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Abstract
Object handover is one of the fundamental tasks of service robots. This paper focuses on a robot-to-human object handover 
controller applied to a domestic service robot. People in need often have manual operation constraints caused by different 
body postures or declined physical functions. The preplanned handover strategy used in previous studies potentially increases 
their cognitive burden and makes it difficult to meet their needs for flexible real-time control and intuitive interaction. It also 
remains challenging to deal with sensing and prediction errors, motion planning and coordination. The robot no longer pro-
vides assistance after an object is delivered to a preplanned handover location, and the receiver needs to make extra efforts to 
get the object released. Therefore, inspired by a human study, a handover controller is designed based on a manually guided 
handover strategy that solve problems from grasp adjustment to object release in dynamic retraction motion. Flexible control 
and intuitive interaction are enabled through motion with continuous support from the robot. Without additional sensors 
or modeling learning, changes in motion and energy consumption are taken into account to explore an appropriate release 
timing. The results of robot-to-human handover experiments and the user studies indicate that the receiver can freely pull 
an object to a suitable location as desired and smoothly obtain the object’s control to complete a subsequent task using the 
proposed controller with proper release timing.

Keywords  Object handover · Physical human–robot interaction · Manual guidance · Service robot

1  Introduction

As people are living longer, it becomes necessary to pro-
vide easier access to assisted living service and care (Beard 
et  al. 2016). In addition, the number of patients with 
motor impairments caused by various diseases is increas-
ing (Johnson et al. 2019). Therefore, the ambient assisted 
living style using intelligent service robots has become an 
excellent choice (Robinson et al. 2014). Object handover 
is a joint action between the giver and receiver, which is 
one of the fundamental tasks of service robots (Sebanz and 
Knoblich 2009). Although many devices can be customized 

and controlled remotely (Majumder et al. 2017) in compli-
ance with ethical requirements such as privacy protection 
(Zhang et al. 2022a, b), human–robot collaboration remains 
inevitable for activities of daily living (ADLs) (Mitzner et al. 
2014).

As shown in Fig. 1, most existing handover controllers 
employed a preplanned handover strategy, which utilizes 
preplanned motion patterns, preplanned handover loca-
tions, or predetermined release rules with strong restrictive 
effects (Ortenzi et al. 2021). Extensive data acquisition and 
modeling learning are required for parameter prediction and 
human–robot coordination. The receiver needs to accom-
plish awareness of the controller and follow the design rules 
or they would not be able to effectively gain control of the 
object.

This paper focuses on robot-to-human handover in home-
assistance scenarios, dedicated to serving people with motor 
impairments who are often bedridden or wheelchair-depend-
ent but can smoothly take objects from a position that is 
comfortable for them. Due to manual operation constraints 
caused by different body postures or declined physical 
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functions (Beard et al. 2016; Robinson et al. 2014; Qin 
et al. 2023), they have more individually different require-
ments for handover control (Ardón et al. 2021). These issues 
pose challenges in handling sensing and prediction errors, 
synchronizing human–robot actions, and adapting to user’s 
environments (Ortenzi et al. 2021; Abbink et al. 2012). The 
problem of fulfilling the requirement to complete the hando-
ver under the free intended motion of the receiver is yet to be 
resolved. In addition, a robot should provide more support 
than just placing an object in a predicted position and ask-
ing to adjust the receiver’s behaviors. To avoid failures and 
improve acceptance, a handover controller needs to comply 
with the receiver instead of setting rules (Bedaf et al. 2016). 
More attention should be paid to fulfilling the receiver’s flex-
ible real-time control and intuitive interaction needs.

Therefore, this paper proposes a human-centered ser-
vice robot handover controller based on a manually guided 
handover strategy as Fig. 1 shows. It interacts and explores 
release timing through free manually guided motion. An 
object is delivered to a contact location without accurate 
prediction. Rather than transferring the load at the first 
physical contact, the controller allows the receiver to pull 
the object to a close location and transfer the load when 
deducing intention changes from motion changes.

In this paper, a preliminary human study is first con-
ducted to verify the effectiveness of the manually guided 
handover strategy and to explore the appropriate release tim-
ing. Based on the findings, a free manually guided motion 
is first realized. Moreover, in order to achieve an effortless 
and smooth release, except for the grip force modulation, the 
changes in motion and energy consumption are analyzed to 
predict changes in the receiver’s intentions and determine 
the release timing. At last, the performance of the proposed 

controller was evaluated at different release timings, and it 
was also compared with the existing controller.

The main contributions of this work are as follows:

–	 Designed from the receiver’s perspective, the present 
study is, to our knowledge, the first to explore the inter-
action strategy and release timing for robot-to-human 
handovers with free manually guided motion.

–	 A human-to-human handover study was designed, and a 
human-inspired method for selecting release timing dur-
ing motion was proposed. General laws of motion are 
applied without the need for additional sensors or model 
learning.

–	 A robot-to-human handover controller was designed and 
evaluated, offering a feasible idea for assisting individu-
als with varying manual operation constraints or prefer-
ences.

2 � Related work

The proposed manually guided handover strategy represents 
a comprehensive and systematic solution for object hando-
ver. It differs from the preplanned handover strategy in terms 
of Interaction strategy, Handover location, Motion control, 
and Release behavior.

Interaction strategy Effective human–robot interaction 
serves as a bridge for mutual understanding between ser-
vice robots and humans. By employing diverse interaction 
strategies, individuals can attain situation awareness (End-
sley 1995; Vanderhaegen et al. 2023), make proper control 
decisions, and manage the object handover process. For 
human-to-human handovers, human giver and receiver can 
share representations in multiple ways, thus enabling the 
receiver to coordinate actions and predict required efforts in 
advance (Ortenzi et al. 2021). In contrast, the motion of a 
robot employing the preplanned handover strategy remains 
unchanged, which hinders the receiver’s perception of 
objects (Parastegari et al. 2018; Sebanz et al. 2006). The 
receiver needs to spend more effort taking control of hando-
vers. A small initial applied force requires time for adjust-
ment, while a large initial applied force generates motion 
overshoot (Chan et al. 2013).

Handover location A fundamental task for the preplanned 
handover strategy is to determine where to transfer (Cini 
et al. 2019; Moon et al. 2014) prior to the physical interac-
tion. The handover location is influenced by many factors, 
including different body sizes (Parastegari et al. 2017), arm 
mobility capacities (Ardón et al. 2021), receiver locations, 
task requirements (Sisbot and Alami 2012), kinematic fea-
tures (Liu et al. 2021), social acceptance and preferences 
(Koay et al. 2014). Depending on the specific scenario, dif-
ferent ergonomic models (Parastegari et al. 2017; Bestick 
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Fig. 1   The preplanned handover strategy vs. manually guided hand-
over strategy. The former employs preplanned motion patterns, pre-
planned handover locations, or predetermined release rules with 
strong restrictive effects. The latter achieves free manually guided 
motion with robot support and release the object when deducing 
intention changes from motion changes
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et al. 2018) and cost functions (Sisbot and Alami 2012; 
Bestick et al. 2016) can be utilized to predict the object 
configurations and handover locations. To transfer the 
object closer, some controllers have utilized gaze (Moon 
et al. 2014), motion or hand tracking systems (Medina et al. 
2016; Kshirsagar et al. 2022; Kupcsik et al. 2018; Prada 
et  al. 2014). Although these predictions can effectively 
improve the handover experience through extensive data 
collection and modeling learning, many challenges must be 
addressed, including prediction errors, motion synchroniza-
tion, and adaptation to the user’s environment. Changes in 
the receiver’s intentions and manual operation constraints 
are difficult to accommodate. Cognitive load and waiting 
time should not be ignored either.

Motion control Proper motion control around physical 
contact can improve the interaction experience and smoothen 
the handover process. Extending robotic arms along a lin-
ear trajectory while actively detecting force change patterns 
(Han and Yanco 2019) requires the receiver to adapt to a 
constant trajectory. Generating a human-like (Kajikawa et al. 
1995) and human-aware motion (Sisbot and Alami 2012) 
is a successful compensation to achieve accurate position-
ing and soften the shock of contact. Using dynamic motion 
primitive-based control methods is another practical solu-
tion (Prada et al. 2014). However, it remains a challenge to 
learn human behavior efficiently and to adapt to variable 
behavior patterns. In order to actively track the receiver’s 
movements, their intentions need to be accurately recog-
nized (Li et al. 2022). Control methods based on impedance 
control (Bohren et al. 2011) or admittance control (Haninger 
et al. 2022) work well to achieve this compliant motion con-
trol. Moreover, as a typical human–robot collaborative task, 
object handover can benefit from shared control. By integrat-
ing human subjective intentions into an automated handover 
control system, the burden of human control can be alle-
viated. However, promptly addressing potential conflicts 
between human and robot control remains a complex chal-
lenge that warrants further research (Vanderhaegen 2021).

Release behavior The release timing must be coordinated, 
as an early release may result in a fall of the object, while a 
delayed release may result in higher interaction force (Chan 
et al. 2013). To compensate for the shortcomings of a fixed 
time delay (Edsinger and Kemp 2007) or a fixed distance 
(Kshirsagar et al. 2022), force patterns (Gómez Eguíluz 
et al. 2019) are commonly used. A predetermined threshold 
(Medina et al. 2016; Kupcsik et al. 2018) can be predicted 
from the force/torque information at the fingertips or robot 
arm joints. Load changes (Prada et al. 2014) or an entire load 
transfer (Psomopoulou and Doulgeri 2015) can also be used. 
Studies have demonstrated that combining multiple cues is 
effective in releasing judgments, such as the duration of the 
receiver’s gaze prior to touch (Grigore et al. 2013) or the 
haptic cue informing pulling under sufficient load sharing 

(Costanzo et al. 2021). In addition, a force-related displace-
ment Bohren et al. (2011) can be used to evaluate the con-
tact force’s magnitude. However, these controllers trade off 
between handover smoothness and object safety (Chan et al. 
2013). After reaching the preplanned handover location, the 
receiver can no longer get assistance from the robot and 
needs to make extra efforts to get the object released. A 
human-inspired controller (Chan et al. 2013) employs grip 
force modulation based on load change, allowing to take an 
object easily from the vertical direction. This method has 
been proven effective and adopted by many other controllers 
such as (Medina et al. 2016; Kupcsik et al. 2018). How-
ever, greater force is required when the pulling direction is 
changed (Parastegari et al. 2018).

3 � Preliminary human‑to‑human handover 
study

Motivated by the review of prior studies, the interaction 
strategy and release timing for robot-to-human handovers 
with free manually guided motion were explored to reduce 
cognitive burden and minimize handover difficulty. Using 
adaptable motions to facilitate mutual understanding of 
human–robot intentions. A human-to-human handover study 
was first conducted in a simulated scenario for preliminary 
validation. This allows for an exploration of the object 
handover behavior exhibited by human receivers and givers 
within contextually consistent cognitive conditions. The goal 
was not to design a study catering to the robot’s perceptual 
capabilities. Instead, the appropriate strategies catering to 
the receiver’s capabilities were explored.

Handovers were simulated using the manually guided 
handover strategy and the preplanned handover strategy, 
respectively. For the former, the giver was instructed to 
comply with the receiver’s retraction movement by follow-
ing the receiver’s traction and releasing the object when 
he or she deemed it appropriate. For the latter, the giver 
needed to remain in a fixed location and release objects after 
feeling a specific pull. In addition, the receiver was told to 
take objects in a comfortable way, while the giver was told 
to ensure safety. The experiments were supervised by the 
experimenter and the participants as receivers. A new trial 
was instantly conducted if a trial failed or did not pass the 
judgments from the timely feedback. For example, in the 
former case, the receiver’s movement is hindered, or too 
much force is required. In the latter case, the distance moved 
is too large.

As Fig. 2 shows, to limit physical functions and immerse 
participants in the role, one participant as a receiver was 
invited to lie on a 0.75 m high bed, blindfolded, and receive 
an object only using thumb, index, and middle finger of one 
hand. A glass of water weighing 530 ± 0.5 g was delivered 
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to approximately the right side of the receiver’s head at 45◦ , 
0.95 m high and 0.5 m away (Ardón et al. 2021; Parastegari 
et al. 2017; Koay et al. 2014) by another participant as a 
giver using only one hand. The fragile container and over-
weight liquid were set to increase the risk of handover fail-
ure. In this setting, the giver would naturally have an inher-
ent sense that the receiver’s ability is limited and they need 
to take more responsibility for handover safety than to rely 
on the receiver’s ability. Meanwhile, the receiver would be 
more sensitive to the giver’s actions and generate high men-
tal expectations. Note that the givers were not blindfolded 
because they were expected to achieve the optimal choice 
with full perception. The consistent motion features dur-
ing handovers were considered to satisfy the comprehensive 
judgment of a human giver with full perception.

34 participants (26 males, 8 females) between 23 and 32 
were invited to join this study. None of them had been pre-
viously involved in the system design or related research. 
All participants gave their informed consent before their 
inclusion in the study. The ethical committee of the uni-
versity approved the study, and all participants provided 
informed consent. They were randomly grouped into pairs 
and were instructed to do two types of handovers. To elim-
inate ordering effects, the two types of handovers were 
alternated. After 10 trials, the roles of giver and receiver 
were exchanged to complete another 10 trials. The patici-
pants were surveyed after each trial round. At last, a free 
interview was conducted to gather insights about their 
experience. The survey was as follows. 

1.	 Rate how easy it was to take the object for each handover 
(1—very hard to take, 5—very easy to take).

2.	 Rate the preference level for each handover (1—not at 
all preferred, 5—very much preferred)

After brief grasp adjustment, the variation of object’s 
acceleration is regular for one period (from Ps to Pt in 
Fig. 2a), after which the variation pattern of acceleration is 
not apparent. Moreover, object releases are also clustered 
in this phase as Fig. 2b and c shows, especially from reach-
ing its 100% maximum acceleration to − 20% (152/170, 
89.4%). The result of release numbers passed the Shap-
iro–Wilk test (p = 0.134 > 0.05) , obeying a normal dis-
tribution. The object’s average acceleration at release was 
22.3% with a variance of 13.6% at deceleration. Figure 2c 
also indicates that one’s release timing converges toward 
a0 , which corresponds to the transition moment from 
acceleration to deceleration.

The result of Wilcoxon signed-rank test performed 
showed that employing manually guided handover strat-
egy makes it significantly easier (Z = −9.03, p < 0.001) 
to pickup objects and was significantly more preferred 
(Z = −9.04, p < 0.001) . They described the experience as 
“[having] enough time to adjust [their grasp and move-
ments]", “[feeling] natural and relaxed". In contrast, the 
preplanned handover strategy made them “nervous" and 
“uncertain when the object would be released", especially 
when grasping in inappropriate positions. Similar feedback 
was received from givers.

The findings are

–	 Human receivers adjust their grasp after physical con-
tact. Subsequent motion changes are relatively regular.

–	 The manually guided handover strategy makes it easier 
for human receivers to take objects and is preferred.

–	 Human givers prefer to release objects when the accel-
eration first drops and approaches zero.
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4 � Robot‑to‑human handover controller

Drawing upon the findings from the preliminary human-to-
human handover study, a robot-to-human handover control-
ler was designed, utilizing the manually guided handover 
strategy. As shown in Fig. 3, the controller uses compliant 
manually guided motion in response to the receiver’s pull. 
After providing tuning space for grasp adjustment without 
release judgment, it determines the release timing in motion 
based on consistent motion features.

4.1 � Controller architecture

The proposed handover controller consists of two phases, 
as shown in Fig. 3:

a pre-handover phase for posture adjustment and grip 
force modulation. The physical exchange phase can be fur-
ther divided into three phases shown above: Phase I, the grip 
adjustment; Phase II, the release point selection; Phase III, 
the load transfer at release.

In the pre-handover phase, the robot approaches from the 
side with gripper facing towards the receiver to reduce obstruc-
tion to the receiver’s actions (Ardón et al. 2021; Parastegari 
et al. 2017; Koay et al. 2014). Upon arrival, the robot will 
extend the object forward to the physical contact location P. 
This process is similar to a human giver’s reaching motion (Liu 
et al. 2021) and serves as a ready cue. The physical exchange 

phase starts when the receiver first contacts objects and ends 
when the giver fully releases objects.

The robotic arm will switch to different control mode to 
ensure safety and fluency. During transportation, the position 
control mode is employed to deal with bumps and collisions 
(Chan et al. 2013). In Phase I and II, a torque control mode is 
used to achieve a free manually guided motion. In Phase III, 
the position control mode is employed to avoid motion oscil-
lations due to load transfer and motion termination.

A handover failure occurs when the object appears outside 
the red dashed line while not satisfying the release conditions. 
In these cases, after the external force other than the load force 
disappears, the robotic arm will return to P.

4.2 � Manually guided motion control

To perform a compliant motion behavior under the pulling 
force, a force-free controller inspired by (Dong et al. 2019; 
Hou et al. 2017) was employed in this work. Figure 4 shows 
the controller architecture.

The dynamic model of the robotic arm is designed as

where M(q) , C(q , q̇) ∈ Rn×n , G(q) , q , q̇ , q̈ , T , Text ∈ Rn . 
M(q) , C(q, q̇) , G are the joint space inertia, Coriolis and 

(1)

⎧⎪⎨⎪⎩

M(q)q̈ + C(q, q̇)q̇ + G(q) = T + Text

T = K(𝜽 − q)

J𝜽̈ + T = Tm − Tf
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gravity items of the robotic arm with n joints, respectively; 
� is the angle of the motor. q , q̇ , q̈ are joint angles, angular 
velocities, angular accelerations, respectively; T , Text are 
the measured and external torques of joint torque sensors, 
respectively. J ∈ Rn×n is the motor inertia matrix; �̈ ∈ Rn 
represents angle accelerations of motors; Tm ∈ Rn is output 
torques of the motors; Tf ∈ Rn represents joint friction tor-
ques. Finally, the force-free controller is designed as

where Kt = diag(Kt1,Kt2, ...,Ktn) is a constant matrix and 
diag (.) denotes the diagonal matrix. From Eq. (2), it can be 
seen that T and G are the main variables of Text . T can be 
measured directly by the torque sensors on the joints of the 
robotic arm. G represents the gravitational force acting on 
the robot arm and the object. For fixed loads, this term can 
be obtained by invoking the gravity estimation and param-
eter identification functions integrated inside the basic con-
troller of the robotic arm. To address varying loads, relevant 
approaches can be found in the literature (Dong et al. 2019; 
Hou et al. 2017).

At last, the controller can effectively compensate the 
gravity and reduce the influence of friction and inertial force, 
achieving stable movement activated by a smaller external 
force and self-balancing without external forces.

4.3 � Grip force modulation

To achieve a smooth release experience during manually 
guided motion, grip force needs to be modulated at a suit-
able level that neither makes the object fall nor prolongs the 
release. The gripper used is three-fingered and multi-jointed 
without force sensors, which poses a challenge for modeling 
the grip force for different objects. However, since this is not 
the focus of this paper and the position control frequency of 

(2)Text =M(q)q̈ + C(q, q̇)q̇ + K−1
t

(
J�̈ + Tf

)

(3)Tm =T + Kt(G(q) − T)

the gripper can reach 100 HZ, the force control requirements 
can be met by an open-loop position-based approach (Chan 
et al. 2013). The gripper is controlled by the number of turns 
the motor rotates, 0 for the whole opening and 6800 for com-
plete closing. The whole travel time is 1.2 s. The object mass 
m is obtained from the vertical force Fout at the end-effector.

Stationary state The friction and pull forces are approxi-
mately equal when the object is close to sliding. The forces 
are measured using Imada Digital Push-pull Gauge ZTS-
200N. A binomial is used to fit the relationship between the 
mass m and the rotation turns y to modulate the grip force 
(Chan et al. 2013):

where for the experimental cup used in Sect.  5.2, 
b1 = −1433 , b2 = 3386 , b3 = 1670 . The coefficient of deter-
mination for the fitted curve, ( R2 > 0.99 ), indicates an excel-
lent fit between the model and the actual data..

Moving state As in Fig. 5b and d, when the object is 
pulled vertically downward, the required friction force Ff  
reaches maximum. That is Ff = Ff1 + Ff2 = mg + ma = Mg , 
where M is the virtual mass that set for calculating the grip 
force:

According to Parastegari et al. (2018), the relative accelera-
tion of object in physical exchange phase is smaller than 
4.5 m/s2 . For safety, it is scaled to 4.9 m/s2 ( M =1.5 m) 
to obtain y. It can be modulated according to changes in 
the actual magnitude of the acceleration, which will be dis-
cussed in detail in the Sect. 5.5.

4.4 � Energy consumption during release

The goal is to minimize the extra efforts required by the 
receiver to ensure an efficient release process. Prior to 
release, the robotic arm continues to assist in lifting the 

(4)y = b1m
2 + b2m + b3

(5)M = m(1 + a∕g)
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object and itself. The receiver is not responsible for the 
load, which enables them to retract with minimal effort. Fig-
ure 5a–e illustrates the representative motion and forces dur-
ing a handover. The phases introduced correspond to Fig. 3. 
The robotic arm is considered to operate force-free, and full 
compensation is made for the object’s gravity.

In Phase I, the receiver has enough time to adjust the 
grasp before the object is released. Therefore, instead of 
ensuring a stable grasp, the focus is on analyzing energy 
consumption (Neranon 2018) to explore the appropriate 
release timing.

In Phase II, the object’s velocity changes from 0 to v0 . 
The energy E of the object is regarded as the sum of kinetic 
energy Ek and gravitational potential energy Ep:

 where h is the relative height, v is the current velocity. The 
object is supported by the robotic arm until it is released. 
The human receiver is only responsible for the kinetic 
energy change of the object and not for the potential energy 
change before release. According to the law of energy con-
servation, Wms done by the receiver’s pulling force Fh from 
the physical contact moment ts to the release moment t0 is 
calculated as the increase in kinetic energy, that is, 1∕2mv2

0
:

Figure  5e shows the release process in Phase III. It is 
assumed that the release is complete when the object has 
completed a displacement of l. The velocity of the object 
changes from v0 at t0 to vt at tt . According to the law of 
energy conservation:

where Wh is the work done by the receiver’s pulling force, 
Wf  is the work done by friction, �Ek =

1

2
mv2

t
−

1

2
mv2

0
 , 

�Ep = ±mglsin� , � , � , � are the angles of Fh , v, and l respec-
tively. �Ep is positive for upward motion and negative for 
downward motion. vt can be obtained from Eq. (8):

The object’s velocity after release, vt , is influenced by Wf  , 
Fh , �Ep and v0 . To minimize the object’s velocity change 
with minimal Fh , the grip force is modulated to reduce Wf  . 
�Ep can be negative to overcome Wf  by selecting the appro-
priate timing for load transfer, which utilizes gravity to move 

(6)

⎧
⎪⎨⎪⎩

E = Ek + Ep

Ek = 1∕2mv2

Ep = mgh

(7)Wms = ∫
t0

ts

Fhvcos(� − �)dt = mv2
0
∕2

(8)Wh −Wf = ∫
tt

t0

[Fhvcos(� − �)]dt −Wf = �Ek + �Ep

(9)v2
t
=

2

m

(
∫

tt

t0

(
Fhv cos(� − �)

)
dt −Wf − �Ep

)
+ v2

0

the object downward. According to Eq. (7), the object’s 
velocity at the release moment, v0 , is determined by Wms 
and the resulting kinetic energy can help to overcome Wf  . 
The extension of Phase II could help to reduce the receiver’s 
effort. Therefore, it can be much easier to achieve an effort-
less and smooth release when v0 is large enough and the 
receiver is ready to take over the object.

5 � Experiments

In this section, the performance of the controller employing 
the manually guided handover strategy with three different 
release timings was evaluated, and it was also compared with 
an existing controller. The design of some existing control-
lers contributes to the options of the release timing.

5.1 � Different controllers

The force is responsible for the change in motion, while 
the change in force is an expression of the receiver’s inten-
tion. This implies that only when the goal (intention) of 
the motion changes does the receiver change the currently 
applied force, which in turn causes a change in the motion. 
Therefore, motion changes are used to infer the receiver’s 
intention. Different points in the retraction motion are stra-
tegically selected for quantitative analyses to explore the 
appropriate timing of release (Kajikawa et  al. 1995; Li 
et al. 2022). The receiver’s physical state is presumed to be 
ready to apply forces and intervene in the object’s motion 
when observing a significant change in object’s accelera-
tion. Transferring load at these points is more likely to be 
consistent with their intentions and to be completed fluently. 
According to the results in Sects. 3 and 4.4, the release 
points shown in Fig. 6 are tested. The average velocity is 
calculated as the instantaneous velocity using the terminal 
positions with a sliding window of 0.03 s. The instantaneous 
acceleration is similarly obtained using the velocity. Critical 

Acceleration

Time

Trajectory

1cmHI

MG3

MG1

MG2

0

EndStart

A fixed displacement

Fig. 6   Illustration of different release timing. The black dotted line is 
object’s representative trajectory in Fig. 2, and the solid line below is 
object’s corresponding acceleration change curve
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values, such as the maximum, are confirmed after a delay of 
three frames to cover the jitter.

Manually guided handover controller 1 (MG1) releases 
object when the object first decelerate. It is expected that 
the object has been transferred to a suitable position and 
that the receiver’s intentions are significantly changing (Li 
et al. 2022). The object’s motion will then decelerate, which 
is compatible with the deceleration caused by the energy 
consumption when released.

Manually guided handover controller 2 (MG2) releases 
object when the object’s acceleration reached maximum. At 
this time, the receiver is applying the maximum force (Nera-
non 2018).

Manually guided handover controller 3 (MG3) releases 
object when the object’s displacement is 1 cm. The original 
release condition in Bohren et al. (2011), a vertical displace-
ment of 1 cm was revised to avoid a high failure rate in the 
experimental setup.

Human-inspired handover controller (HI) releases 
object when detecting a vertical threshold force of 3 N 
(around 50% of object weight). The initial grip force is the 
same as that of the MG controllers, and the grip force is 
modulated linearly according to the perceived load change 
until the threshold is reached. The controller is a representa-
tive controller with a preplanned handover strategy and has 
been shown to have smooth performance (Chan et al. 2013).

5.2 � Implementation details

System setup The system is mainly composed of a mobile 
platform equipped with a 7 degrees of freedom Kinova 
JACO2 lightweight robotic arm with a three-finger grip-
per. Each joint is equipped with a torque sensor. The sys-
tem implemented under the Robot Operating System (ROS) 
framework and operated at 100 Hz. In order to quantitatively 
evaluate the performance of each handover controller, Opti-
Track V120 Trio motion tracking system was utilized. The 
information obtained from this system was solely used for 
evaluation purposes. A cup filled with water weighing 667 
± 0.5 g was illustrated.

Subjects 24 participants (19 males, 5 females) between 22 
and 55 from Southeast University were invited to participate 
in this study. None of them had been previously involved in 
the system design or related research. All participants gave 
their informed consent before their inclusion in the study. 
The ethical committee of the university approved the study, 
and all participants provided informed consent.

Procedure Each participant took part in the experiment 
as an individual. Each controller was experienced twice 
to familiarize participants with task requirements. Similar 
to the setting in Sect. 3, participants were told to pick up 
the cup from the same place comfortably and bring it to 
the same location for drinking. Note that the control of the 

robotic arm would not change regardless of whether the 
receiver was blindfolded or not. Therefore, the performance 
of the four controllers was objectively evaluated without 
requiring participants to be blindfolded. A set of 16 trials 
was obtained using a balanced Latin square design. At the 
end of each trial, the participant was invited to take a survey 
in Sect. 3. At last, a free interview was conducted.

Metrics For the objective metrics, five quantitative met-
rics were employed for evaluation: Time for 1 cm, Release 
duration, Maximum acceleration, Trajectory length and 
Receiver effort. Each trial begins with physical contact 
and ends with the object completing a fixed displacement. 
Figure 7 shows two example trials. Since handovers using 
MG controllers involve transferring control of an object and 
changing its position, these metrics have been adapted based 
on the execution effect.

–	 Time for 1 cm This metric represents the time required 
from the physical contact to produce a 1 cm displace-
ment, which reflects representation-sharing capabilities 
and ease of take (Chan et al. 2013).

–	 Release duration As illustrated in Fig. 7, for MG control-
lers, the release duration consists of two components: 
Time for 1 cm and the time elapsed from the release point 
to produce another 1 cm displacement. Notably, for HI, 
the gripper remains stationary before releasing, causing 
these two parts to overlap and making the Release dura-
tion equivalent to Time for 1 cm. A shorter Release dura-
tion indicates faster object release and a smoother overall 
process.

–	 Maximum acceleration This parameter is directly pro-
portional to the maximum interaction force and motion 
overshoot (Parastegari et al. 2018). Smaller maximum 
acceleration values lead to a smoother object transfer 
process.

E2

E3

Et1

Et2

ts

Wms ∑ | ∆ E|

Wh-Wf
(Ignored in comparisons)

Physical Contact

Fixed displacement

Reaching Target
Location

ttask

Release Complete

ttt0

Release Start

Release
duration E1

Etask

Horizontal
Displacement

Object control transfer and position change

E'1 E'2
E'3

Fig. 7   Object energy (sum of kinetic and potential energies) versus 
horizontal displacement for two example trials (blue solid curve and 
gray dashed curve). For the blue trial, E

1
 , E

2
 , E

3
 represent the energy 

values of the object at release complete, at its maximum, and at its 
minimum, respectively. E′

1
 , E′

2
 , E′

3
 are the corresponding values in the 

gray trial. Et1 and Et2 are the energy values at the end of each trial. 
Etask is a constant value set for calibration. The definitions of the other 
variables are given in Sect. 4.4
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–	 Trajectory length This metric calculates the total length 
of the object’s trajectory during one trial. It provides 
insights into the smoothness of the motion. If the trajec-
tory is not smooth, motion overshoot occurs, resulting in 
a larger trajectory length.

–	 Receiver effort It is determined by the receiver’s work 
done W (Neranon 2018) on the object from the physical 
contact moment ts to the target location reaching moment 
ttask . This metric measures the amount of effort that the 
receiver has to make to take the object.

Specifically, for Receiver effort, the release process (Phase 
III) which is very short and mainly affected by the friction 
and gravity is ignored for simplicity. This is approximately 
fair for all four controllers. Therefore, W = Wms +

∑��E� . 
Wms is obtained from Eq.  (7). 

∑��E� is the cumulative 
change in the sum of kinetic and potential energies, caused 
by human work, and related to motion overshoot and force 
overshoot. Taking the two trials in Fig. 7 as an example,

 where the energy value at each specific point is calculated 
according to Eq. (6).

Etask is the set constant value. Et1 is larger than Etask , 
while Et2 is smaller than Etask . It is believed that the human 
motion localization error causes this difference. To make 
the comparison fair, the extra work needs to be sub-
tracted ( Et1 − Etask ) and the less work needs to be added 
( Etask − Et2 ). Thus,

For the subjective metrics, perceived ease of use and prefer-
ence are evaluated through the free interview and the same 
survey in Sect. 3.

5.3 � Controller performance

Figure 8 shows the motion trajectories of a representative 
participant using all four controllers.

In general, trajectories of handovers using MG1 had less 
vertical motion space than the others and were smoother 
than MG2 and MG3.

Table 1 and Fig. 9 show the overall performance of each 
controller.

Figure  10 shows examples of each controller’s 
performance.

In terms of the overall performance of these control-
lers, the Shapiro-Wilk normality test and Mauchly’s test 
of Sphericity were conducted. Only the data of Maximum 
acceleration passed both tests. The data of Time for 1 cm 

(10)
�∑��E1� =

�
E2 − E1

�
+
�
E2 − E3

�
+
�
Et1 − E3

�
∑ ��E2� =

�
E�
2
− E�

1

�
+
�
E�
2
− E�

3

�
+
�
Et1 − E�

3

�

(11)W = Wms +
∑|�E| − (

Et − Etask

)

and Release duration of HI did not pass the Shapiro-Wilk 
normality test. This may be due to the outliers caused by 
participants’ frequent pulling direction adjustments. Other 
data did not pass the Mauchly’s test of Sphericity. There-
fore, the data of Maximum acceleration was analyzed using 
a one-way repeated-measures analysis of variance (ANOVA) 
test with Bonferroni correction post hoc. The other data 
were analyzed using the nonparametric Friedman test with 
Dunn–Bonferroni post hoc.

Friedman’s test showed no significant difference in Time 
for 1 cm (𝜒2(3) = 134.675, p < 0.001) between MG1, MG2, 
and MG3 (p > 0.05) . However, all three groups were signifi-
cantly shorter than HI (p < 0.001) . Nevertheless, Friedman 
test results of Release duration (𝜒2(3) = 53.809, p < 0.001) 
showed that MG1 was significantly shorter than MG3 
(p < 0.001) and HI (p < 0.001) , but not significantly dif-
ferent from MG2 (p > 0.05) . MG2 (p < 0.001) and MG3 
(p < 0.05) were also significantly shorter than HI.

The ANOVA test results revealed a significant differ-
ence in Maximum acceleration (F = 67.536, p < 0.001) . 
Maximum acceleration generated by MG1 was significantly 
smaller than MG2, MG3 and HI (p < 0.001) , but there was 
no significant difference between MG2 and MG3, MG2 and 
HI (p > 0.05).

The Friedman test results also showed significant differ-
ences in Trajectory length (𝜒2(3) = 165.888, p < 0.001) and 
Receiver effort (𝜒2(3) = 181.700, p < 0.001) . Compared to 
the other three controllers, the Trajectory length of MG1 was 
significantly shorter(p < 0.001) and its Receiver effort was 
significantly smaller(p < 0.001).

While in terms of changes in position, velocity and accel-
eration during the handover, object’s acceleration change 
curve indicated that the MG controllers completed release 
judgment during a relatively smooth acceleration change 
phase. Prior to release, the object’s acceleration was small. 

Fig. 8   Object trajectories produced by a representative participant 
with each controller. Between the two dashed lines is the object’s ver-
tical motion space. The parts shown in magnification are the object 
release processes
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Upon release, it accelerated rapidly after a short decelera-
tion period. The maximum acceleration value appeared next, 
which reflected motion overshoot.

5.4 � Survey responses and interviews

Figure  11 shows the survey results.The Friedman test 
results (𝜒2(3) = 152.040, p < 0.001) indicated that it 
was significantly easier to take objects using MG1 than 
HI (p < 0.001) . However, there was no significant differ-
ence between MG controllersA. Moreover, MG1 was sig-
nificantly more preferred than the other three controllers 
(𝜒2(3) = 117.239, p < 0.001).

In the interviews, almost all the participants claimed 
that their ability to locate and manipulate the object 
decreases when lying down. They could take the object 
efficiently only when they realized the rules of HI. MG 
controllers allowed them to take the object from different 
directions. The consistency of their motions was inter-
rupted by MG3 and they lacked time to adjust grasp. 
MG2 differed from MG1 since it produced a significant 
motion overshoot. For MG1, no significant interruptions 
in motion consistency were claimed and they could take 
objects in a more relaxed, fluent manner. Additionally, no 
one responded that the robotic arm followed too closely 
when using MG controllers.

Table 1   Performance of 
different controllers

Data bolded in the table are statistically significantly different from the rest of the data, as determined by 
statistical analysis
Means ± standard deviation

Controller Time for
1 cm (s)

Release
duration (s)

Maximum
acceleration (m/s)

Trajectory
length (m)

Receiver
effort (J)

MG1 0.48±0.06 0.60±0.07 6.47±1.63 0.51±0.01 1.01±0.30
MG2 0.48±0.07 0.61±0.08 9.37±1.86 0.55±0.02 2.33±0.51
MG3 0.48±0.06 0.65±0.08 8.73±1.77 0.54±0.01 1.69±0.42
HI 0.82±0.32 0.82±0.32 9.91±1.92 0.53±0.01 1.69±0.43
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Fig. 9   Performance of the four controllers on Time for 1 cm, Maximum acceleration, Receiver effort, Release duration, and Trajectory length 
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5.5 � Discussion and limitation

According to the experiment results, the significantly 
shorter performance of MG controllers in Time for 1 cm 
indicated that the manually guided handover strategy 
allowed the receiver easily change the object’s motion and 
achieve intuitive interactions. The comparison results of 
the Release duration showed that MG1 and MG2 released 
faster. But for Maximum acceleration, MG2 was signifi-
cantly larger than MG1. This indicated that MG2 relied on 
the receiver’s pull to complete the rapid release, while the 
performance of MG1 confirmed the analysis in Sects. 4.4 
and 5.1. Maximum acceleration, Trajectory length and 
Receiver effort are associated with motion overshoot. 
MG1 performed significantly better than the other three 
controllers on each of these metrics. This indicated that 
releasing an object at the first deceleration was easy to 

Fig. 10   Example of each controller’s performance in terms of vertical 
displacement, velocity, and acceleration variations. The actual per-
formance corresponding to them can be found in the multimedia file. 

Due to the different release mechanisms, only the release complete 
point of HI is shown
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control, which reduced extra effort and unintended motion 
overshoot. The reduction in Receiver effort also reflected 
the further utilization of the robotic arm. Furthermore, 
according to the survey responses and interviews, con-
sistent results were obtained. MG1 was preferred over the 
other controllers.

This study uses ‘compliance’ instead of ‘prediction’, 
which is an innovative attempt from a kinematic point of 
view. It has the potential to complement handover strate-
gies that focus on perception and prediction to address 
issues such as the burden and potential errors in additional 
sensing, learning, and prediction. However, user-centered 
control relies heavily on accurate decision-making. The 
ability of the receiver to correctly perceive the situation 
plays a crucial role in achieving this accuracy. In addition 
to enhancing situational awareness by reducing the bur-
den on the receiver, thereby improving control and over-
all performance of the object handover task, perceptual 
differences must be carefully considered, including those 
discrepancies between visual observations and actual per-
ception, as well as discrepancies between perceived and 
objective indicators (Vanderhaegen et al. 2023). Our future 
work will prioritize addressing the risks associated with 
these perceptual discrepancies.

The experimental results indicate that the proposed 
handover control method enables flexible real-time con-
trol and intuitive interaction. The receiver can freely 
manipulate an object to a suitable location as desired and 
smoothly gain control over the object to complete sub-
sequent tasks using the proposed controller with proper 
release timing. However, if the receiver’s abilities are 
insufficient to allow them to smoothly pick up objects from 
a comfortable position, the effectiveness of the controller 
will be compromised. Conditions such as trembling hands 
necessitate further research in the future.

The grip force was modulated using the maximum 
acceleration obtained in the previous handover test for 
safety reasons. To achieve a fair comparison, grip force 
modulation was not performed after MG1 had gained its 
maximum acceleration, which represents a promising 
direction for future improvement. Both subjective and 
objective evaluations also indicated that the proposed con-
troller with proper release timing (MG1) might be promis-
ing for serving people with manual operation constraints 
caused by different body postures or declined physical 
functions. However, the target population still needs to 
be invited to participate in the further study to improve 
the controller design. Moreover, manually guided motion 
is sensitive to the robotic arm’s control performance. 
More control methods need to be explored to enhance the 
receiver experience. In addition, although large masse 
object handovers are not common in home-assistance sce-
narios, these handovers deserve further research.

6 � Conclusion

From the perspective of the receiver, this paper proposes, 
for the first time, a method to achieve intuitive and flex-
ible object handover control in unrestricted manual guided 
motion. By utilizing a human-inspired approach, a prelimi-
nary human study is first conducted, wherein a constrained 
cognitive condition is created through the construction of 
a simulated scenario. This allows for an exploration of 
the object handover behavior exhibited by human receiv-
ers and givers within contextually consistent cognitive 
conditions. Based on the findings of the human study, a 
robot-to-human handover controller is designed for home-
assistance scenarios. General law of motion is used, which 
is less restrictive and does not require additional sensors 
or modeling learning. The results of handover experiments 
among the proposed controller with different release tim-
ing and an existing controller showed that the proposed 
controller with proper release timing can enable a safe, 
efficient, and easily controlled handover.
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