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Abstract: Industrial processes are becoming more complex owing to technological developments and new opportunities. Technological developments,
hardware and software, have become more reliable and system con®gurations more robust. However, the reliability of operator control actions has not
improved at the same pace. Consequently human reliability has become the relatively weakest aspect of automated, operator-supervised systems. Hence,
understanding how the human operator experiences increasing complexity may play an important role in task allocation and human±machine system
design. In this paper the perceived complexity is studied within four typical operational environments in supervisory control. Mathematical formulations for
these four operational environments are proposed, and their properties are analysed. A laboratory system is used to investigate the perceived complexity
under various operational environments. The experimental results show a signi®cantly different perceived complexity for the coupled and uncoupled
operation environments. Extrapolation of the results revealed that the operator would have perceived the system as extremely complex if he/she would have
to operate more than eight strongly interconnected subsystems extensively in 30 minutes. Implications of this study are also addressed.
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1. INTRODUCTION

Systems are becoming more complex owing to the many
new links and dependencies among various domains (e.g.,
Woods 1988; Scuricini 1988; Wieringa and Stassen 1993).
Our society becomes automated in many ways and feelings
exist that even the smallest error of a falling automatic
control system may cause a disaster. The recent commotion
about the `Millennium Bug' is a good illustration.

Technological systems such as chemical processes and
power systems show also an increasing number of interac-
tions between different domains and between plants
(Henneman and Rouse 1986; Johannsen et al 1994; Min
and Chang 1991; Murray and Liu 1997; Rasmussen 1994;
Rouse and Rouse 1979; Treu 1996).

Indeed, technological developments have made hardware
and software more reliable and system con®gurations more
robust, but the reliability of operator control actions has not
improved at the same pace. Consequently human reliability
has become the relatively weakest aspect of automated,
operator-supervised systems. Hence, an understanding of
how the human operator experiences the increasing
complexity plays an important role in task allocation and
human±machine system design for human supervisory
control of complex processes (Li and Wieringa 1997).

In this paper, the authors investigate the relationship

between, on the one hand, the number of subsystems and
the strength of the interconnections, and on the other
hand, the operator performance and perceived complexity.
The paper is organised as follows. In section 2, a conceptual
framework is proposed to describe the relations between
various complexities in human supervisory control. The
operational environment in supervisory control is classi®ed
into four general types, mathematical formulations for these
operational environments are proposed and their properties
are analysed. In section 3, the experimental set-up to test
perceived complexities is described, and various sessions are
then designed to test human perceived complexity in the
four general operational environments, and how different
shaping factors in¯uence the perceived complexity. In
section 4, conclusions are drawn from this research, and
section 5 is the conclusion.

2. CONCEPTUAL FRAMEWORK OF
COMPLEXITY AND CLASSIFICATION
OF OPERATIONAL ENVIRONMENTS

2.1. Conceptual Framework for Complexity in
Human Supervisory Control

Regarding the de®nition of human supervisory control, an
accepted de®nition is that one or more human operators are
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intermittently programming and continuously receiving
information from a computer that itself closes autonomous
control loops (Sheridan 1992).

The main tasks in human supervisory control normally
include planning the task, teaching the computer, mon-
itoring the automation system, intervening when failures
happen, and learning from practice.

Regarding the study on complexity, early in 1977 Simon
pointed out that `almost all complex systems that occur in
nature exhibit an underlying hierarchic structure'. Scuricini
(1988) de®nes a system as complex when it is built up of a
plurality of interacting elements, of a variety of kinds, in
such a way that in the holistic results no evidence can be
traced of the characteristics of the single elements; and the
complexity of large technological systems is strictly linked
to the complexity of the arti®cial world, of the eco- and
human systems. Goodstein (1981) outlines three dimen-
sions of complexity that are used to classify systems for
modelling purposes: structural complexity, functional com-
plexity, and interface complexity. On the other hand,
Rouse and Rouse (1979) believe that complexity is related
to the human's understanding of the relationships within a
problem as well as the strategy which the human uses to
solve the problem. Kieras and Polson (1985) work on the
cognitive complexity theory, which considers cognitive
processes as computational processes that exhibit a
complexity. A situation is considered as complex when it
induces complex cognitive processes: the number of steps to
perform for achieving a task, the amount of information to
maintain in working memory, the amount of knowledge to
extract from long-term memory, etc. In their paper,
Henneman and Rouse (1986) discuss different types of
complexity: non-behavioural perspectives including com-
putational complexity, software complexity, complexity of
physical systems and behavioural complexity including
perceptual complexity, and problem-solving complexity.

In this paper, two types of complexity in human
supervisory control and their relations are to be studied:
objective complexity and perceived complexity.

Regarding objective complexity in supervisory control,
the operator will experience two general categories of
objective complexity: technical system complexity and task
complexity.

Technical system complexity comes from the operational
environment and the operator is involved in and that
requires attention. The operational environment comprises
human±machine interface (HMI) and support system,
process system and control system, among which the HMI
and support system have direct interaction with the
operator, and the process system and control system have
indirect interaction with the operator in general. Therefore,
technical system complexity could be further classi®ed into:

. process and control system complexity; and

. human±machine system complexity.

Regarding the shaping factors of complexity, according to
Stassen et al (1990, 1993), number and interaction are the
two major factors. Therefore the authors further identify
the shaping factors for process and control system complex-
ities and HMI complexity respectively.

For process and control system complexities, the shaping
factors include:

. the variety of components (equipment), loops, variables,
etc.;

. the number of components (equipment), loops, vari-
ables, etc.;

. the links among components (equipment), loops, vari-
ables, etc.

Similarly, for HMI complexity, the shaping factors include:

. the type of display (for example, `direct manipulation
interface' (DMI), virtual reality, or indirect visualisation-
based interface);

. the number of menus, decision points, etc.;

. the links among menus, decision points, etc.

Task complexity originates from the supervisory tasks that
are allocated to the operator. The following factors
contribute to task complexity:

. the nature and diversity of the task;

. the number of tasks;

. the links and dependencies among tasks;

. uncertainty of arrival, rate of occurrence, and duration of
tasks;

. physical and mental demand load of the tasks.

In the above lists, various objective complexities and their
shaping factors are identi®ed. Among the objective
complexities, HMI complexity and task complexity have
a direct impact on the perceived complexity of the
operator. For example, through HMI, a technical system
may appear to be more or less complex to the operator
(Wieringa and Li 1997).

It is noted that the perceived complexity is not only the
re¯ection of objective complexities, but there are also other
factors that affect perceived complexity. For example,
within the same operational environment, doing the same
task, different operators may experience system complexity
differently. Therefore, two factors contribute to the
variation of the perceived complexity:

. Personal factors: these include intelligence, knowledge,
job training, personality of the operator, cultural back-
ground, and the willingness to be involved in the
operation.

. The operation and management strategy that has been
designed for the operator or developed by the operator himself:
operation and management strategy makes a signi®cant
contribution to human perceived complexity in super-
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visory control. A well-scheduled operation and manage-
ment strategy would reduce the perceived complexity of
the real system, thus improving the operator's perfor-
mance.

In conclusion, the perceived complexity is the re¯ection of:

. objective complexities including task complexity and
technical system complexities and is affected by

. personal factors, including training, experience-related
knowledge, creativity, degree of willingness to be
involved, personal type, etc., and

. the operation strategy designed for the operator or
developed by the operator himself through his experi-
ence.

A conceptual framework that relates objective complexities
and perceived complexity is shown in Fig. 1.

2.2. Classi®cation of Operational Environments in
Supervisory Control

Regarding the complexity measurement, Henneman and
Rouse (1986) point out that complexity should manifest
itself in some measurable way; i.e., a complex system should
result in longer times for failure diagnosis, longer reaction
times, etc. They used different measures for structural
complexity and strategic complexity. Min and Chang
(1991) used an information theoretic method to measure
system complexity, and complexity may be assessed through
functional entropy. McCabe (1976) proposed a cyclomatic
measure for software complexity, and Murray and Liu
(1997) used such a cyclomatic metric to assess task
complexity in the supervision of networked systems.
Javaux and De Keyser (1997) summarised four forms of
measurement for cognitive complexity: variation of factors,
ordinal comparison, ordinary comparison with nominal
index, and metrical comparison.

In order to study the impact of complexity on operator
performance in human supervisory control, Stassen et al
(1993) designed an arti®cial system which was in fact a
simulation program and consisted of 16 subsystems (in fact
®rst-order systems) that were linked together in a cascade
(the output of the nth subsystem (14n416) was
connected via a gain 0.5 to the input of the subsystem n
+ 1). Each subsystem was given a set point value. The task
of the operator was to manipulate the control inputs and
bring the system outputs to their set points. The system
performance and the operator rated mental load were
recorded. The experiments by Stassen et al (1993) revealed
that when the number of subsystems was four the operator's
task was too easy and caused a too low mental load whereas
a total of 16 subsystems would cause too much stress.
Stassen et al (1990, 1993) further hypothesised that the
performance of a human supervisor might be the same if
systems had equal complexity, although these systems may
differ in number of functions and degree of interaction.
Thus `isocomplexity curves' may be drawn as a function of
number of functions and degree of interaction. In analogy
to the well-known Richter scale, which classi®es the force
of an earthquake, the classi®cation of complexity is also
made between zero and seven (Fig. 2). It is recognised that
this classi®cation can be taken as a basis for developing a
methodology to standardise evaluation and validation
studies (Johannsen et al 1994). Only at the moment that
different processes ± different in terms of the number of
functions to be supervised and of the degree of interaction ±
can be standardised by the isocomplexity curves could one
develop a methodology to measure performance as a
function of the isocomplexity curve value (Johannsen et
al 1994).

Based on previous work, in order to examine and to
measure perceived complexity in human supervisory
control, three structured operational environments and

Fig. 1. Conceptual framework for perceived complexity in human
supervisory control. Dashed lines suggest indirect impact of objective
complexity on the human operator, whereas solid lines suggest a direct
impact.

Fig. 2. Isocomplexity curves.
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four typical operational environments in human super-
visory control are proposed. These three structured
environments are:

. fully uncoupled environments;

. cascade environments;

. fully coupled environments.

In order to illustrate the three structured operational
environments, a digraph is employed as follows.

A digraph is an ordered pair G = (V, E), where V is a set
of nodes vi; E is a set of edges (vi, vj) directed from vi to vj. In
the digraph, a node may represent a subsystem or a unit, a
basic operational task, a menu in the operation interface,
an alarm to be handled when the plant malfunctions, etc.
An edge in the digraph is the link between two nodes.

The fully uncoupled environment, the cascade environ-
ment and the fully coupled environment are illustrated in
Figs 3, 4 and 5 respectively, with examples.

Remark 1. In Figs 4 and 5, the edges between two nodes
only represent the links of these two subsystems; the actual
inputs or outputs of the subsystems are not presented in the
®gures. For example, a node with two incoming edges does
not necessarily mean that this node has two inputs ± it may
have only one input and all signals from other subsystem
are ®rst combined and then get in the subsystem through
one input channel. For the same reason, a node with only
one incoming edge does not mean that it has only one
input.

These three structured environments could also be

presented using adjacent structured matrices. A structured
matrix is made up of free parameters (which may be
individually modi®ed) or of ®xed zeros (Li et al 1996). Let
all non-zero parameters be represented by 6. For example,
M is a structured matrix as follows:

M �
� 0 0
� � 0
0 � 0

0@ 1A �1�

Thus the structured matrix representing the above-
mentioned three structured environments in Figs 3, 4 and

5 are shown as follows:
Above, three types of structured operational environments
are proposed. When the strength of interconnections
between dynamic subsystems is considered, four typical
operational environments in the supervisory control of
industrial plants could be further classi®ed.

A real-world system with an operator in the loop can be
generally described as follows:

S: x(k + 1) = f(x(k),u(k),d1(k)) (5)

y(k) = h(x(k) + d2(k)) (6)

where x(k) [ Rn is the state vector of the plant at time
instance k, y(k) [ Rl is the information vector of the plant
presented to the operator at time instance k, u(k) [ Rm is
the information input from the operator to the plant at
time instance k, and d1(k) [ Rn,d2(k) [ Rm are environ-
mental noise and disturbance. f(�), h(�) are some functions
or formats of relations. For example, if the operator is
operating the system manually, f(�), h(�) are linear or non-
linear functions representing the plant dynamics. If the
operator is monitoring the process, then f(�), h(�) could be
descriptions, inference formulas, etc., that represent the

v1 v2 v3 v4 v5

v1 0 0 0 0 0
v2 0 0 0 0 0

M1 = v3 0 0 0 0 0 (2)
v4 0 0 0 0 0
v5 0 0 0 0 0

v1 v2 v3 v4 v5

v1 0 0 0 0 0
v2 6 0 0 0 0

M2 = v3 6 6 0 0 0 (3)
v4 0 6 6 0 0
v5 6 0 6 6 0

v1 v2 v3 v4

v1 0 6 0 6
v2 6 0 0 6

M3 =
v3 6 6 0 0

(4)

v4 6 0 6 0

Fig. 3. An example of a fully uncoupled environment with ®ve subsystems.

Fig. 4. An example of a cascade environment with ®ve subsystems.

Fig. 5. An example of a fully coupled environment with four subsystems.
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monitoring system. Equation (6) combines the real-time,
past and predicted information of a supervised system.

The operation input to the plant from the operator may
be described as

u(k) = g(r(k),y(k),hf(k)) (7)

where r is the vector of goals for operators, hf is human
factors and g(�) is some functions or formats of relations. For
example, in manual control the human controller is
assumed to behave like a servo controller, reacting to the
difference between the desired state and the actual state.
Consequently, such situations use fundamental control
engineering principles such as those used in servo
controllers, which means that an integrator function
should be included in the loop in order to realise zero
mean deviation. Therefore, g(�) in this case is a linear
model with remnant (McRuer and Jex, 1967), i.e.

g�s� � K
1 � s�1

1 � s�2

1

1 � s�n
eÿs�v �8�

where g(s) is the Laplace transform of the function, and
among the ®ve parameters in (8), two are attributed to
neuromuscular properties: the neuromuscular time con-
stant, tn, which is approximately 200 ms, and the reaction
time, tv, which is between 120 and 200 ms. These
parameters are time invariant and do not change when the
operator controls systems with different dynamics. It is
assumed that the other three parameters are adjusted
during learning by the operator of the system dynamics,
resulting in good servo behaviour. The value of K is
between 1 and 100 and the time constants t1, t2 are
adjusted to ensure stability; therefore, these three para-
meters are related to r and y in (7). In general, all these
®ve parameters are the function of the human factors hf
in (7).

In conclusion, Equation (7) describes the processing
behaviour of operators in controlling, monitoring, gui-
dance, command, coordinating, organising, etc.

It is well known that an industrial plant is generally
composed of several interconnected subsystems, and
subsystems in slowly responding processes are usually
operated at some working points; therefore, the whole
plant could be simply linearised. Equations (5) and (6) may
be possibly further simpli®ed as

x(k + 1) = A(k)x(k) + B(k)u(k) + d1(k)
S:

y(k) = C(k)x(k) + d2(k) (9)

where A, B and C are matrices with dimensions n 6 n, n 6
m and l 6 n respectively. Matrix A represents the relation
of the system's future state to the present state, matrix B
represents the relation of the system's future state to the
information input from the operator/controller, and matrix
C represents the system's present output in the present
state. Suppose that the plant S is composed of N subsystems

Si, i = 1, 2, . . . , N with system matrices Ai(k), Bi(k), Ci(k), i
= 1, 2, . . . , N, then A(k), B(k) and C(k) in (9) could be
further decomposed as

A�k� �

A1�k�
� Au

ij�k�
�

Ad
ij�k� �

AN�k�

266664
377775 �10�

B�k� �

B1�k�
� Bu

ij�k�
�

Bd
ij�k� �

BN�k�

266664
377775 �11�

C�k� �

C1�k�
� Cu

ij�k�
�

Cd
ij�k� �

CN�k�

266664
377775 �12�

and the N subsystems could be described as follows:

Si : xi�k� 1� � Ai�k�xi�k� � Bi�k�Ui�k� �
X
j 6�i

Aij �k�xj�k� �
X
j�i

Bd
i j�k�uj�k� �

X
j�i

Bu
i j�k�uj�k�yi�k� �

Ci�k�xi�k� �
X
j�i

Cd�k�ij xj�k� �
X
j�i

Cuij �k�xj�k� �13�

where Ai(k), Bi(k), Ci(k) are systems matrices for these N
subsystems with

Ai�k� � Rni�ni ; Bi�k� � Rni�mi ; Ci�k� � Rli�ni ; i � 1; 2 � � � N;XN

i�1

ni � n;
XN

i�1

mi � m;
XN

i�1

l i � l: Aij �k�; Bu
ij �k�; Bd

ij ; Cu
ij

�k�; Cd
ij are interaction matrices among subsystems; the

type and strength of links among these subsystems are
determined by these interaction matrices.

In the following, the relative gain array (Seborg et al
1989) for plant described in (9), (10), (11), (12) and (13)
will be studied. In industrial processes, the relative gain
array is used to detect the degree of interaction among
system loops or subsystems. It is an important index for
examining the stability of the plant under control and also
has been widely used to design the control structure in
process control (Seborg et al 1989). Therefore, by deriving
the relative gain, the operation environment under human
control could be further analysed.

Suppose that the transfer function of plant S in (9) is
denoted as G = [gij]l6m, and let gij (?) = limk!1 yi(k)/ui(k)
for uj(k) : 1, then the gain matrix of linear system from (9)
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may be described as G(?) = [gij(?)]l6m, and the system in
stable state is described as

y�1� � G�1�u�1� �
G1�1�

� Gu
i j�1�

�
Gd

i j�1� �
GN�1�

266664
377775u�1�

�14�
where Gi (?) [ Rli�mi is the static gain array for the ith
subsystem in (10), (11), (12) and (13).

In industrial processes, the input number and output
number for each subsystem are not necessarily the same as
described above. However, in process control, each
controlled variable will be allocated a manipulated
variable, and engineers are generally more interested in
the relations between the controlled variables and
manipulated variables; therefore, it is reasonable to
assume that n = l in (9), mi = li, i = 1, 2, . . . , N in (10),
(11), (12) and (13). Based on this assumption, the relative
gain array of the whole plant described in (9), (10), (11),
(12), and (13) may be derived:

RGA � G�1� 
 �G?�1��T �
RGA1

� RGAu
ij

�
RGAd

ij �
RGAN

266664
377775

� �Rgaij�m�m �15�
where RGAi [ Rmi�mi is the block relative gain array for
the ith subsystem, 6 is the Kronecker product (i.e.
element-by-element multiplication), and G\ is the inverse
of matrix G.

In the following, four typical operation environments
will be introduced and their properties will be discussed.

Operation environment 1 (OE1). OE1 is an operation
environment that, in plant S of (9), there exist no
interactions among subsystems, that is, in (10), (11), (12)
and (13):

Au
ij � 0;Ad

ij � 0;Bu
ij � 0;Bd

ij � 0;C u
ij � 0;C d

ij � 0

The structural representation for OE1 is like that shown in
Fig. 3.

Operation environment 2 (OE2). OE2 is an operation
environment that, in plant S of (9), there exist no feedback
interactions among subsystems, that is, in (10), (11), (12)
and (13), either Au

ij � 0; Bu
ij � 0; C u

ij � 0; or Ad
ij � 0;

Bd
ij � 0; Cd

ij � 0:
The structural representation for OE2 is as shown in Fig. 4.

Operation environment 3 (OE3). OE3 is an operation
environment that, in plant S of (9), there exist both
feedforward and feedback interactions among subsystems,
and the relative gain array (15) of plant S satis®es that the
summation of all elements of any row or any column of
RGAi, 8 i = 1, 2, . . . , N is a real positive number, i.e.

0 �
Xmi

j�1

RGAi�j; k�; 8i � 1; 2; � � � ; N

and

0 �
Xmi

k�1

RGAi�j; k�; 8i � 1; 2; � � � ; N

Operation environment 4 (OE4). OE4 is an operation
environment that, in plant S of (9), there exist both feed-
forward and feedback interactions among subsystems, and
for the relative gain array (15) of plant S there exist at least
one column or row in a bock relative gain array RGAi Ai = 1,
2, . . . , N in (15) such the summation of its elements is real
negative number, i.e. ARGAi, i = 1, 2, . . . , N, such thatXmi

j�1

RGAi�j; k�; < 0; 9i � 1; 2; � � � ; N

or Xmi

k�1

RGAi�j; k�; < 0; 9i � 1; 2; � � � ; N

The structural representation for OE3 and OE4 is as shown
in Fig. 5.

Proposition 1. OE1, OE2 and OE3 are operational
environments that the whole plant can generally be
controlled and stabilised, if each subsystem is stable.

Proposition 2. OE4 is an operational environment that the
whole plant may possibly not be controlled and stabilised
under some control schemes, e.g. decentralised diagonal
control scheme, even if each subsystem is stable.

Propositions 1 and 2 are generalisations of the relative
gain array theory (Seborg et al 1989).

In the following, Propositions 1 and 2 will be illustrated
by a plant with two interconnected subsystems, i.e. a 2 6 2
(two inputs and two outputs) plant. For such a plant, its
corresponding relative gain array can be formulated as

RGA � Rga11 Rga12

Rga21 Rga22

� �
�16�

and it has been proved that Rga11 = Rga22, Rga21 = Rga12 =
1 7 Rga11 (Bristol 1966). According to the relative gain
array theory, one may have:

. If 0 4 Rga11 4 1, the plant can be controlled and
stabilised by a decentralised diagonal controller (a
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decentralised diagonal controller is a control scheme
such that each controlled variable is controlled by a
manipulation variable through a controller, and these
controllers are not interconnected. The decentralised
diagonal controller is illustrated in Fig. 6. Furthermore,
when Reg11 = 0.5, the interaction between these two
subsystems is strongest, and the system is most dif®cult to
control by the decentralised diagonal controller.

. If Reg11 <0 or 1 <Reg11, then the plant is uncontrollable
by the decentralised diagonal controller, e.g., the plant is
unstable under the decentralised feedback controller.

It is well known that the decentralised diagonal control
scheme is widely used in the process industry. Its
characteristic is that each controlled objective is allocated
one manipulated variable, and each manipulated variable is
responsible for only one objective. In human supervisory
control, the human operator generally functions as a
human controller as illustrated in Fig. 6. Therefore, the
human operator may face various operational environments
like OE1, OE2, OE3 and OE4, de®ned above.

These four typical operational environments are also
summarised in Table 1. These four typical operational
environments are illustrated in greater detail in Table 2 by
a process consisting of two subsystems as an example.

3. EXPERIMENTAL SET-UP AND TEST
SESSION DESIGN

3.1. Experimental Set-Up

In order to determine the limitation for mastering
complexity, Stassen et al. (1993) developed a computer
simulation of an arti®cial system. The subsystems of this
system were connected in a cascade. The experimental
results revealed that the human-perceived complexity is
the highest for such kinds of plants when interaction gain is
0.5. The authors also found that, when the total number of
subsystems for this arti®cial system was 16, the task was
extremely complex and dif®cult and for most subjects
impossible to perform.

The authors used an experimental system consisting of
up to ®ve heat exchange subsystems (because of the
expense of building plant and the experimental space, as
well as the availability of equipment, the authors were not
able to use a larger-scale plant with more than ®ve
subsystems). The interconnections between the subsystems
could be de®ned according to the desired experimental
condition. The automation system (DCS system) in this
experiment was provided by Honeywell Corp. This
operation and control system has multiple functions,
according to which the controller parameters can be
designed, and various different system con®gurations can
be built up. The heat exchange subsystem is illustrated in
Fig. 7.

Fig. 6. Decentralised diagonal control scheme of a 2 6 2 plant.

Table 1. Four typical operation environments

Type Properties

OE1 There exists no interconnection among subsystems (fully
uncoupled operational environment)

OE2 There exist feedforward interconnections among subsystems
(cascade operational environment)

OE3 There exist feedforward and feedback interconnections among
subsystems (fully coupled operational environment, and the
operational environment is stable under decentralised diagonal
control scheme)

OE4 There exist feedforward and feedback interconnections among
subsystems (fully coupled operational environment, and the
operational environment is unstable under decentralised diag-
onal control scheme)

Table 2. Four typical operational environments for a process consisting of
two subsystems

Type no. Graphical
representation

Properties using two subsystemsa

Fully uncoupled operational environment
OE1 v1 v2

y1

y2

� �
� G1 O

O G2

� �
u1

u2

� �
Cascade operational environment

OE2 v1 v2
y1

y2

� �
� G1 O

K21G1 G2

� �
u1

u2

� �
Fully coupled stable operational
environment

OE3 v1 v2
y1

y2

� �
� G1 K12G2

K21G1 G2

� �
u1

u2

� �
Fully coupled operational environment
(unstable operational environment under
decentralised diagonal control scheme)

OE4 v1 v2
y1

y2

� �
� G1 K12G2

K21G1 G2

� �
u1

u2

� �
a K12, K21 are interaction gains between subsystems. Gi (i = 1, 2) are
transfer functions of subsystems; yi, ui (i = 1, 2) are outputs and inputs
respectively.
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The control purpose for each subsystem is to heat cold
water in the reservoir with warm water to a certain
temperature, and maintain the water temperature in the
reservoirs. The I/O point of the system were controllable
valves for the cold water ¯ow and thermometers to measure
water temperature in the reservoirs. The temperature and
¯ow rate of hot water for each subsystem are not
controllable and also taken as disturbances. The control
purpose for the whole plant is to keep the water temperature
in every reservoir at its assigned set point. Each reservoir was
connected to an automation system (Honeywell TDC 3000)
and could be controlled independently.

In order to create the four operational environments, the
subsystems are interconnected through electrical channels;
that is, the physical con®guration of these individual
subsystems are not changed, but their input and output
signals are subject to various changes. For example, suppose
there are two subsystems with G1(s) and G2(s) as their
transfer function. The con®guration of the whole plant can
be any desirable combination of G1(s) and G2(s) by using
the interaction matrix K (s) [ C262. The whole plant P(s)
could be described as follows:

P�s� � K�s� G1�s� 0
0 G2�s�

� �
�17�

where K(s) [ R262.
Using appropriate choices of K (s) [ C262 one could

realise any of the four types of operational environments
described above. The whole experimental plant is illu-
strated in Fig. 8.

The role of the student operator in the experiment can
be incorporated into the whole system as illustrated in Fig.
6. The modelling of the manipulation from operators is also
as described in section 2 when discussing Equation (7).

According to Fig. 8, there are two operation systems in
this experimental set-up: the EOS and the FOS.

In EOS, a 21-inch monitor was used to display all
process variables and control information. The data display
is refreshed every 2 seconds. Numerical operation keys are
provided to manually set the system parameters, to start and
control the plant, and to give other instructions. These
operation keys are integrated into a ¯at control board. An
armchair is provided for the operator. The EOS creates a
similar environment for the operator to that of someone
working in an of®ce today using a PC to deal with daily
affairs. In EOS, two operation modes are provided:

. MAN ± manual operation by the operator;

. AUTO ± automation system is in charge.

In FOS, digital and analogue meters are lined up together
to display the plant data and control information. A
numerical keyboard can be used to set system parameters
and to operate the system. The digital and analogue meters
together with all operation keys are integrated into one
board in the system console. The system console stands on
the ground, and the operator has to stand in front of the
control panel of the FOS for operation. A monitor was also
provided in FOS, but was a bit far away from the control
console. FOS has direct data exchange with the controllers,
and the process information is refreshed in the sampling
time of the basic controller (every 2 seconds). For FOS,
three different operational modes are possible:

. MAN ± manual operation, through which the operator
may manipulate the control variables directly using
`increase' or `decrease' digital keys;

. LM ± loop manual operation, through which the operator
may manipulate the control variables directly using
`increase' and `decrease' analogue keys; in LM operation,
the EOS has no in¯uence to the controller system;

. AUTO ± activate the automation system, in which case
each subsystem is controlled by the automation system.

A decentralised diagonal controller is designed for the
plant; i.e., each subsystem has its own controller, and there
exists no coupling among the control loops of the
subsystems. The purpose of introducing the decentralised
PID controller is to make the whole system run auto-
matically when the operator presses the `AUTO' button in
the operation station (either in EOS or FOS).

3.2. Test Design

Six students participated in the experimental test (all
males, of average age 23 and with an engineering

Fig. 8. Experimental set-up shown with the maximum number of
subsystems (®ve) that was used. EOS, enhanced operation system; FOS,
®eld operation system; BC, basic controller; EC, extended controller; MC,
multi-function controller; DDE, direct data exchange.

Fig. 7. A heat exchanger.
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background). They received ®xed fees for each experi-
mental hour. Before the experiment, they were informed
that those who achieved the best job performance would
receive additional rewards.

The participants had to perform the following tasks:

. Teaching: The operator gives instructions to the compu-
ter, starts up the plant, manipulates system control input
to bring the system output to the desired values, and
brings the system into automation.

. Monitoring and intervening: If process variables exceed
prede®ned limits, the operator should intervene, i.e.,
switch off the automatic operation and operate manu-
ally.

In this experiment, in total 21 sessions were designed to test
how different factors in¯uence perceived complexity. These
21 sessions are listed in the Appendix.

The ®rst 17 sessions were designed to test how the
number of subsystems affect perceived complexity for the
four different structured operational environments.

In order to test how time constraints affect human
perceived complexity, sessions 18, 19 and 20 were designed.

In order to examine how the shift of automation to
manual control affects the perceived complexity, session 21
was designed. In this session, when an abnormal situation
occurred, the participants were required to take over from
the automation system, and bring the system back to the
normal situation manually.

In order to examine the perceived complexity of the
system under different operation environments, a scale
similar scale to RSME (Zijlstra 1993) was used to obtain
these measures. The rating scale ranged from 0 to 100.

The following types of experimental data were recorded:

. the perceived complexity rated by the operator;

. the operation time for each session;

. the keystroke rate of the operator for each session.

The rated perceived complexity is a subjective measure;
operation time was used to examine the performance of the
operator, the keystroke rate was used as a sort of index to
re¯ect the mental load of the operator while performing
various tasks in different operation environments. Mean-
while, the authors also designed questionnaires to evaluate
operator experiences in more detail.

4. TEST RESULTS

4.1. Training

Before operation, all participants received suf®cient train-
ing. Firstly, they were introduced to the system con®gura-
tion, the subjective rating scales for perceived complexity,
and other policies. The instructor demonstrated the
operational procedures. They then performed one experi-

ment (Session 1 in the Appendix), and kept practising
until they were familiar with the procedures; i.e. their
performance in the last few practices did not differ
signi®cantly, and they reached the end of the learning
curve. During training, they used the rating scale to assess
the perceived complexity of the system while performing
the required task (regarding how to use the subjective
rating scale, please refer to Zijlstra 1993). Their ®nal rated
perceived complexity for this session was used as a basis for
the following sessions. Their learning results were recorded.
The training normally lasted for more than 1 hour.

Table 3 lists the training results for the six participants
(in this table, the authors only list the results at the start
and the ®nal records for Session 1). In the table, P1 to P6
are participants' codes. `Compl' is the abbreviation for
`perceived complexity'; `OT' is the abbreviation for
`operation time' (in minutes). Table 3 shows that training
improves performance signi®cantly (the operation time
reduces signi®cantly) and that the duration of training is
suf®cient to reach the end of the training curve. Meanwhile
training is also able to reduce the perceived complexity,
though not signi®cantly.

4.2. Perceived Complexity as a Function of the
Number of Subsystems for the Four Structured
Operation Environments

First, Sessions 2±17 in the Appendix are performed. The
®rst 17 sessions are designed to check how the number of
subsystems affect the perceived complexity in the four
different structured operational environments. The task for
the human operator in these sessions is to manipulate the
control input and bring the cold water in each reservoir to
the set point, then bring the system into automation. The
task is done in EOS.

Table 4 shows the experimental results for the ®rst 17
sessions. In Table 4, `Mean compl' stands for `mean value of
perceived complexity': `Stdev compl' stands for `standard
deviation of perceived complexity'; `Mean OT' stands for
`mean value of operation time' (in minutes); `Stdev OT'
stands for `standard deviation of operation time'; `Mean
stroke rate' stands for `mean value of keystroke rate (strokes

Table 3. Training results

Participant s Results at start Final training results

Compl OT
(minutes)

Compl OT
(minutes)

P1 6 17 6 6
P2 35 9 30 3
P3 20 12 20 3
P4 30 10 10 7
P5 15 9 10 7
P6 10 21 10 6
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per minute)'; `Stdev stroke rate' stands for `standard
deviation of keystroke rate'.

According to the experimental results in Table 4, it is
easy to show the following.

Result 1. Perceived complexity increases with the number
of subsystems; as the perceived complexity increases,
human operation performance decreases correspondingly
(operation time increases).

In order to explore Result 1 further, curve ®tting was
used to model human perceived complexity as a function of
the number of subsystem in these four structured operation
environments. It is shown that linear models are the most
appropriate models for perceived complexity. The linear
approximation models are formulated as follows:

C1 = 5.4n + 14.35
C2 = 9.78n + 9.02
C3 = 8.61n + 17.14
C4 = 9.17n + 22.38 (18)

where Ci (i = 1, 2, 3, 4) is the perceived complexity in the
four different operational environments and n (24n45) is
the number of subsystems.

Result 2. Linear extrapolation on (18) shows that
perceived complexity will exceed 100 (the assumed
maximum for perceived complexity) if:

. for operational environment OE1, the number of
subsystems is more than 15.

. for operational environments OE2 and OE3, the number
of subsystems exceed nine;

. for operational environment OE4, the number of
subsystems exceeds eight.

Curve ®tting is also used to model operation time as a
function of the number of subsystems. Linear models are
also found to be the most appropriate models for operation
time, and the linear approximation models are formulated
as follows:

OT1 = 1.98n + 4.97
OT2 = 4.12n + 0.08
OT3 = 4.01n + 1.14
OT4 = 3.08n + 8.77 (19)

where OTi (i = 1, 2, 3, 4) is the operation time in the four
different operation environments and (24n45) is the
number of subsystems.

Result 3. Linear extrapolation on (19) reveals that when
15 subsystems are controlled in operational environment
OE1, when nine subsystems are controlled in OE2 and
OE4, and when eight subsystems are controlled on OE4,
the operation time will exceed 30 minutes. Therefore:

the operator will generally perceive a much high degree of
complexity if he is required to operate and control extensively
about 10 subsystems in about 30 minutes (i.e., equivalent to 20
subsystems per hour).

Remark 2. The statement in Result 3 is very interesting.
The maximum number acquired (15 subsystems with no
interconnection, eight or nine subsystems with intercon-
nection) is incidentally similar to that found in previous

Table 4. Test results for session 1 to 17

Session
no.

Operational
environment
type

Mean
compl

SD
compl

Mean OT SD OT Mean
strike
rate

SD
stroke
rate

One subsystem
1 OE1 14.3 9.0 5.3 1.9 8.7 7.7

Two subsystems, four types of operational environment
2 OE1 24.2 8.6 8.7 4.2 16.8 26.1
3 OE2 26.3 9.1 9.8 2.8 13.4 18.3
4 OE3 29.8 10.6 9.3 5.5 16.8 20.3
5 OE4 38.3 12.1 13.5 4.6 12.6 15.4

Three subsystems, four types of operational environment
6 OE1 30.8 8.0 10.8 3.2 14.4 14.9
7 OE2 40.0 8.9 10.0 3.0 18.9 23.8
8 OE3 49.7 15.1 13.2 4.9 17.4 19.7
9 OE4 53.3 14.7 20.2 2.6 14.7 16.7

Four subsystems, four types of operational environment
10 OE1 38.3 8.2 13.8 2.5 13.6 8.5
11 OE2 51.7 14.4 17.0 4.2 12.8 7.5
12 OE3 51.8 10.3 16.7 3.4 11.2 4.5
13 OE4 59.5 9.4 21.0 2.4 12.8 9.0

Five subsystems, four types of operational environment
14 OE1 39.7 10.1 14.3 1.2 12.5 7.6
15 OE2 55.0 17.9 21.2 5.2 10.0 5.7
16 OE3 57.8 9.7 21.5 4.1 10.5 5.6
17 OE4 66.8 6.2 23.5 5.1 12.0 5.5
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experiments conducted by different researchers and using
different measures (Stassen et al 1993; Wei et al 1995). The
maximum operation time (more than 30 minutes) is also
incidentally similar to that found in previous experiments.

Above, the authors have examined how the number of
subsystems contributes to the perceived complexity in the
four structured operational environments. It is obvious that
environment OE2 is more complex and more dif®cult to
operate than environment OE1, and OE3 more complex
than OE2, and so on. However, one may also be interested
in whether there exist signi®cant differences among the
four structured environments. Our analysis shows the
following.

Result 4. Regarding the four structured operational
environments, Student's t-test revealed:

(1) For perceived complexity

. There exist distinct differences between OE1 and OE4.
OE2 and OE3 do not show a signi®cant difference
(signi®cance level, a = 0.05, Sachs 1982).

. There exists a signi®cant difference between the non-
coupled operation environment (OE1) and coupled
operation environments (OE3 and OE4) (signi®cance
level a = 0.05).

(2) For the operation time

. There exists a signi®cant difference between OE1 and
OE4 (signi®cance level a = 0.05).

. When the number of subsystems is large enough (for
example more than three or four), the OE2, OE3 and
OE4 show a signi®cant difference in terms of the
operation time (signi®cance level a = 0.05).

(3) For the keystroke rate

. When signi®cance level a = 0.05, there is no signi®cant
difference among the four structured operational envir-
onments in terms of the keystroke rate.

Further analysis on individual records and performance has
been carried out; participants also explained their opera-
tional strategy developed through training and experience.
The authors ®nd that personal factors contribute signi®-
cantly to the difference in operational performance and the
perceived complexity among these participants, which is
re¯ected in the large standard deviation in the experi-
mental results.

4.3. Contribution of the Time Constraint to the
Perceived Complexity

Sessions 18±20 in the Appendix are designed to test
whether the time constraint contributes to perceived
complexity. In these sessions, the operator is allocated
the same task, but is required to do the task within an
assigned period of time.

The experimental results for Sessions 18±20 are listed in
Table 5. Results of Sessions 18±20 are shown with those of
Sessions 3 and 11 for comparison. The reason is that the
operational environments of Sessions 18 and19 are almost
the same as in Session 3, and Session 20 is the same as
Session 11. The only difference is that in sessions 18, 19
and 20 tasks are required to be done within an assigned
period; however, there is no time constraint for Sessions 3
and 11.

According to Table 5, the following is found.

Result 5. The time constraint does not make a signi®cant
contribution to the perceived complexity according to
Student's t-test.

Further investigation shows that participants have two
distinct viewpoints on time constraint. Some argue that an
appropriate time constraint may stimulate them to perform
their task to their best ability. Others, however, complain
that a strict time constraint makes them nervous and
therefore affects their performance adversely. The large
deviation in the keystroke rate in Table 5 re¯ects the
in¯uence of time constraints on operation reaction of
participants.

4.4. How Does the Shift from Automation to
Manual Control A�ect Perceived Complexity?

One of the main tasks in supervisory control is to intervene
and take over some jobs done by the automation system. It
is useful to know whether the shift from automation to
manual control affects perceived complexity. Session 21 in
the Appendix is designed for such a purpose. In this session,
when an abnormal situation happens the operator may
choose to cut off the automation system and to control the
whole plant manually, or only to regulate the abnormal
subsystem, leaving the automation system in charge of the
other subsystems. It is ®nally shown that all participants
rely on the automation system and regulate only the
abnormal subsystem manually. The operator is required to

Table 5. Comparison of sessions with or without time constraints

Session
no.

Time
constraint
(minutes)

Mean
compl

SD
compl

Mean
stroke
rate

SD
stroke
rate

Task
accomplishment

3 No
constraint

26.3 9.1 13.4 18.3

18 3.0 30.0 9.5 22.8 10.0 Not ®nished in
time

19 6.0 28.3 9.8 16.4 14.4 Finished in time

11 No
constraint

51.7 14.4 13.2 7.5

20 6.0 51.2 10.8 26.0 14 Not ®nished in
time
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operate in FOS (®eld operation system). Table 6 lists the
experimental results.

Considering that Sessions 3 and 21 have the same
number of subsystems and the same type of links among
subsystems, their results are put together for comparison.

Result 6. According to Table 6, the shift from automation
to manual control has a signi®cant impact on operator
performance based on Student's t-test. It also has an impact
on perceived complexity and keystroke rate, but not
signi®cantly (sign®cance level a = 0.05).

For Session 21 the operation is performed in FOS, while for
Session 3 the operation is performed in EOS. As has been
described previously, in EOS the operator is provided with
an armchair, whereas in FOS the operator has to stand . In
addition, in EOS system information is displayed on one
monitor, whereas in FOS different analogue or numerical
meters are used to display the process information, and
these meters are integrated on the control panel of the
FOS. A monitor was also provided in FOS, but was a bit far
away from the control console, but the authors found that
all participants chose to look at the display screen in FOS,
despite inconvenience.

Participants stated that FOS is more dif®cult for
operation, but has little impact on the perceived complex-
ity. Participants also said that a big screen used to display
all process information would be very helpful in reducing
task complexity.

Detailed discussions on the impact of the change of
automation level on mental load and human performance
may be found in the recent work of Wei and Wieringa
(1998).

5. DISCUSSION AND CONCLUSIONS

In this paper, the human experience of complexity in
supervisory control is examined. Firstly, a conceptual
framework for perceived complexity is introduced, and
the operational environments in human supervisory control
are classi®ed into four different types; mathematical
formulation and properties of these environments are
proposed. A laboratory test plant was used and 21 test
sessions were designed to identify how different factors
contribute to perceived complexity in supervisory control
of complex industrial processes.

The experimental results revealed that human operators
manipulating a plant with about eight strongly intercon-
nected subsystems (refer to the fourth operational environ-
ment, OE4, in Table 1) within 30 minutes would
experience much complexity. This research also revealed
that operational environments for human operators are
dynamically changing in supervisory control, depending on
what the operator is performing, and when and where.
Therefore, they can experience different perceived com-
plexities at different times.

The implications of the above results are useful for
understanding, for example, alarm handling. It is well
known that operators sometimes have to handle more than
2000 alarms per person per 24 hours, with peaks that lie in
the order of 35 alarms per minute (= 525 per hour per
person). Our experiment reveals that the number of
subsystems that can be operated upon should be restricted
to about 15 per hour. How can this factor of 35 difference
be explained?

There are a few factors that need to be taken into
account when bridging the gap between these two
numbers:

. Our operators are students and don't have a long training
background and experience in operating the plant.
Although our results show that the subjects were at
the end of their learning curves the authors think it is
plausible they may develop strategies when operating the
simulated plants for a longer period of time.

. Stassen et al (1993) showed that, for the arti®cial system
(as described earlier) they used, the workload caused by
360 set-point requests per hour from 16 subsystems was
too high and induced stress. They found more consistent
results among subjects when the number of subsystems
was less, namely eight, while using the same set-point
request rate. These results suggest that repetition of
alarms causes fewer problems than the size of the system
and the number of interconnections among the sub-
systems.

. Not all alarms mentioned above come from separate
subsystems or different process variables. About 33% of
the alarms are from the same alarm point. Often alarms
have causal relations and are repetitive. Classi®cation of
the alarms into categories such as standing alarms,
consequence alarms, repeating alarms, precursor alarms
and redundant alarms reveals that the number of alarms
that require operator reaction is considerably less. The
example of 80% repetitive alarms and 15% causal
alarms has been reported to us (personal communica-
tion by the second author). Only 5% are real alarms
that require considerable work. In order to compare the
theoretical and industrial ®nds only these 5% alarms
should be considered. The rest serve as information and
noise.

Table 6. Comparison of Sessions 3 and 21

Session
no.

Mean
compl

SD
compl

Mean
OT

SD
OT

Mean
stroke
rate

SD
stroke
rate

3 26.3 9.1 9.8 2.8 13.4 18.3
21 20.8 7.4 5.3 2.7 11 11.2
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This analysis shows that the workload of professional
operators, even after correction for effects mentioned, is
probably much too high during periods of alarm ¯ooding. It
is necessary to reduce and/or restructure the alarms that
require no serious attention and action from the operator.
These ®ndings have serious implications for the design of
partly automated systems and alarm systems.

Furthermore, one may also be interested in the possible
implications of this study to the overall process system and
automation system design. Some possible suggestions are
thus made as follows:

. In process ¯owsheet synthesis, subsystems are never
isolated from others: interconnections of subsystems are
essential. In this case, cascade interconnection (e.g.,
feedforward interconnection) of subsystems is encour-
aged because, according to the results, the second
structured operational environment is less complex and
less dif®cult to operators. However, because the differ-
ence between the second and the third is not signi®cant,
the introduction of feedback interconnections (such as a
recycle in the process) does not cause much more
difference than no introduction of feedback at all. If a
recycle is introduced, the structural distance between
these two interconnected parts should be as small as
possible, so that the structured environment of the whole
process may still be considered as a cascade.

. Strong coupling of subsystems, which may cause
instability for decentralised controllers, should be
avoided in general. Highly sensitive subsystems as well
as strongly coupled subsystems that may cause instability
for decentralised controllers will cause great increase of
perceived complexity and dif®culty to operators, once
they are directly involved in the manual control of such
a process (refer to the fourth operational environment in
Table 1).

. The implications of automation system design are similar
to those for process system design. When the subsystem
number is not large (for example, no more than three),
cascade control strategy is encouraged and multivariable
control is also possible. In this case, one operator is
generally enough for human supervisory control. How-
ever, in this case, a multivariable controller should be
carefully designed such that if some part of this
controller fails, the rest of the controller should be
compatible with the human operator, once the operator
decides to intervene and take over part of the control
function. That is to say, the real-time human±machine
system with the operator in loop should not cause
instability.

. When the subsystem number is large enough (e.g., more
than eight), assigning only one operator to supervise the
whole plant isnot appropriate, especially in the abnormal
state of the process. A team of operators in a hierarchical

supervisory control structure is usually required. In this
case, every low-level operator is in charge of a small
number of subsystems (where the low-level controller is
a cascade controller in most cases, and a few are
multivariable controllers). High-level operators are in
charge of a simple aggregated model of the whole plant.
Thus, the whole automation system is a hierarchical
multivariable controller.

. In normal operation, the operation procedure designed
for the operator (e.g., the teaching and instruction
function in Sheridan's (1992) ®ve functions of super-
visory control) is better designed in such a way that these
procedures (or steps) are in time sequence and content
independent. In an abnormal state, the operation pro-
cedure (e.g., the monitor and intervention function in
Sheridan's (1992) ®ve functions) should be designed
such that the procedures are in time sequence, while the
procedures or steps should not form cycles. If there is
feedback interconnection, the cycle should be as small as
possible.
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Appendix: Experimental Sessions to
Perceived Complexity

Session 1: one subsystem
Session 2: OE1-2 (i.e., the ®rst operational environment
OE1 with two subsystems)
Session 3: OE2-2
Session 4: OE3-2
Session 5: OE4-2
Session 6: OE1-3
Session 7: OE2-3
Session 8: OE3-3
Session 9: OE4-3
Session 10: OE1-4
Session 11: OE2-4
Session 12: OE3-4
Session 13: OE4-4
Session 14: OE1-5
Session 15: OE2-5
Session 16: OE3-5
Session 17: OE4-5
Session 18: OE2-2 (time constraint: 3 minutes)
Session 19: OE3-2 (time constraint: 6 minutes)
Session 20: OE3-4 (time constraint: 6 minutes)
Session 21: OE2-2 (the operator was required to monitor
and intervene when some control loops failed)
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