pansberg range, or parts of the hot and relatively arid

Limpopo valley. During the autonomy, the capital town

was Thohoyandou (Fig. 1b), and the homeland encom-

passed mainly what is now under Thulamela and Mutale

municipalities, as well as the eastern part of Makhado

Municipality. The confinement to the homeland meant that

in the semi urbanised villages surrounding Thohoyandou,

demand for land for housing and agriculture inevitably

resulted in encroachment onto the forests and woodlands of

the Soutpansberg Mountains.

The vegetation communities in the Soutpansberg Moun-

tains occur as east–west bands, following the orientation of

the ridges of the mountain range. The topography changes

drastically over short distances, resulting in orographic rain

on the southern ridges and a rainshadow effect on the

northern ridges (Mucina and Rutherford 2006). Higher

rainfall on the southern slopes supports dense deciduous

woodlands at lower altitudes consisting of small-tree species
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(dominated by Englerophytum magalismontanum, Diospy-

ros whyteana, Schefflera umbellifera, Tarchonanthus

trilobus subsp. galpinii, Aloe vogtsii) and dense evergreen

montane forests consisting of small-tree species (e.g.

Rapanea melanophloeos, Podocarpus falcatus, P. latiflius,

Celtis africana, Brachylaena discolour subsp. Transvaal-

ensis, Nuxia floribunda, Cussonia spicata), with the more

arid northern ridges consisting of tall-tree (e.g. Acacia

nigrescens, Adansonia digitata, Brachystegia spiciformis in

places) and small-tree (e.g. Combretum apiculatum,

Commiphora glandulosa, C. mollis) species (Butt et al. 1994;

Mucina and Rutherford 2006). There are a number of tree

species in the Soutpansberg Mountains that are endemic to

the area (e.g. Pavetta trichardtensis, Aloe vogtsii, Combre-

tum vendae, and about 13 others) and others that are

protected plants in South Africa (Butt et al. 1994; Mucina

and Rutherford 2006).

Parts of the Soutpansbergs to the north-west of the town

Louis Trichardt (Makhado; Fig. 1b, c) are conserved. The

image analysis in this study utilised the none-conserved

areas to the east (about 535,124 ha in size), which includes

high density human settlements and a number of softwood

(pine, eucalyptus) forest plantations on the high rainfall

southern slopes. The softwood from the plantations is uti-

lised in industry elsewhere in South Africa (sawlogs,

pulpwood, mining timber, poles and other log uses; DWAF

2005). The plantations are commercial, some owned by the

South African Forestry Company Ltd (SAFCOL, some

14,000 ha) and others by the pulp and paper company

Mondi.

Materials and methods

ERDAS Imagine 9.1 was used for image analysis, with

additional analysis and supporting mapping undertaken

using ArcGIS 9.0. A GPS with 5 m accuracy was used

during field work.

Remotely sensed image data

Landsat TM imagery (30 m spatial resolution) were

selected for use in the forest cover change study primarily

because the swath width of Landsat images could cover the

Fig. 1 Location setting of the study area
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Soutpansberg Mountains synoptically, thereby avoiding the

difficulties involved if a mosaic of images from different

dates were to be used as would be the case with smaller

swath width (larger spatial resolution) images. Early spring

time images were selected because, for this area, it is

mainly trees (and little to no grass) that are in leaf in early

spring, which reduced the spectral confusion between for-

est and grass during forest cover extraction from the

images. The image dates used were 6 October 1990, 30

August 2000, and 16 September 2006 (WRS 169-76). All

of the images were cloud free. From each image, the north-

western quadrant, which covers the Soutpansberg Moun-

tains, was utilised.

The South African National Land Cover (NLC) maps

compiled for 1996 (NLC96) and 2000 (NLC2000) were

used as base land cover maps for interpreting the location

of forest cover types on the three image dates. Based on

consideration of the time difference between the NLC

maps and the image dates, the 1990 image was interpreted

with respect to the NLC96 cover types (Fig. 2a), whereas

the 2000 and 2006 images were interpreted with respect to

the NLC2000 map (Fig. 2b).

Image preprocessing

The images were geometrically registered (UTM projec-

tion, Zone 36S, WGS 84) with sub-pixel root mean square

error (RMSE). Being historic images, the required meteo-

rological data at image acquisition time for use in

atmospheric correction models, such as aerosol composi-

tion (Lu et al. 2002), was not available. Consequently, only

correction for the additive effects of atmospheric back

scattering was undertaken, using the dark object subtrac-

tion technique (Chavez 1988) for the visible TM bands.

From each image date, a subset was extracted that

encompassed the Soutpansberg Mountains as closely as

possible while at the same time including land close to the

edge (slopes) of the mountains that is under forest per-

turbing human activity such as built-up (settlement) areas,

forest plantations and orchards. This subset (Figs. 2, 3)

thus included mountain slope areas near the towns Louis

Trichardt (Makhado) in the west, the hills in the vicinity of

Elim to the south, Nzhelele in the north, and just north of

Thohoyandou (Fig. 1).

Delineation of forest cover from remotely sensed image

data

Forest cover was delineated on each of the image subsets

using an image classification approach that combined ele-

ments of unsupervised and supervised classification. In the

process, unsupervised classification was employed in

clustering the images into vegetation density classes. The

resulting clusters served as spectral signatures that were

then named (based on field-observed tree density) and

edited, and on-screen digitizing of training areas for non-

vegetated features (water, burnt land) present in the image

scenes employed in generating spectral signatures for these

features. The spectral signatures generated were then col-

lectively used in a supervised maximum likelihood

classification of the respective images that yielded the

vegetation cover thematic layers with which forest cover

change analysis was undertaken. The image classification

approach utilised was, therefore, hybrid classification,

which is particularly useful in analyses where there is

complex variability in the spectral response patterns for

individual cover types such as in vegetation mapping, as

was the case in this study, and improves the accuracy of

purely supervised or unsupervised classification alone

(Clark et al. 2001; Lillesand et al. 2004).

A number of cover categories on the South African

National Land Cover (NLC) maps are related to natural

tree cover (excluding forest plantations) as shown in

Table 1, in addition to the cover category termed ‘forest’.

On the older NLC map (NLC96) forest and woodland are

combined in one cover category in addition to a separate

‘forest’ category as well as degraded forest and woodland,

whereas on the NLC2000 forest and woodland are separate

cover categories but combined in the class ‘degraded:

forest and woodland’ (Fig. 2). Because of these overlaps

and the fact that forest degradation opens up the forest, this

study considered all areas under the natural tree-related

NLC cover categories in Table 1 as important. Image areas

covering all the NLC natural tree-related cover types in

Table 1 were, therefore, of relevance to the analysis in this

study. Thompson (2004) has similarly combined the NLC

cover classes woodland, thicket, bushland, bush-clump and

tall fynbos in a comparison with the ‘savannah’ category

on another national database. As indicated in Table 1 forest

is, by definition, linked to tree density. Based on this tree

density criterion, unsupervised classification using the

iterative self-organising data analysis (ISODATA) algo-

rithm was employed in clustering each of the three image

subsets into six classes showing a gradient of vegetation

density and vigour from the most dense and vigorous to

dry, bare land. The resulting spectral signatures were then

edited and named, and signatures for water and burnt land

added by digitising polygons representing these respective

features and adding their spectral statistics to the signature

file generated by the ISODATA clustering, resulting in

eight classes (Fig. 4) whose spectral signatures were used

for a final supervised maximum likelihood classification

(bands RGB:345).

The eight classes used in the classification were defined

on the basis of a combination of field observation and the

spectral profiles in the TM bands compared to the known
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typical spectral behaviour of vegetation in that healthy

vegetation (dense) has high near infrared (TM4), low red

(TM3) and decreasing mid-infrared reflectance (TM5,

TM7) with increasing mid-infrared wavelength, whereas

dry soil has higher red, lower near infrared and increasing

(higher) mid infrared reflectance with increasing wave-

length (Lillesand et al. 2004; Jensen 2005). Water and

burnt land have low reflectance beyond the visible spectral

region (TM1, TM2, TM3). Sparse vegetation has influence

of dry soil and litter reflectance where present, lowering

near infrared and increasing red reflectance. These patterns

are depicted in Fig. 4, showing that the interpretation of the

class spectral signatures was in accordance with estab-

lished theory. Accordingly, Kogan et al. (2003) have

Fig. 2 Land cover maps of the

image analysis area

encompassing the Soutpansberg

Mountains, from (a) the NLC96

(NLC96 Cover) and (b) the

NLC2000 (NLC2000 Cover)

maps of South Africa
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Fig. 3 Image analysis area subsets from the full WRS 169-76

Landsat TM scenes for the three analysis dates (RGB:432). For each

subset, the tree vegetation cover delineated by the image processing

procedures is mapped. The natural tree vegetation cover layer

excludes forest plantations. Slight differences in image extent on the

western edge of the image analysis area are due to slight drifts in

ground coverage of WRS 169-76. The 30 August 2000 image depicts

extra green grass in the Forest and Woodland class (Fig. 2b), resulting

in forest cover area estimation error

Table 1 Definition of vegetation terms relevant to forest (tree) cover used on vegetation land cover classes on the South African National Land

Cover (NLC) maps for 1996 (NLC96) and 2000 (NLC2000)

Term Description/definition (Mucina and Rutherford 2006) Relevant NLC96 land

cover codes in Fig. 2a

Relevant NLC2000 land

cover codes in Fig. 2b

Forest A plant community having a continuous tree layer, with or

without a shrub/herbaceous layer, or ‘vegetation type

possessing canopy cover C75% of trees taller than 2 m’

(Edwards 1983).

1, 2, 13 1, 18

Woodlands (savannah) Typically vegetation with a grass-dominated herbaceous layer

and scattered low to tall trees. It includes the closed

woodland and open woodland of Edwards (1983) with a tree

cover less than 75% and generally greater than 1%.

1, 13 2, 18

Thicket Very dense vegetation usually formed by low or tall shrubs and

some trees.

3, 14 3, 19

Bush A local regional term generally applied to various forms of

savannah vegetation south of the miombo belts in southern

Africa.

3, 14 3, 19

Fynbos The dominant vegetation of the Fynbos Biome. The biome

consists of shrublands, herblands, and grasslands.

3, 19
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shown that there is a strong positive correlation between

vegetation (crop) density and a vegetation condition index

based on the NDVI (which utilises the near infrared versus

red reflectance contrast). Field site verification indicated

that the unsupervised clustering could distinguish two

categories of dense vegetation (dense veg 1, dense veg 2 in

Fig. 4) on the basis of a gradient in near infrared (TM4)

versus red (TM3) reflectance.

The spectral signatures of all eight classes were least

separable in the visible bands TM1 and TM2 (Fig. 4),

which were subsequently omitted from the image classifi-

cation process in order to utilise the strong spectral contrast

between vegetated and non-vegetated land on the red-near

infrared (TM3, TM4) edge, along with band 5 (TM5).

Foody et al. (1996) used a similar combination of TM

bands in Landsat image classification, pointing out that

Landsat TM data are generally three-dimensional with

visible, near- and mid-infrared wavelength dimensions,

which were represented by bands TM3, TM4 and TM5,

respectively. This three band, three-dimensional represen-

tation of Landsat TM data in image classification for

vegetation analysis has also been employed by other

authors (e.g. Hill 1999; Clark et al. 2001; Buchanan et al.

2008), while Tottrup (2004) similarly omitted the visible

bands due to their poor contribution to signature

separability.

On the NLC96 map, the natural tree-related cover types

that are of relevance to forest (as described in Table 1) are

1 (forest and woodland), 2 (forest), 3 (thicket and bushland,

etc.), 13 (degraded: forest and woodland) and 14 (degra-

ded: thicket and bushland, etc.). The parts of the 1990

image subset under other cover types except these were

masked out in order for forest cover change detection to

focus on these tree-related cover types that are of relevance

to forest. On the NLC2000 map, the natural tree-related

cover types are 1 (forest—indigenous), 2 (woodland—

previously termed forest and woodland), 3 (thicket, bush-

land, bush clumps, high fynbos), 18 (degraded forest and

woodland), and 19 (degraded thicket, bushland, etc.). Areas

under all other cover types except these were masked out

from the 2000 and 2006 image analysis area subsets. Thus,

the delineation of natural forest cover (natural tree vege-

tation cover in Fig. 3) utilised all the unmasked tree-related

cover classes on the respective image subsets, because they

all have elements of tree cover in their definition (Table 1).

Forest plantations were excluded from the forest cover

mapping but their area of cover per image date was cal-

culated using the NLC96 map for the 1990 image and the

NLC2000 map for the 2000 and 2006 images as guides to

forest plantation extents.
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Fig. 4 Plots of mean top of atmosphere reflectance values per band

for the eight classes into which the three images were classified. The

eight classes used were: dense, vigorous vegetation 1; dense, vigorous

vegetation 2; sparse vegetation; very sparse vegetation; vegetated dry,

nearly bare; bare, dry; water; burnt land
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Mapping and quantification of forest cover change

On each of the classified images, the dense and sparse

vegetation classes were interpreted as collectively mapping

forest cover (based on Table 1) and were, therefore,

merged to extract forest cover, resulting in the natural tree

vegetation cover thematic layers in Fig. 3, which represent

forest cover per respective date. The sparse vegetation

spectral signature encompassed woodland areas as well and

pixels classified as sparse vegetation were, therefore,

included in extracting forest cover so as not to exclude

woodland which was grouped with forest as ‘Forest and

Woodland’ on the NLC96 map (Fig. 2a). Then the forest

cover thematic layers for 1990, 2000 and 2006 were

recoded as 2, 3 and 4, respectively, which gave unique

resulting codes from the Boolean addition operation uti-

lised, compared to the coding of 1, 2, 3. A Boolean addition

model involving the intersection area of the three recoded

thematic layers was then assembled in the image process-

ing software, resulting in a forest cover change map

(Fig. 5) in which, in addition to these three respective

codes, 5 denoted forest cover in 1990 and 2000, 6 denoted

forest cover in both 1990 and 2006, 7 denoted forest cover

in both 2000 and 2006, and 9 denoted forest cover in 1990,

2000 and 2006 (i.e. locations with no forest cover change).

From this forest cover change map, area of cover for the

respective dates could be computed and the results assessed

at municipality level in conjunction with demographic

(socio economic) data from the South African government

central statistics agency (Statistics South Africa, StatsSA).

Classification accuracy assessment

and field verification

Field visits for purposes of determining vegetation char-

acteristics for use in image interpretation were undertaken

in September 2007, with follow-on visits for verification of

change in October 2007 and as part of classification

accuracy assessment in August 2008. Vegetation density

characteristics were observed at eight forest sample sites

during the first fieldwork phase, and site GPS positions and

descriptive information on approximate canopy cover per

30 m plot taken. The sites were chosen largely on the basis

of ease of access, and subsequently located on the classified

images for purposes of interpreting and naming classes.

Classification accuracy assessment in a long time span

multitemporal image data set has commonly been per-

formed for the newest image only (e.g. Brandt and

Townsend 2006; Buchanan et al. 2008). The accuracy

assessment in this study was similarly more reliable for the

newest (2006) image classification, from which a stratified

random sample of 211 field points was generated for

comparison against reference data from field visits in

August 2008. These points were subsequently visited in the

Fig. 5 Forest cover change

map for the whole image

analysis area. The image is a

result of Boolean pixel overlay

processing of the intersection

area of the forest cover thematic

layers in Fig. 3 (explanation in

‘‘Mapping and quantification of

forest cover change’’)
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field wherever accessibility permitted, or as close to the

point as possible where there were accessibility problems,

which is usually the practical solution to field verification

site accessibility problems (Brandt and Townsend 2006).

Based on field verification as reference data, the clas-

sification accuracy of the newest image was established to

be 89.6% (Table 2). The classification procedures gener-

ally delineated the dense vegetation classes accurately

(88.9 and 85.7%, respectively; Table 2), with the poorest

predictions by the classification scheme being those for

water and burnt land (75.0 and 71.4%, respectively). Ver-

ification for the burnt land class was particularly difficult

due to the historical nature of the images. Consequently,

burnt land verification sites were only indirectly judged

correctly classified where grass was found to be the dom-

inant cover type. Although widely varied, the dense

vegetation category encompassed forest areas ranging from

nearly complete canopy closure to more open locations

with about 65% canopy closure per 30 m square. The

classification accuracies of the 1990 and 2000 images,

approximately 87 and 85%, respectively, were assessed

using 1:50,000 topographic maps as surrogate reference

data because they were less reliably assessed from field

visits due to the large time difference since imaging dates,

given the possibility of vegetation change.

The coordinates of sites identified as having undergone

complete forest vegetation loss were entered into a GPS

and visited. During the field visits the suspected cause of

the forest loss was verified by establishing the current land

use/land cover at the sites. A total of 16 sites in accessible

locations were visited, 11 currently under residential

housing and 5 under forest plantations.

Results

Overall forest cover change in image analysis area

Table 3 shows the resulting quantification of area of

forest cover delineated by the image processing proce-

dures that utilised the unmasked image sections under

land cover classes on the South African National Land

Cover maps with elements of natural trees taken as

forest location indicator (see above, ‘‘Delineation of

Table 2 Classification error matrix for the newest image

Classification data Reference data

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Total User’s accuracy (%)

Class 1 16 16 100.0

Class 2 2 24 26 92.3

Class 3 4 39 43 90.7

Class 4 1 40 2 43 93.0

Class 5 6 39 1 46 84.8

Class 6 3 23 26 88.5

Class 7 3 2 5 60.0

Class 8 1 5 6 83.3

Total 18 28 40 46 44 24 4 7 211

Producer’s accuracy (%) 88.9 85.7 97.5 87.0 88.6 95.8 75.0 71.4

Overall accuracy (%)

89.6

KHAT (overall, %)

85.4

Class 1 Dense, vigorous vegetation 1; Class 2 dense, vigorous vegetation 2; Class 3 sparse vegetation; Class 4 very sparse vegetation; Class 5
vegetated dry, nearly bare; Class 6 bare, dry; Class 7 water; Class 8 burnt land

Table 3 Area of natural tree (forest) cover resulting from image analysis per administrative unit (municipality) on the three image dates

compared to area under vegetated forest plantation for the image analysis area

Image date Natural tree cover area (ha) Forest plantations area (ha)

Whole area Thulamela Makhado Mutale Musina Whole area Thulamela Makhado Mutale Musina

6 October 1990 91,476.3 26,334.0 43,015.1 22,011.9 115.2 23,460.4 10,052.3 13,399.0 9.1 0

30 August 2000 93,170.9 25,702.9 38,212.6 29,187.9 67.5 36,422.2 11,653.2 24,640.6 128.4 0

16 September 2006 73,179.8 21,368.0 32,415.8 19,364.0 32.4 35,380.7 10,933.7 24,330.6 116.4 0
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forest cover from remotely sensed image data’’). For the

whole image analysis area, the area under natural forest

declined by about 20% (18,296.5 ha) from 91,476.3 ha

in 1990 to 73,179.8 ha in 2006. In Fig. 5, the area that

had natural forest in 1990 but none in both 2000 and

2006 (i.e. forest 1990 only) is indicated in red. Forest

loss since 1990 is important since it indicates a non-

reversed trend based on three observation dates as

opposed to loss since 2000 or 2006. The location of this

loss in natural forest cover is in the vicinity of human

settlements in the vicinity of Elim and Tshakhuma, as

well as the forest plantation zone east of Makhado to

just west of Tshakhuma.

The slight increase in natural forest cover to

93,170.9 ha in 2000 can be attributed to presence of green

grass (indicated by a yellow circle in Fig. 3) in the

Limpopo-Mutale river valley section of the area, within

the cover class Forest and Woodland on the NLC96 map,

and mainly Thicket and Woodland on the NLC2000 map

(compare circled area in Fig. 3 with respective locations

in Fig. 2). This greenness was peculiar to the location on

the date, resulting from a peculiar flood pattern prior to

the date due to a small amount of dry season rains in June

and July 2000 compared to little or none in the same

period in 1990 and 2006 (Fig. 6a). The locations with

peculiar greenness mainly fall within Mutale Municipality

(Fig. 1a), and when the computation of area under forest

cover per image date is narrowed to municipality level as

shown in Table 3, it is clear that this increase in area

under forest cover between 1990 and 2000 is isolated in

this municipality alone because all the other municipali-

ties show a decline in area under forest between

the two dates. Makhado Municipality had the largest

decrease in area under forest cover between 1990 and

2006 (10,599.3 ha, or 24.6%), followed by Thulamela

(4,966.0 ha, or 18.9%), Mutale (2,648.0 ha, or 12%) and

then Musina (82.8 ha, or 72%). The change in natural

forest cover in Musina Municipality is disproportionate

because only a small fraction of the municipality was

included in the image analysis area (Fig. 1a).

In comparison, the area under vegetated forest planta-

tions in the image analysis area, derived by delineation

from the respective images using NLC forest plantation

cover, increased from 23,460.4 ha in 1990 to 36,422.2 ha

in 2000 (12,961.8 ha, or 55.2% increase) and 35,380.7 ha

in 2006 (50.8% increase). The slight decrease in area under

forest plantations between 2000 and 2006 is attributable to

harvesting (clear felling) of the pine and eucalyptus trees

between the two image dates in that by the 2006 image date

some of the trees had been cut and, consequently, the fields

with the harvested timber were not classified as vegetated

(dense or sparse vegetation categories, Fig. 4). The

increase in forest plantations was in all administrative units

(municipalities) except Musina, with the largest increase

being in Makhado, about 11,241.6 ha (83.9%) between

1990 and 2000. Therefore, of the 12,961.8 ha total increase

in forest plantation in the whole image analysis area

between 1990 and 2000, about 11,241.6 ha were within

Makhado municipality (1,600.9 ha in Thulamela, and

119.3 ha in Mutale). From a direct computation of area

under the forest plantation cover category for the entire

image analysis area on the NLC maps in Fig. 2, there were

29,126 ha of forest plantation on the NLC96 map and

44,646 ha on the NLC2000 map, an increase of 15,520 ha

(53.3%) between 1996 and 2000. The slight differences

between these totals and those in Table 3 are, firstly,

because of the time difference between the NLC maps and

the image dates, during which the plantation area changed

(1990 image versus NLC96 data from 1996 and NLC2000

data versus the 2006 image), and secondly because the data

in Table 3 are for detected vegetated forest plantations

excluding harvested (none vegetated) plantations at image

time.

So whereas the total area under natural tree vegetation

declined by 18,296.5 ha between 1990 and 2006, the

area under forest plantation increased by up to 12,961 ha

in 2000. Increase in forest plantations, therefore, appears

to account for some 12,000 ha (about 66%) of the

decline in natural forest cover, the remainder being

attributable to other human perturbations such as settle-

ment expansion which was verified in the field. The

demographic data in Table 4 are indicative of these

sources of perturbation.

Natural forest cover change related to causative factors

A number of socioeconomic and natural causative factors

can be responsible for the forest cover change detected,

including climatic factors, government policy, economics

and tenure. In this study, the forest management policy by

government (DWAF 2005) was judged little changed with

respect to enforcement in the area, despite the political

changes of 1994 and new regulations being passed since

then. However, forest conservation policy seems to have

improved given a number of relevant pieces of legislation

passed since 1994 (DWAF 2005). There is an ongoing

process of land tenure transformation since the political

changes of 1994 that involves restitution of land to local

communities, a politically sensitive issue, but as far as

was known to the researchers at the time of the study no

large tracts of land had been transferred to the commu-

nities in the Soutpansberg Mountain study area.

Therefore, natural tree harvesting practices and clearing

for alternative uses as part of economic development was

assumed as the main driver of forest cover change in the

area.
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(b) Temperature comparison 
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Fig. 6 Comparison of rainfall (a) and temperature (b) in the image

acquisition years using data from weather stations in the vicinity of

the Soutpansberg Mountain study area (see Fig. 1c for station

locations. Station Klein Australie is on a forest plantation just west

of Tshakhuma). The image acquisition dates were 6 October 1990, 30

August 2000 and 16 September 2006. Most stations recorded some

rainfall in the months June/July 2000 compared to little or no rainfall

in the same period in 1990 and 2006, helping explain the downstream

valley extra green grass on the 2000 image indicated in Fig. 3. Data
South African Weather Service

Landsat TM imagery to establish land use pressure induced trends 51

123



Climate

Dry season rainfall in the three months prior to image

acquisition date explains the detected slight increase in

natural forest cover to 93,170.9 ha in 2000 attributed to

presence of green grass (indicated by a yellow circle in

Fig. 3). There was some rainfall in the months June/July

2000 compared to little or no rainfall in the same period in

1990 and 2006 (see Fig. 6a), helping explain the down-

stream valley extra green grass on the 2000 image. The

drainage flow direction is generally north-eastwards

(Fig. 1c) towards the flat Limpopo valley, hence the extra

green grass vegetation in the Limpopo valley circled in

Fig. 3. In the long term, the rainfall patterns of the southern

Africa region has been in cyclic periods lasting about two

decades, with the 1970s having been wet, and the period

from the late 1970s into the mid 1990s dry (Mason 2001).

The image analysis period in this study was, therefore,

largely in the dry phase of the cycle and, therefore, long

term change in total seasonal rainfall is unlikely to have

caused the large shifts in forest cover observed. Differences

in temperature in the months prior to image acquisition

dates, through influence in onset of spring, could have

affected the mapped vegetation but a comparison of the

temperatures (Fig. 6b) shows that there were no large dif-

ferences prior to the three image acquisition dates (June–

July 2000 slightly cooler in association with the off-season

rains).

Socioeconomic factors

Forest exploitation for wood fuel in the area can be

examined in the context of income levels. Government

social improvement measures have seen an increase in

household access to electricity and better housing

(Table 4). However, despite the increase in household

access to electricity, wood is still preferred for cooking to

electricity by some households, due to the costs involved in

using electricity. Data from the 2007 Community Survey

by the state statistics agency Statistics South Africa

(StatsSA) shows that about 80% of individuals in the 15–

65 years age group have income less than R800

(1US$ = R8.00) per month (i.e. less than US$100 per

month) in the municipalities Makhado, Mutale, and Thu-

lamela (Table 4) that also constituted most of the study

area (Fig. 1b). Between 34.9 and 58.3% of individuals in

the 15–65 age group in the study area have no income

(Table 4). Given the traditional ‘extended family’ struc-

tures (i.e. societal obligation to support relatives) and

financial demands of higher priority, electricity (and the

required electric cooking appliances) is relegated to the

status of a luxury in terms of domestic cooking by some

households, hence the continued usage of wood.T
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Figure 5 shows that the largest area of consistent spatial

loss in forest since 1990 (indicated in red) is in the rela-

tively affluent triangular region between Louis Trichardt,

Thohoyandou and Elim, which also encompasses the area

of growth in forest plantations (Fig. 2). As shown in

Table 4, the number of permanent (brick) houses has also

increased, resulting in expansion of settlements. The

expansion in the settlements was judged in the field to be

less than 2 km from the position of old housing as existed

in 1990. Using this 2 km distance, a 2 km buffer around

major roads and settlements (built up) areas is shown in

Fig. 7 in order to illustrate the relationship between land

development and loss of natural tree vegetation since 1990

(indicative of a continuous loss trend as opposed to since

2000 or 2006 only). This combined buffer around roads

and settlements (‘development buffer’) encompasses

16,582 ha of natural forest land that has been lost since

1990, accounting for 90.6% of the 18,296.5 ha total decline

in area under natural tree vegetation between 1990 and

2006. Therefore, expansion in exotic species forest plan-

tations and urban expansion appear to be the main causes

of the loss of natural forest in the area. Though the cor-

relation analysis is limited by there being only three

observations in Table 3, there is a negative correlation

between the total area of natural tree cover and area of

forest plantations (r = -0.366, P [ 0.05, not significant).

Discussion

As established in ‘‘Natural forest cover change related to

causative factors’’, expansion in forest plantations between

1990 and 2006 in the image analysis area is one of the main

causes of decline in natural woodland and forest cover in

the study area. The other perturbing factors are wood

collection and settlement expansion. Some locations

in Fig. 5 appear to have no forest in 1990 but with forest in

2000 and 2006, which is attributable to slight differences in

grass greenness as influenced by microclimate, for example

the dry season rainfall experienced prior to the 2000 image

(see Fig. 6a). Whereas the number of households using

wood as the energy source for cooking is generally on the

decline (except in the more rural Mutale Municipality) and

the use of electricity is generally on the increase (Table 4),

the number of planned brick houses on separate plots is on

the increase. The housing infrastructure requires land,

resulting in encroachment on the natural forest and

woodland areas. The increase in number of brick housing

has apparently resulted in decline in number of traditional

mud-and-thatch dwellings. Both the increase in use of

electricity and in the number of brick housing is due to

government development policies since the political

changes in 1994. Despite increase in use of electricity,

wood is still in use as a supplementary energy source,

based on the fact that wood is largely free whereas elec-

tricity is not. Of the four municipalities in which the image

analysis area extended, Makhado is the most affluent, fol-

lowed by Thulamela and Musina. Makhado and Thulamela

municipalities have the largest increase in brick housing

infrasturacture 25,447 and 41,786, respectively, between

2001 and 2007. The two municipalities are also the loca-

tion of the largest amounts of decrease in natural woodland

and forest cover between 1990 and 2006, totalling 10,599.3

Fig. 7 The southwestern sector

of Fig. 5 at larger scale,

illustrating the spatial

association of natural forest loss

with exotic species forest

plantation expansion and built

up areas, using a 2 km buffer

around roads and settlements

(termed ‘development buffer’).

Most of the locations in Fig. 5

with consistent forest loss since

1990 (Forest 1990 only) are

within this buffer
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and 4,966.02 ha, respectively, for Makhado and Thula-

mela. Whereas most of this decline is due to expansion in

forest plantations in Makhado municipality, in Thulamela

the increase is largely due to expansion of residential set-

tlements (Fig. 7).

The classification scheme was generally accurate with

respect to classes that were utilised in delineating forest

cover, and generally consistent for the three images (see

Figs. 3 and 4), making the change detection reasonably

accurate. The relatively low prediction accuracies for

water and burnt land (Table 2) did not limit the accuracy

of change detection because these cover classes were not

utilised in the final forest cover change detection. Given

the classification accuracies of the 1990 and 2006 images

(87 and 89.6%, respectively), the accuracy of the resulting

change map between the two images at approximately

78% is reasonably indicative of the trend in woodland

loss in the area. This trend would not be sufficiently

indicated by a mere differencing of the 1990 and 2000

NLC land cover maps because the differencing would not

detect changes in amount of woodland and forest that

have resulted from tree harvesting within the areas

delineated as forest and woodland on the NLC maps. As

shown in Fig. 5, the multitemporal image classification

and GIS overlay analysis employed in this study was able

to detect such change, particularly in relation to settle-

ment (built up) areas (Fig. 7). In addition, the NLC96 and

NLC2000 cover categories (Fig. 2) are not directly com-

parable. For example, the results from the study could

have been narrowed down to change in indigenous forest

only, excluding woodland and thickets. This, however,

could not be undertaken because the older land cover map

of South Africa (NLC96) used in support of interpretation

of the 1990 image grouped woodland categories together

with forest, hence the wider analysis involving all tree-

related land cover classes (including thickets). Woodlands

are, however, included in the South African National

Forests Act which seeks to promote the sustainable

management and development of forests, which makes

their inclusion in this study important. The inclusion of all

tree cover land cover categories places the results of the

study in the context of studies in other parts of Africa that

stress the importance of tree cover (e.g. Grouzis and Akpo

1997; Hansen et al. 2002; 2003; Bucini and Hanan, 2007).

For example, Bucini and Hanan (2007) and Hansen et al.

(2003) have used MODIS-derived tree cover data sets as

opposed to forest cover in their analysis. Compared to

continent-wide studies of tree cover in Africa that are

spatially less detailed, this study presents results from at a

localised scale to yield finer scale estimates of the effect

of land use pressure on tree cover, using comparatively

high spatial resolution imagery. Friedl et al. (2002)

highlight the effect of spatial detail in land cover

monitoring, stating that at the 1 km spatial resolution

scale, land cover is largely static at quarterly (96 day)

intervals.

Tree cover mapping using MODIS imagery (Hansen

et al. 2003) has shown that in southern Africa land use

pressure (from land development and human population

density) have a negative impact on tree cover, and that at

the regional scale these pressures vary per country

depending on land development and human population

density. This study is in accordance with these lower spa-

tial resolution mapping results and shows the nature of the

land use pressures at a local scale for South Africa which is

relatively more developed than the other countries in the

sub region. Remote sensing methodology in conjunction

with demographic data at administrative unit (municipal-

ity) level has, therefore, established that expansion in forest

plantations and settlements are the main threats to the

Soutpansberg mountain bushveld vegetation unit of the

savannah biome (see ‘‘Natural forest cover change related

to causative factors’’), whose conservation status is offi-

cially categorised as ‘vulnerable’ (Mucina and Rutherford

2006). The plantations are mainly located on the higher

rainfall southern slopes where dense woodland and ever-

green forests are located, thereby replacing these

indigenous forests. The forest plantation industry is, how-

ever, important to the economy in the area, and Vhembe

district is noted as part of the planned ‘forestry develop-

ment cluster’ in the 2004–2014 Limpopo Provincial

Development Plan (in addition to Mopani district to the

south-east), providing employment not only directly in the

plantations themselves but also in the ‘down-stream’

activities of saw mills and other timber processing facilities

(Limpopo Provincial Government 2004). The forestry

industry generally plays an important role in poverty alle-

viation in South Africa (DWAF 2005) and is, therefore,

socioeconomically desirable. In all of Limpopo Province

the sector employed some 3200 people as of 2004 (DWAF

2005). Ecologically, however, the exotic species forest

plantations can be a source of concern. Although they can

play some role in the carbon cycle in the global warming

context, they are somewhat less effective in this regard

compared to the indigenous forest they replace due to their

comparatively less vegetation biomass per unit area. The

pine and eucalyptus forest plantations have alien species,

thereby being a disturbance to the local ecology. The

results from the study demonstrate the usefulness of remote

sensing in providing estimates of rates of deforestation,

particularly in tropical third world areas that are some of

the largest carbon stocks buffering against climate change.
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