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Abstract
One objective of Industry 4.0 is to reach a better system performance as well as to have a better consideration of humans. 
This would be done by benefiting from knowledge and experience of humans, and balancing in a reactive way some complex 
or complicated tasks with intelligent systems. Several studies already dealt with such an objective, but few are done at a 
methodological level, which forbids, for example, the correct evaluation of design choices in terms of human awareness of 
the situation or mental workload when designing intelligent manufacturing systems integrating the human. Indeed, increasing 
the intelligence and autonomy of industrial systems and their composing entities (resources, products, robots…), as fostered 
by Industry 4.0, increases their overall complexity. This modification reduces the ability to understand the behaviors of these 
systems, and leads to the difficulty for humans not only to elaborate alternative decisions when required, but also to make 
effective decisions and understand their consequences. This paper evaluates such a design methodology, the Cognitive Work 
Analysis (CWA), and its applicability when designing an assistance system to support Human in the control of Intelligent 
Manufacturing System in Industry 4.0. Among several functions identified through the application of CWA, the assistant 
system might have to integrate a digital twin of the intelligent manufacturing system. The evaluation of the methodology 
through the one of the designed assistant systems is done using a micro-world, which is an intelligent manufacturing cell 
composed of intelligent mobile ground robots, products, and static production robots interacting together and with a human 
supervisor in charge of the reaching of several time-based and energy-based performances indicators. The assistant system 
embeds a digital twin of the intelligent manufacturing system. Twenty-three participants took part in experiments to evaluate 
the designed assistance system. First results show that the assistance system enables participants to have a correct awareness 
of the situation and a correct evaluation of their alternative decisions, while their mental workload is managed and expected 
production performances are reached. This paper contains an analysis of these experiments and points out some limits of the 
CWA method in the context of Industry 4.0, especially the lack of tool enabling to specify clearly the cooperation processes 
between the supervisor and the intelligent manufacturing system. This paper concludes with potential research avenues, the 
main one being the potential benefits of coupling CWA with human–machine cooperation principles to fine tune and adapt 
the cooperation between the human and the intelligent manufacturing system.
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1  Introduction

Industry 4.0 objectives aim at proposing an integrated solu-
tion for the industry to benefit from the increasing capabili-
ties of machine while being aware of human competencies 
and adaptabilities. When Intelligent Manufacturing Systems 
(IMS) start to provide performance but complicated and 
complex systems, human has to continue to be in control of 
such systems to have the right decision at the right time to 
tackle unexpected events or new objectives. The challenge 
is difficult, since human and IMS have for now competences 
that have been, respectively, learned and designed in par-
allel, most of the time without taking care of interactions 
between both. The objective of this paper is to propose and 
evaluate a methodological approach, which may help Indus-
try 4.0 designers to analyze humans and systems activities 
in an existing industry that aims to reach a 4.0 level, or to 
develop what could be such activities in a new industry, or 
new part of an industry.

The interrogations around the Operator 4.0 and espe-
cially its place in the system are a fertile ground for such 
development. Studies are oriented on multiple aspects, 
such as sociotechnical system modeling (Jonese et  al. 
2018), or interaction through human–machine interface and 
human–computer interface (Gorecky et al. 2014; Papcun 
et al. 2018; Wittenberg 2016). In our very case, to avoid out-
of-the-loop situation (Endsley and Kiris 1995), we decided 
to perform an analysis and suggest the improvement of the 
system design itself to integrate human operators.

For this purpose, we proposed to use the Cognitive Work 
Analysis (CWA) to conduct an analysis of industry activi-
ties and to identify humans and machines roles as well as 
best organizations to reach industry objectives. Therefore, 
after the presentation of the specificities of Industry 4.0, 
with a focus on the Sociotechnical systems, CWA approach 
is explained and applied in a use case defined within the 
framework of the French national project called HUMAN-
ISM. The experimental platform and the experiments con-
ducted through two experimental conditions, integrating or 
not supports for human to understand and control IMS, are 
detailed, as well as first results. The last part discusses the 
results and suggests an improvement of the different steps of 
the CWA approach with useful design tools stemming from 
human–machine cooperation approach.

2 � Designing sociotechnical systems 
in industry 4.0

2.1 � The role of operator in the 4th industrial 
revolution

In a report from the Boston Consulting Group, Rüssman 
et al. identify nine “technological pillars” supporting the 
Industry 4.0 (Rüßmann et al. 2015): (1) the Industrial 
Internet of Things (IIoT), (2) the vertical and horizontal 
integration of information systems, (3) big data and data 
mining, (4) the cloud, (5) simulation, (6) cybersecurity, (7) 
augmented and virtual reality, (8) additive manufacturing, 
and (9) autonomous robotics.

These new digital technologies provide an opportu-
nity for decentralizing the flow of information, decision-
making, and command and control (Hozdić 2015). As 
explained by Wang et al. (2016), Industry 4.0 can support 
self-organizing and autonomous cyber-physical manu-
facturing system, capable of dynamically reconfiguring 
itself to achieve the goals of the system. This network 
approach makes it possible to optimize locally or glob-
ally the cells of production, to manage very complex 
industrial processes. Moreover, with the development of 
digital twins, Industry 4.0 allows the emergence of the 
virtual enterprise. This combination of “virtual and real 
worlds” can, for example, bring interesting applications 
for remote maintenance or operational situations training 
(Longo et al. 2017).

Nevertheless, the introduction of these Industry 4.0 
technologies raises the challenge of defining more pre-
cisely the role of human operator in a context where tech-
nological revolutions will have an impact on individuals 
and their activities, as well as on the organization of work:

•	 At an individual level, Industry 4.0 will employ fewer 
unskilled personnel than the traditional factory. Rou-
tine activities, characterized by a low level of manual 
dexterity or social interaction requirements, are most 
likely to be replaced by technologies (Fantini, Pinzone, 
and Taisch 2018). On the other hand, the need for 
qualified and well-trained personnel will be increased. 
Operators will have to demonstrate great adaptation 
abilities, because they will have to act on complex, 
interconnected, and autonomous technical systems that 
they will have to understand and control. Operators will 
handle more abstract information, and will often be 
more “distant” from the process to be controlled, with 
a greater scope of supervision.

•	 At an organizational level, Hirsch-Kreinsen (2014) 
identifies two extreme forms of organization concern-
ing the distribution of work between humans: a “polar-
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ized” organization with few unskilled tasks and a large 
group of experts and highly qualified specialists ver-
sus a “distributed” organization aiming for the greatest 
flexibility and based on a high qualification of all the 
operators which allows them to face unexpected situa-
tions.

To better define the role of humans in Industry 4.0, 
Romero et al. adopted a techno-centered approach propos-
ing typologies of “operator 4.0” (Romero et al. 2016), from 
the “technological pillars” of industry 4.0 (Rüßmann et al. 
2015). This typology of “augmented operators” highlights 
different types of possible cooperation with intelligent sys-
tems (physical, sensory or cognitive) for different types of 
activities (physical or cognitive):

•	 The operator 4.0 can be increased physically (“super-
strength operator” and “collaborative operator”), using 
cobots and exoskeletons. This will increase performance 
for manual operations and reduce musculoskeletal dis-
orders for humans. It will also allow the integration of 
disabled workers.

•	 The operator 4.0 may be increased at a sensory level (to 
better perceive the environment and detect new signs). 
Biofeedback sensors will provide a sensory increase 
(“healthy operator”) and allow the detection of physi-
cal or cognitive workload situations. The new visuali-
zation interfaces (virtual and augmented reality) will 
increase the operator (“augmented operator” and “vir-
tual operator”). The perception of the environment will 
be enhanced by a subjective vision, a visual warning or 
index display highlighting the important elements of the 
environment.

•	 At a cognitive level (to better process and interpret the 
information, and for problem-solving), the diagnosis of 
the situation could be enriched, thanks to the contextu-
alized display of information from the cyber-physical 
system. Corporate social networks will also contribute 
to a cognitive increase of the operator (social operator) 
by improving the diagnosis and the resolution of prob-
lems thanks to the knowledge of other experts acces-
sible online, synchronously or asynchronously. Big data 
analysis and cloud computing will enable to a cogni-
tive increase of the operator (“analytical operator”). 
By extending the computation, classification, analysis, 
and synthesis capabilities of information (Longo et al. 
2017), the situation analysis of the human operator will 
therefore be enriched, whether at strategic, tactical, or 
operational level. Finally, operator 4.0 will benefit from 
increased interactions with the cyber-physical system 
(“smarter operator”). These human–computer interac-
tions will be improved by the use of personal assis-
tants and artificial intelligence. Operators will access 

to high-level information and will be able to modify the 
system configuration (supervision and control) or carry 
out maintenance and diagnostic operations. Gorecky 
et al. (2014) highlight context-sensitive mobile devices 
(filtering information according to context: place, type 
of activity, and situation encountered by the operator), 
and voice or body controlled (through the analysis and 
recognition of gestures).

In addition to this vision based on assistance to spec-
ify augmented operators, Fantini et al. propose a vision 
based on the concept of social interactions (Fantini et al. 
2018). In this perspective, a multi-agent architecture of the 
social factory is proposed by (Banol et al. 2018; Romero 
et al. 2017). Starting from the idea that operator 4.0 is at 
the center of a social network, made up of other social 
operators, but also of machines and software qualified as 
“social”, this architecture makes it possible to formalize 
the design and the evaluation of the social interactions of 
the production system, mediated by interface agents (for 
supporting the dialogue and the management of interfer-
ence between cooperative agents) and broker agents (for 
distributing work among cooperative agents).

Furthermore, the deployment of Industry 4.0 technolo-
gies will lead to integrate more “intelligence” into sys-
tems. Discussions arise then on how to model this new 
type of interaction between artificial entities and humans 
(Jones et al. 2018). Jones et al. (Ibid) state that the tradi-
tional human–machine system point of view is not adapted 
anymore, as, from now, the artificial entities would be able 
to work more collaboratively with humans to execute cog-
nitive functions. Instead, they support the idea of modeling 
agents as joint cognitive systems, which remove the sepa-
ration between artificial entities and humans. Similar to 
Jones et al. (Ibid), Gely et al. (2020) consider that in the 
context of Industry 4.0, an autonomous system is a peer, 
able to trigger cooperation needs with the human to reach 
its own objectives. These views raise interesting points 
on the relationship between humans and artificial entities, 
and may renew questioning on the possible impacts of this 
relationship such as emotional involvement with artificial 
entities and relevant risks (Pacaux-Lemoine and Trente-
saux 2019).

Nevertheless, many questions remain to be elucidated to 
improve human–system integration in Industry 4.0 (Pacaux-
Lemoine et al. 2017). Human operator must be kept in the 
loop, to allow him to maintain a mental representation of 
situations, and to improve his ability to supervise autono-
mous agents. The question of optimizing human coopera-
tion with cyber-physical systems (CPS) therefore becomes 
a major issue. It is about creating a symbiosis (Romero et al. 
2016), a “productive” joint cognitive system (Hollnagel and 
Woods 2005).
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2.2 � Design methods supporting the optimization 
of cooperation between operator and IMS

Socio-Technical Systems Engineering (STSE) addresses 
the question of designing such efficient human–machine 
systems (Baxter and Sommerville 2010). STSE focuses on 
the design of complex systems with interconnected human, 
technical, and organizational components. In particular, this 
global approach raises the issue of the role of operators faced 
with increasingly autonomous technical systems in dynamic, 
risky, and sometimes unforeseen situations. The distribution 
of activities and the adaptive cooperation between humans 
and machines is a central process in Socio-Technical System 
(STS) design and operation (Challenger, et al. 2013). More 
precisely, dynamic function allocation (DFA) could help a 
system maintain a satisfying performance in complex situ-
ations. This issue must be taken into account as early as the 
preliminary design phase of a project (Goom 1996; MoD 
1989).

Several methods have been proposed to design socio-
technical systems: User Centered Design (UCD) approach 
(Norman and Draper 1986), hierarchical task analysis (Nor-
man and Draper 1986), cognitive task analysis (Chipman, 
Schraagen, and Shalin 2000), etc. Nevertheless, as stated 
by Rasmussen (1997), Vicente (1999), or Papantonopoulos 
(2004), many methods are too normative or too descriptive, 
unsuitable for designing adaptation, dynamic cooperation, 
and work distribution. On one hand, normative methods 
(with ISO standards and ergonomics handbooks) focus 
too much on the specification of the ideal ways to perform 
work—and therefore human–system interactions—under 
certain anticipated conditions, difficult to reproduce in real 
life within open systems, and with non-expert users that can 
deviate from the standard procedures. On the other hand, 
descriptive methods are based on the analysis of the famil-
iar and recurring conditions. As reminded by Romero et al. 
(2020), the descriptive methods were used to supporting an 
“Anthropocentric Production Systems” with adjustability to 
different degrees of user experience or reliability. The result-
ing design of STS may be more tolerant to the adaptation 
and the deviation to the rules from the system agents, and 
it can generate satisfying systems in nominal conditions. 
Nevertheless, these kinds of methods are again limited to 
consider unforeseen events and novel conditions that should 
typically occur in the context of Industry 4.0. Indeed, these 
two main approaches may forbid the correct evaluation of 
design choices in terms of human awareness of the situation 
or mental workload when designing intelligent manufactur-
ing systems integrating the human. Indeed, increasing the 
intelligence and autonomy of industrial systems and their 
composing entities (resources, products, robots, etc.), as 
fostered by Industry 4.0, reduces the ability to understand 
the behaviors of these systems and increases their overall 

complexity, leading to the difficulty for human being, super-
visors or operators, not only to elaborate alternative deci-
sions when required, but also to make effective decisions 
and understand their consequences.

By contrast, Cognitive Work Analysis (CWA), proposed 
by Rasmussen (1986), Rasmussen et al. (1994) and further 
developed and codified by Vicente (1999), appears as one 
of the most comprehensive methods to design cooperation 
within STSE. It combines the contributions of engineering 
and human factors to provide designers with a powerful 
framework for Social Technical System design. It is a forma-
tive constraint-based approach, consisting of five successive 
stages: (a) Work Domain Analysis (WDA), (b) Control Task 
Analysis (ConTA), (c) Strategies Analysis (StrA), (d) Social 
Organization and Cooperation Analysis (SOCA), and (e) 
Worker Competencies Analysis (WCA). The issue of func-
tion allocation and cooperation is addressed at the SOCA 
stage. This issue is a crucial one, even if the exploration of 
the social cooperation and organization phase has received 
less attention than the application of the WDA or ConTA 
(Jenkins et al. 2008). Despite this limitation, it appears that 
the CWA could be envisaged in the context of Industry 4.0 
where intelligence is everywhere, enabling various autono-
mous entities, either digital or humans to interact. From our 
perspective, it is thus important to evaluate the pros and 
cons of CWA in the context we addressed and presented here 
after, which may lead to suggest some improvements to help 
designers of future IMS to correctly address the integration 
of the human operator from a methodological point of view.

3 � Implementation of CWA to design 
a system in industry 4.0

3.1 � Presentation of the use case

The studied use case relies within the framework of the 
HUMANISM French ANR project. HUMANISM involves 
three labs and analyzes three aspects of human–machine 
interaction with a specific IMS (cf. Fig. 1). It focuses on the 
strategic, tactical, and operational decisional levels of this 
IMS, as a subpart of an Industry 4.0 flexible cell, inspired 
from an existing real pedagogical cell (AIP-PRIMECA/
SMART Cell in UPHF, Valenciennes).

The IMS is composed of robots linked by a 1D conveying 
system on which shuttles transport products from one static 
production robot to the other. Mobile ground robots, moving 
freely on the 2D area of the cell, are added to ensure the sup-
ply of these production robots and to ensure the download 
of finished products. In this use case, a manufacturing plan 
(a given number of different products to realize) has been 
assigned to human by the industrial managers at the strate-
gic decisional level. Specifications about allocation of tasks 
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to humans and machines and performance criteria such as 
energy consumption and the different types of product that 
the cell has to make have also been set at this level. Human 
supervisor at the tactical decisional level has to analyze this 
plan to send orders to the operational level, especially task 
allocation, but also corrective actions when unexpected 
events happened or new objectives (not firstly included in 
the plan) are requested. At this tactical level, key perfor-
mances indicators and information from the operational level 
are gathered to adapt in real time these orders.

In the present paper, the studied interaction lays between 
the tactical level, handled by both a human supervisor and 
one support system (cf. Fig. 1: left box on the tactical level), 
and this IMS at operational level (cf. Fig. 1: left box on 
the operational level). The decision support system (DSS) 
provides information about the status of the cell and its 
components.

In the HUMANISM project, the “intelligence” of the flex-
ible cell holds in the ability for the “smart shuttles” to self-
organize themselves according to occurring events and the 
manufacturing operations to be performed by robots on the 
product they carry. The behavior of these shuttles is purely 
reactive. It is based on the principle of the potential fields, 
where shuttles are attracted by production robots emitting 
digital fields depending on their distance to the shuttle, 
their ability to proceed the task required by the transported 
product, and their real-time load. Prior to the HUMANISM 
project, several studies have shown that such behavior ease 
the technical implementation of the flexible cell, providing 
powerful mechanism to react in real time in front of vari-
ous unpredicted events (Pach et al. 2014). Meanwhile, it has 
been illustrated that this approach does not provide suffi-
cient guarantee to reach production objectives even in nor-
mal conditions. More, the performance may decrease when 
perturbations occur and the speed and the complexity of the 
digital interactions among shuttles and robots make it hard to 
understand why a specific behavior emerges from numerous 

local interactions. To handle this, in the HUMANISM pro-
ject, it is suggested that a human supervisor at the tactical 
level, given his/her ability to anticipate events, to have a big 
picture of the whole, and to react and adapt to the unpre-
dicted, becomes the supervisor of this self-organized system. 
This human supervisor ensures the reaching of production 
objectives and the consideration of constraints hardly imple-
mentable in the self-organized system, such as global energy 
consumption limits. Meanwhile, the complexity reached by 
the self-organizing system require that the human is aware 
of the situation to take effective decisions.

In this context, the CWA has been proposed as a method-
ology to design and evaluate the integration of the human 
and the IMS into a “human-aware IMS”, paying attention 
to the capabilities and limits of the human on the one side, 
and the ones of the studied self-organized IMS on the other 
side. Obviously, even if realized on a specific Industry 4.0 
system where intelligence is purely reactive and embedded 
exclusively in shuttles, our results and research are aimed 
to be generalized to help designers of Industry 4.0 systems 
searching support to design human-aware IMS.

3.2 � Application of the CWA to the use case

As already explained in Introduction, the CWA methodology 
was used to defining tasks and functions of human and tech-
nical agents in the specific case of an IMS. For simplification 
purpose, the term “agent” is used to describing any deci-
sional entities, being human (here, the human supervisor) 
or technical (here, the smart shuttles, the production robots 
and the mobile ground robots). This section steers three of 
the five phases proposed by the CWA method, the WDA, 
the CTA, and the SOCA. Indeed, as the study of the IMS is 
prospective, it was not yet possible to identify strategies to 
organize agents’ tasks (StrA), as well as precise competences 
of those agents (WCA). The results of the CTA phase help 
to define the human–machine interface (HMI) and the DSS. 

Fig. 1   HUMANISM project: Human–MAchines cooperatioN for flexIble production SysteMs
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However, even if the CTA provides the main information 
and functions to be displayed on the HMI and used by the 
DSS, a great part of the HMI has been innovated by the 
designers.

3.2.1 � Work domain analysis

The work domain analysis is about a “Formalization of 
constraints linked to system functioning: identification of 
system goals and links between goals and physical objects”. 
The objective of WDA is to model the physical, structural, 
and functional constraints governing the activities of opera-
tors. Using an Abstraction Hierarchy (AH) modeling tool, 
WDA describes a work domain with five levels of abstrac-
tion; each level is connected by a structural means-end 
framework linked to the next upper or lower level:

•	 the functional purpose (the purpose of the work domain, 
its "raison d’être"),

•	 value and priority measures (the criteria ensuring that the 
system progresses toward the functional purpose),

•	 purpose-related functions (the general functions that are 
performed to achieve the functional purpose),

•	 object-related processes (processes and capabilities char-
acterizing the objects used by the general functions),

•	 and physical objects.

(1)	 Functional purposes
	   The functional purpose of the IMS is the following: 

to support human to supervise and control the IMS and 
its mobile ground robots.

(2)	 Values and priority measures
	   The values and priority measures consist in the ele-

ments that support the evaluation of the system pro-
gress. In our use case, as the objective of the research 
is to design human–IMS integration, the evaluation is 
based on two types of measures. The first one deals 
with the performance of the production regarding the 
Industry 4.0 objectives maximizing:

•	 safety, if one designs safe environment for human,
•	 security, if one designs system protected against 

cyber-attack
•	 effectiveness, if one succeeds to make products that 

fulfill customer requirements in due time
•	 resilience, if one is able to maintain the production 

while experiencing perturbations or new customer 
requirements

•	 efficiency, to keep the gain/loss ratio high,
•	 sustainability, if one minimizes the environmen-

tal impact (energy consumption, waste minimiza-
tion…).

	   The second measure is the human experience, which 
can be analyzed according to three aspects: quality 
of interaction between human and system, quality of 
human situation awareness, and human workload. First, 
a set of questionnaires addresses interaction between 
human supervisor and IMS, and then, a debriefing and 
the analysis of task completion will help at analyzing if 
the suggested organization and tasks are well adapted 
to human needs and willingness. Second, the analysis 
of the situation awareness of the human supervisor may 
help at understanding if all technical agents and their 
interactions are well understood by the human agent 
to make decision and act. Third, the analysis of the 
human supervisor workload may help at knowing if the 
control of the IMS is too demanding and if allocations 
of functions to assistance systems and machines allow 
avoiding human overload or underload.

(3)	 Purpose-related functions
	   The purpose-related function step addresses the 

general functions agents have to complete to achieve 
the functional purposes. Therefore, human involved 
in the supervision and control of the process have to 
understand global objectives, to supervise and control 
the IMS. Each agent must identify and adapt the con-
trol of the IMS according to unexpected events and 
objectives. The functioning of the IMS can be done 
autonomously, using a set of predefined algorithms, or 
remotely overridden or controlled when human defines 
current target of products to improve efficiency or when 
an unexpected event occurs. Missions of mobile ground 
robot involve defining their level of automation, as well 
as control and update of their trajectory according to 
objectives and unexpected obstacles.

(4)	 Object-related functions
	   The object-related function step deals with the pro-

cesses and capabilities characterizing the objects used 
by the general functions. Human supervisor can request 
or negotiate objectives with the strategic level, as well 
as technical resources and raw material supplied to the 
operational level. Mobile ground robots, static produc-
tion robots, conveyors, and smart shuttles must provide 
information about their current state and future state 
if they can (according to their intention), their current 
control algorithm, and their achievements. Human 
supervisor must be able to control over technical 
agents whenever he/she wants and wherever agents are. 
Human supervisor can remotely control mobile ground 
robots, or provide them with the geographic goal they 
have to reach autonomously. Smart shuttles, conveyors, 
and static production robots can work autonomously; 
however, human supervisor may intervene to change 
one shuttle’s trajectory or modify characteristics of 
static production robots.
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(5)	 Physical objects
	   The physical objects consist in three main 

parts: the human supervisor work position (cf. Fig. 2a), 
two mobile ground robots (cf. Fig. 2c), and an emulator 
of the flexible cell with production robots and shuttles 
(cf. Fig. 2b). The development of this emulator facilitates 
the test of our developments, which are time-consuming, 
instead of using the real cell. It is expected to deploy our 
developments on the real cell when validated. Mean-
while, the ground robots used are real and interact with 
the emulator of the AIP-PRIMECA cell. As introduced, 
the smart shuttles and the mobile robots are autonomous 
or remotely controlled by the human supervisor from the 
work position. The human supervisor, who is at the tacti-
cal level, has only access to production that holds at the 
operational level through video and sensors feedback, as 
well as by selected orders that he/she can send. The work 
position consists of four screens, two dedicated to the 
flexible cell and two dedicated to the mobile robots (cf. 
Fig. 2a).Therefore, human supervisor may use the bird’s 
eyes view of the flexible cell emulator and the ground 

robots, and specific human–machine interface to control 
each mobile ground robot, each shuttle, and each produc-
tion robot.

The flexible cell (cf. Fig. 2b) is materialized by the video 
projection of the emulator of the real flexible cell of the 
UPHF (cf. Fig. 3a). Fig. 3b depicts the flexible cell, and 
shows the topology of the cell and its 1D one direction con-
veying system. The mobile robots are not represented. One 
production robot (W1) is dedicated to the unloading of fin-
ished products and interacts with the mobile ground robots 
for that purpose. The other production robots can perform 
one or several operations on products, and have an inven-
tory of raw components loaded by the mobile ground robots, 
which can reload the inventory on human supervisor request.

As introduced, each production robot emits a potential 
field (cf. Fig. 3b), and its amplitude increases or decreases 
according to the products waiting in its queue. The more pro-
duction robots are overloaded by shuttles waiting in a queue 
and/or the more they are slow to perform the operations they 
can handle, the less they are attracting new shuttles, espe-
cially if the shuttles are far from the production robots (cf. 

Fig. 2   Work position to control the intelligent manufacturing system (a), the flexible cell (b), and loaded and unloaded by ground robots (c)

Fig. 3   The real Flexible manufacturing system, UPHF, Valenciennes, France (AIP-PRIMECA FMS) (a), and its emulator (b): flexible cell (pro-
duction robots, conveyors) including an example of potential fields emitted by the production robots in blue circle
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Fig. 3b). However, the human supervisor can also modify 
the amplitude and the emitted field to improve or reduce 
attraction of shuttles by robots according to his/her percep-
tion of the current or future IMS performance.

The mobile ground robots have two levels of automation 
for motion, autonomous, or remotely controlled. They have 
four sensors: ultrasound feedback, gyroscope, contact, video 
(smartphone), and three actuators: motor of the head (ultra-
sound) and two motors for motion control. They also have 
communication supports with Wi-Fi (smartphone), ZigBee, 
and Bluetooth technology.

3.2.2 � Control task analysis

Control task analysis concerns the “Formalization of con-
straints linked to what must be done to reach system goals”. 
The objective of ConTA is to identify goals and activities 
(physical and cognitive processes) involved for achieving a 
system’s purpose. Using the Rasmussen’s Decision Ladder 
(DL) tool, ConTa models activities that could be carried out 
by artificial or human resources. Naikar, Moylan and Pearce 
(2006) suggested characterizing these activities as a set of 
work functions, which are related to the purpose-related 
functions level of WDA. Each work functions may be per-
formed in different work situations. The contextual activity 
was analyzed according to temporal and spatial dimensions.

The tactical and operational levels were analyzed to 
define the global organization of the activity. The tactical 
level tackles the manufacturing plan and the mission plan 
of the mobile ground robots according to the objectives pro-
vided by the strategic level. It aims to control and update the 
plans previously prepared and launched according to unex-
pected events, like machine breakdown, human overload, or 
new objectives, like new type of product. The operational 
level addresses the trajectories of the shuttles and the mobile 
ground robots in normal functioning mode and according to 
unforeseen events such as obstacles for the mobile robots, 
problem with the human supervisor interaction, or problem 
with the production robots of the flexible cell. Therefore, 
critical events and internal/external conditions define and 
update the contextual activity as proposed by Rauffet, Chau-
vin, Morel, and Berruet (2015).

The spatial dimension of the contextual activity relates to 
the complexity of the plan area. The more the IMS is wide 
and complex, the more the analysis of the spatial representa-
tion of the overall system may be difficult for human super-
visor, due to his/her attention increasingly split between 
several areas and screens.

Therefore, the work functions were defined to take into 
account these contextual activities. The work functions 
address the control of global process states (long- and mid-
term activities), the control of the flexible cell, i.e., the 
shuttles, the production, and mobile ground robots at the 

Fig. 4   Decision ladder for functions relevant to the human supervisor only (pink), the human supervisor and technical agents (pink and yellow), 
and technical agents only (yellow)
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short-term activity. The decision ladder presented in Fig. 4 
gathers all work functions. Fig. 4 presents the different func-
tions that the human supervisor and/or the assistance sys-
tems have to complete to reach the objectives of the IMS. 
For convenience, colors have been applied on the decision 
ladder, as it would be done during the SOCA phase.

The interfaces (cf. Fig. 5) have been designed to show 
short-term activities gathered in the center of the operator’s 
field of view and longer termed activities are on sides, which 
is planned to be more ergonomic for operators. It is to note 
that the interface for the IMS and the mobile ground robots 
are independent due to the legacy design of the ground 
robots’ controls. The only exception being the task plan-
ning interface due to the externalization of this function-
ality. The IMS interface as well as the planning interface 
are designed following the information extracted from the 
CWA, such as Abstract Value related to the task, actors 
involved, required interactions, and such. Ecological inter-
face guidelines (Burns and Hajdukiewicz 2004; Rasmussen 
and Vicente 1989) have been considered when rendering the 
extracted information, but further works using human–com-
puter interfaces methods could also be used to improve the 
interfaces. However, that was not the main objective of our 
study despite the fact that interfaces play an important role 
in the operator understanding and trust.

Mobile ground mobile robots alert the human supervisor 
when they have to stop because of an unexpected obstacle 
through the interface dedicated to the operational level [cf. 
Fig. 5(a)]. However, the human supervisor can anticipate 
such a problem if he/she has the time to perceive it using the 
video feedback of each robot. He/she can use the interface 
dedicated to the tactical level to analyze robots’ trajectories 
and decide new targets [cf. Fig. 5b].

A decision support system (DSS) provides information to 
supervise and control the flexible cell at the two decisional 
levels. The DSS provides a synthesis about four types of 
information from the operational level (based on Abstract 

Values) for the last 2 min through bar graphs situated close 
to the synoptic of each production robot [cf. Fig. 6a: from 
left to right]:

•	 the efficiency of production robot (time spent per prod-
uct, idle time, and breakdown),

•	 the quantity of supply (raw material),
•	 the energy consumption,
•	 the number of operations that have been done.

Based on this information, at the operational level, the 
human supervisor can modify the amplitude of the maxi-
mum field value emitted by a production robot thank to a 
slider (on the left of bar graphs), and/or modify the target 
robot of a shuttle by choosing another production robot using 
buttons (cf. Fig. 6b). This can be interpreted as either influ-
encing the decisional process of the artificial entities (rule 
or knowledge-based) or either bypassing this process (skill-
based), such as operators have authority over the artificial 
entities’ final decision.

The DSS also provides, at the tactical level, informa-
tion about the instantaneous consumption of all production 
robots, as well as the total consumption since the start of the 
production (cf. Fig. 7a). As operators are evaluated depend-
ing on the consumption in our scenario, that information is 
important for the operator to self-evaluate. At this level, a 
digital twin of the cell (here, of the emulator of the cell) is 
also proposed. This digital twin enables the fast simulation 
of the cell activity from its current state, i.e., the production 
robot activity and the shuttles motion on the conveyors, ini-
tiated using the real-time amplitude of the potential fields 
of each production robot or new amplitudes given by the 
human supervisor (cf. Fig. 7b). The DSS has the capability 
to conduct this simulation (highest box on Fig. 4), because it 
embeds an emulator of the cell (in our experiments, a copy 
of the introduced emulator of the cell) and the same algo-
rithm as the one used by the shuttles and can accelerate the 

Fig. 5   The Human–Mobile ground robots’ interface: (a) video feedback, controls, and alerts; (b) birds’ view of the flexible cell and robots’ tra-
jectories
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simulation process. The consumption graphics produced use 
the same design as the real-time ones to ease the compari-
son. The technical description of the digital twin is beyond 
the scope of this paper, but it enables the human supervisor 
to test, using the emulator and, from the current state of the 
cell, different decisional strategies and their impact on the 
future on a short time window in terms of production and 
energy indicators. In view of the complexity of the system, 
this task would be near impossible without technological 
assistance, whereas being an important function of opera-
tors’ activities. The technical developments of the emulator 
and the digital twin of the cell used are described in (Berger 
et al. 2015) (Fig. 8). 

The human supervisor has also to plan the mission of 
each ground robot and the products sequencing. The human 
supervisor prepares the mission of each ground robot using 
of a list of tasks (supply of production robots and download 

of finished products). A list of the on-going tasks informs 
about the past states and the current state of the ground 
robots (cf. Fig. 10a). Fig. 10b depicts the tools to select 
products according to their operations and the objectives of 
production (number of products), to add the products in a list 
(Planned products) that will be launched when the human 
supervisor makes the decision (green button “Plan”), and to 
control the on-going products.

To help the human supervisor to manage the products 
sequencing according to the algorithm used by the IMS, the 
DSS provides indicators to support the modification of the 
potential fields’ amplitude. Therefore, the HMI presented in 
Fig. 9 underlines the load according to the possible opera-
tions of robots. For each operation, it provides the list of 
production robots that can complete the operation and if 
one breaks down. A score for each production robot (one 
color per robot) has been calculated according to the robot 

Fig. 6   Information from the operational level in the DSS: (a) bar graphs for each production robot; (b) remote control of shuttles by selecting the 
target production robot

Fig. 7   Element of the DSS relevant to the tactical level: (a) cumulative and instantaneous consumptions; (b) simulation of consumption accord-
ing to new amplitudes for each production robot’s potential field
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speed to complete an operation and the number of operations 
which it can complete (colored rectangles behind products). 
The on-going products are in red and the products queued on 

the production robots are in blue. A score for each product 
has also been calculated according to the requirements of the 
product in terms of operations (size of product rectangles).

Fig. 8   Planning activities in the DSS: (a) the ground robots and (b) the products

Fig. 9   Product sequencing: the 
DSS view

Fig. 10   The production and logistic sequencing screen as seen by the human supervisor, with assistance (with the black square and rectangle) 
and without assistance (without the black square and rectangle)
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For example, a product that has a high score and is on a 
production robot that has a low score would monopolize the 
robot for a long time. The lower part of the Fig. 9 provides 
information about the equilibrium between the capacities of 
production regarding the production demand (black line).

To summarize what is seen by the human supervisor, the 
Fig. 10 contains the human supervisor’s view when the DSS 
is available (highlighted by the black scare and rectangle), 
or when the DSS is not used (without the black scare and 
rectangle).

3.2.3 � Social organization and cooperation analysis

This step can be performed according to the abstraction hier-
archy, i.e., according to all the previous phases already ful-
filled. Therefore, a synthesis is provided through an abstrac-
tion hierarchy, as presented in Fig. 11. The identification of 
the agent who can perform the purpose-related functions and 
the object-related functions has been made using of color, 
pink for the human agent and yellow for technical agents. 
The abstraction hierarchy highlights that only human can 
perform some purpose-related functions, but only the tech-
nical agent can perform associated object-related functions 
(line between functions). Nevertheless, the authority and the 
responsibility of these functions allocated to technical agents 
remains to human.

This abstraction hierarchy, and especially the links 
between the functions, supports the completeness and the 
coherence of the analysis.

All these functions and objects have been designed and 
implemented in the IMS, but only a part of them have been 
used as independent variables and controlled by the experi-
menters. The “Supervise and control of the self-organized 

system” purpose-related function was the function that was 
supported or not by a DSS. This function plays the role of 
the independent variable, as detailed in the following part 
describing the experimental protocol and the first results.

4 � Experiment and first results

4.1 � Experimental protocol

4.1.1 � Participants

The initial set of participants who attended the experiment 
included 23 students, 2 women and 21 man. After exclusion 
of burned data, the final dataset was narrowed down to 21 
students with 2 women and 19 men. Age of participants 
lies between 20 and 23 years. Eight students (down to 7) 
are from robotics and the other 16 students (down to 14) 
from supervisory control engineering. Participants were split 
evenly into two groups for the sake of the experiment.

Participants were questioned about their prior experience 
with remote controlled vehicles, production cells in general, 
and strategy/management games as three separate questions. 
After testing of the answer, no significant differences were 
found between the two groups regarding their experience, as 
well as their age and gender. However, prior experience of 
participants within groups show a strong variability, except 
for experience on production cells.

4.1.2 � Scenarios

All subjects are faced with a production plan, including three 
different product types of orders. In the experiment, three 

Fig. 11   Social Organization and Cooperation Analysis/Abstraction Hierarchy
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product types are labeled ‘L’, ‘T’, and ‘I’. They require dif-
ferent sets of operation, with some similarities (cf. Table 1). 
Operations are registered as numbers from 1 to 7 and the 
same operation can be requested multiple times for a sin-
gle product type. The products are designed, so ‘L’ and ‘I’ 
are similar, but generate different workload for robots (cf. 
Table 2). ‘T’ requires in addition an exclusive operation that 
requires more time and can be processed by only one specific 
robot. The requested quantities to produce have been set as 
follows (production plan): 5 products ‘L’, 4 products ‘T’, 
and 6 products ‘I’.

Participants are tasked with the completion of the produc-
tion plan, and requested to maintain the overall power con-
sumption below a limit. Each production robot is designed 
to consume one unit of raw material per operation performed 
(except when W1 loads a new product). However, the stock 
of raw materials is different between the production robots 
(cf. Table 2).

The participants faced an automated perturbation sce-
nario (cf. Table 3), whose events were triggered according to 
a timer. A first perturbation occurs after 3 min of operation, 
and the energy consumption limit progressively decreases 
to 65% of its original value over a 45 s timeframe. A second 
perturbation concerns a production robot breakdown occur-
ring after 5 min of operation, on a moderately important 
production robot. The robot is brought back available after 

3 min of idle time. The third and last perturbation is the 
increase of the consumption limit to 80% after an additional 
minute.

4.1.3 � Experimental conditions

The two evenly distributed groups have access to a differ-
ent interface to evaluate the provided help of the DSS. One 
group has access to the DSS, composed by the digital twin 
and the production planning helper, while the other does not.

The workload and scenarios remain the same among all 
the participants. However, a set of procedures adapted to 
their group and written on paper are made accessible to the 
participants to help them if they feel lost. These procedures 
are general in the direction offered not to limit the partici-
pants in their decision-making. The situations covered by the 
procedures are: incident-free supervision, machine break-
down, overconsumption, planned machine interruption, and 
unexpected behavior.

4.2 � Procedures

Participants are welcomed with a 30 min detailed presen-
tation of our system. The presentation is done on a slide 
show and the participants are free to progress at his/her 
rhythm and to ask questions to the experiment team to have 

Table 1   Products to make 
during the experiment, and 
the number and the type of 
operations they require

Product Operation 1 Operation 2 Operation 3 Operation 4 Operation 5 Operation 6 Operation 7

L 3 0 0 2 2 0 0
T 2 1 1 0 0 0 0
I 2 0 0 1 1 0 0

Table 2   Available operations 
per robots and associated 
processing time with total 
consumption to perform the 
operation. Include the amount 
of storable raw material per 
machine

Production 
robot

Operations Time (s) Total consumption Max storage

W1 Loading; unloading 10; 10 100; 100 8
W2 1; 2; 4 20; 20; 20 500; 250; 475 20
W3 2; 5 20; 20 250; 100 25
W4 3; 4; 5 20; 20; 20 450; 300; 100 30
W5 6; 1 5; 20 500; 375 25
W6 7; 4 20; 15 500; 450 25
W7 1 10 500 9999

Table 3   Timeline of events during the experiment

T(s) 0 180 s 195 s 210 s 225 s

Event Start of experiment Consumption limit: 90% Consumption limit: 80% Consumption limit: 70% Consumption limit: 65%
T(s) 300 s 420 s 480 s 600 s 780 s
Event W3 breakdown W3 repaired & online Consumption limit: 80% Production deadline End of experiment
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a thorough understanding of both the system and what we 
expect from the participants. During the presentation, the 
participant is introduced to the score system and its main 
factors: accomplishment of production plan, consumption, 
overconsumption, and efficiency bonus. Some factors remain 
hidden from the participants such as the perturbations. The 
participants are informed that the score will be used by their 
advisor to grand bonuses on one of their grades as a motiva-
tion reward. For the same purpose, participants are asked if 
they accept to be part of a ranking system, those results are 
shared among the participants.

The participant is then presented to the supervision work-
station and gets a summary of the major elements in a few 
minutes. After the presentation, the participant is offered a 
15 min trial of the system, assisted by the experiment team 
to ensure a correct training. The experiment team enables 
the participant to use all functionalities of the system and 
presents the major troubles that may happen, while making 
sure not to give any clues about the scenario. The products 
used for the training scenario are different of those from the 
experiment and no perturbations are used. The participants 
may adopt strategies to organize themselves and be able to 
face all the functions they have to supervise, allocate, and/
or control. Then, they have:

•	 to supervise the overall IMS to check robots’ state, con-
sumption, and production,

•	 to use the DSS, to simulate new potential fields ampli-
tudes, and improve the self-organization of the products,

•	 to manage overconsumption by decreasing the potential 
fields amplitude of high consuming production robots, as 
well as by postponing the manufacturing of the products 
requesting such production robots,

•	 to manage production robot breakdowns by re-planning 
the production with an adapted selection of the products 
regarding these robots.

After the training, the experiment team gets the system 
ready for the scenario and asks the participants to get ready 
for the experiment. Once the participants state their readi-
ness, the experiment team gives the start signal while simul-
taneously starting the 10 min experiment. The experiment 
team stays out of the direct line of sight of the participants 
not to cause any accidental perturbations (while taking 
notes, for example). However, the experiment team has a 
direct view on the participants as well as multiple video 
feedback to monitor the well execution of the simulation.

In case of troubles, the participant is allowed to ask ques-
tions to the experiment team (and is encouraged to if any 
out-of-scope problem is detected). The experiment team 
is only allowed to provide basic answers not to influence 
the participant. These answers include basic system’s func-
tionality, to repeat an already presented information and 

troubleshooting information in the only case of suspected 
technical issue during the experiment. In case of technical 
issue, the experimental team can try to remotely solve the 
problem using exclusives controls, or may access remotely 
the digital twin to simulate part of the function of the system 
to ensure the continuity of the experiment.

Once the 10 min are elapsed, the system is let loose dur-
ing 3 min to check if some products are about to be deliv-
ered. This is mainly due to the fact achieved products may 
take time to reach the unloading workstation and many of 
them were delivered shortly after the 10 min limit in the pre-
experiment testing. During those 3 additional minutes, only 
the additional products achieved are taken in consideration 
with a penalty for late delivery. Once the 3 additional min-
utes elapsed, the experiment is halted and considered done. 
The participant receives a provisional score based on raw 
production data and then is requested to answer questions 
to evaluate the system.

4.2.1 � Measures

The first set of questions is focused on knowledge about the 
system. The participant is requested to provide in decreas-
ing order of the three top production robots corresponding 
to the different questions that are: what are the most effec-
tive production robots, the most efficient production robots, 
the production robots with highest pressure (time spent 
processing vs idle time), the production robots with high-
est operation count, and the production robots with fastest 
materials consumption. The results are used to assessing the 
knowledge built by the participants about the system. Then, 
questions are asked about any prior experience with similar 
systems and other generic information about the population 
(age, gender, etc.).

The second set of questions is targeted to the participants’ 
perception of the intelligence of the cell implemented here 
through smart shuttles. All questions are answered on a scale 
from 1 (not at all) to 7 (totally). The part one is about the 
understanding by the participant of smart shuttles’ ability, 
to perceive and analyze the IMS situation, to make decision, 
and to implement actions. The second part focuses on the 
participant understanding of the smart shuttles’ cooperative 
ability to obtain information about the smart shuttles, the 
detection of conflicts with smart shuttles decision-making, 
the management of those conflicts, and the feeling of control 
over the smart shuttles.

The third part is how the participant understands the abil-
ity of the smart shuttles to perceive the human supervisor 
activity. Therefore, questions are asked about the evaluation 
of the smart shuttles’ perception of the human supervisor’s 
ability to cooperate on conflict detection and management, 
and authority management.
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The last set of questions collects feedbacks of the partici-
pants about the experiment on a scale from 1 (low/poor) to 
10 (high/good). Questions are about the complexity of the 
environment, if they received enough training, and if they 
used all the information provided on the interface. Finally, 
the participants are offered the opportunity to express them-
selves freely during a debriefing and on paper about their 
feeling, idea, and such related to the system.

In addition, data related to production such as robot 
consumption and material delivery are recorded to provide 
the ability to evaluate quality of the production afterward. 
The participants’ interactions are also recorded alongside 
with multiple miscellaneous logs to be able to reproduce 
the chain of event and evaluate the use of the interface. In 
complement, a recording of the experiment team’s screen 
is also saved to provide more insight about the experiment 
on-going.

4.3 � First results

Several measures were done, but only one part of the results 
is presented in this paper; they are the results that may help 
to analyze the impact of the method in the design of the 
human–IMS cooperation. Those results are mainly stem-
ming from qualitative data, i.e., the comments during the 
debriefing. The objective data, like the energy consumption 
and the number of finished products, do not provide signifi-
cant results to distinguish the groups with and without the 
DSS. However, a deeper analysis of the participants’ tasks 
provides interesting and significant results now presented.

4.3.1 � Debriefing

This part presents the results stemming from the analysis of 
the short report provided by the participants according to 
their perception of the overall experiment, as well as how 
they felt the supervision and the control of the IMS, the 
DSS, the positive and negative aspects, and their recom-
mendations to improve the activities. Such a report might 
be considered as a debriefing done with the experimenters, 
but they did not impose any constraints to structure it. The 
analysis of those reports was organized according to five 
main parts underlined by the participants: the role of the 
human supervisor, the smart shuttles, the mobile ground 
robots, the static production robots, and the DSS.

Regarding the role of the human supervisor, the par-
ticipants wrote that they were focusing on the tasks at the 
operational level, so that was difficult to benefit from the 
DSS of the tactical level. However, they also precise that it 
is perhaps due to a lack of training on the process and the 
DSS, especially to organize their activity. For example, after 
their first experience with the IMS, they would have liked 
spending more time to prepare the planning of the tasks (for 

mobile robots and smart shuttles), instead of quickly launch-
ing the production.

Regarding the smart shuttles, the participants noted that 
the shuttles have a bad perception of their environment, 
especially the production robots that can perform the opera-
tions they require. Therefore, they have to remotely control 
the products and then focus on the operational level. They 
propose increasing the cooperation between the smart shut-
tles and the production robots to improve the products self-
organization, because it might help the human supervisors 
to focus their attention on other parts of the IMS. However, 
the participants request more information about products 
directly on the flexible cell view, such as the next production 
robot and the time to reach this robot.

Regarding the mobile ground robots, the participants feel 
that there are completely dissociated from the flexible cell. 
They propose implementing cooperation between the mobile 
ground robots and the static production robots. The produc-
tion robots may alert the ground robots about their low level 
of inventory, and for the W1 to alert about the high level of 
finished products.

Regarding the static production robots, the participants 
wait for more information, especially the operations they 
can perform directly on the flexible cell view, and the time 
to complete an operation or to finish a product.

Regarding the DSS, the participants precise that it was 
difficult to split their attention between the four screens, and 
so to benefit from the DSS. They also underline that it is 
perhaps due to a lack of homogeneity of the information 
between the several views. The DSS gathering the score of 
products and production robots per operation may be pre-
sented in another way, for example operations and products 
per production robots. Finally, they would like more coher-
ence and shared activities between the levels of activity, 
and then more autonomy at the operational level but more 
advices and alerts at the tactical level.

4.3.2 � Objective results

Only few parts of the objective results are presented and they 
focus on the plan of products performed by the participants. 
The analysis underlines a difference between the group using 
the DSS and the other. The different combinations of prod-
ucts type will be referred as pattern and focus on the quanti-
ties of each product type within a batch rather than the order. 
The comparison between the group of participants was made 
using the pattern among the six first-loaded products (1st 
batch), corresponding to the initial loading of the six smart 
shuttles, as well as among the next 6 products (2nd batch) 
(cf. Table 4). For the 1st batch, the group without DSS opted 
in majority for two products of each type (54.55%), while the 
group with DSS is split among multiple patterns. The 2nd 
batch shows more variable patterns, probably more affected 
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by the perceived situation by the participant. However, the 
group without DSS still shows that a higher number of par-
ticipants plan 2 products of each type (27.27%) than the 
group with DSS (8.33%). Therefore, the DSS seems to diver-
sify the participants’ strategies.

5 � Discussion

From the comments provided by the participants and the 
objective results, it is worth noting that the participants sug-
gested, from our perspective, to increase the intelligence of 
the IMS to ease their supervisory tasks. This result militates 
toward the development of more autonomous, cooperative, 
and not only purely reactive decisional entities in IMS. In its 
state, the low intelligence level of the IMS, despite its suf-
ficiency to generate emerging behavior to face unexpected 
situations, is not adapted to the presence of a human super-
visor in the loop. The IMS presented in this paper has been 
designed with the support of the formative CWA method, 
but an important part has to be imagined thank to the innova-
tion of designers. Indeed, CWA is used to thinking about the 
limits within the system will work, not about exactly how 
the interactions will occur. The method provides the main 
information and functions that the process has to manage, 
but the human–machine interface (HMI) must be innovative, 
especially when the proposed system is a new one, as well as 
ecological (Burns and Hajdukiewicz 2004; Rasmussen and 
Vicente 1989). Therefore, the positive and negative results 
provided by the experiments might be due to incomplete 
use of the method, lack in the method, or problems in the 
HMI design or in the experiments. The following paragraphs 
address the three aspects.

The SOCA phase of the CWA method enables to deter-
mine the possibilities for work allocation, distribution, and 
social organization in a system (Stanton et al. 2017; Walker 
et al. 2014), in our study of an IMS. We applied this phase to 
the Work Domain Analysis, to determine which system func-
tions are allocated to human and technical agents (SOCA-
WDA Fig. 11). We also applied this phase to the Control 
Task Analysis to specify the allocation of functions that 
the human supervisor and/or the assistance systems have 
to complete to reach the objectives of the IMS (SOCA-DL 

Fig. 4). Our application of the CWA method remains limited 
to a "static" approach. Cooperation in dynamic and uncertain 
environments requires a dynamic adaptation of the distri-
bution of functions and coordination between cooperative 
agents. It is necessary to allocate these functions temporally 
and spatially, and to define different strategies and conditions 
for implementing these situated functions. The lack of pre-
cise strategies certainly leads to the various patterns adopted 
by the participants with the DSS. The SOCA phase could be 
applied in a more dynamic perspective by the deployment 
of representation tools associated with the CWA method 
such as the Contextual Activity Template (SOCA-CAT) or 
the Information Flow Map (SOCA-IFM). This extension of 
the CWA could enable to define the modes or strategies of 
cooperation adapted to the situations (Rauffet et al. 2015).

Furthermore, in our application, CWA seems to be a little 
too evasive to analyze all the possible interactions between 
the potential agents. Indeed, the participants put forward 
the relevance of increasing the autonomy of the techni-
cal agents, and especially the cooperation between all the 
technical agents, to prevent the human supervisor to have 
to spend time to manage tasks at the operational level at the 
expense of the tactical level. The tasks of the operational 
level, like giving a new direction to a shuttle, or to control 
a ground robot remotely, capture the participants’ attention 
on the short-term loop without leaving time to manage plan-
ning tasks. More cooperation between the smart shuttles and 
the production robots, i.e., a cooperation not only based on 
the potential fields while taking into account other indica-
tors, might improve the efficiency and the human supervisor 
awareness. The shuttles could have other strategies to select 
production robot, strategies displayed to the human supervi-
sor. In the IMS, there was no interaction designed between 
the production robots and the mobile ground robots. The 
human supervisor had to give order to the mobile robots to 
reach a production robot that requires to be supplied and the 
W1 robot to be unloaded of finished products. Such orders 
can be easily automated if the production robots send a pre-
cise request to the mobile robots that can design a com-
mon plan according to their current task and position, and 
priority assigned to each production robots. The mobile 
robots’ decision-making could be displayed to support the 
human supervisor awareness. Therefore, the increase of 

Table 4   Patterns of product for 
the 2 first batches of 6 products 
loaded onto the flexible cell

The pattern is described by the letter associated with the product type and the associated quantity, while the 
second column gives the percentage of participant who chose the pattern

First Without DSS, 1st 
batch

With DSS, 1st batch Without DSS, 2nd 
batch

With DSS, 2nd batch

2 L; 2 T; 2 I 54.55% 2 L; 2 T; 2 I 16.67% 2 L; 2 T; 2 I 27.27% 1 L; 2 T; 3 I 33.33%

Second 3 L; 2 T; 1 I 9.09% 3 L; 2 T; 1 I 16.67% 1 L; 3 T; 2 I 18.18% 2 L; 3 T; 1 I 16.67%
Third 5 L; 1 T; 0 I 9.09% 1 L; 3 T; 2 I 16.67% 3 L; 1 T; 2 I 18.18% 2 L; 1 T; 3 I 16.67%
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cooperation between the technical agents may improve the 
efficiency and prevent the human supervisors to waste time 
at the operational level. However, their situation awareness 
must be supported by more coherence between the several 
screens through the technical agents’ cooperative activities, 
and their decision-making supported by a DSS able to pro-
pose solutions and not only indicators. The digital twin of 
the cell presented in this IMS could be extended to take 
into account mobile robots and new cooperative activities. 
With such a digital twin, solutions, suggested by experts or 
learned from human supervisors, might be implemented to 
train and support new human supervisors, or to help less-
qualified human supervisors. The adaptability of a DSS to 
human competence and needs tackles the IMS flexibility at 
the organization level.

The Human–Machine Cooperation (HMC) approach may 
help to support the design and the evaluation of Human–IMS 
Cooperation and might answer to the demands of the partici-
pants for more cooperation between all the agents. Indeed, in 
the HMC principles, a model of cooperative agent, human 
or technical, has been specified to support the design of 
cooperative interaction. A cooperative agent has two com-
petences, the “Know-How”, the “Know-How-to-Cooper-
ate" (Hoc and Lemoine 1998). The Know-How (KH) of an 
agent focuses on the control of a process or an environment, 
and not the interaction with other agents. The KH relates 
agents’ problem-solving processing, i.e., their competences 
and capacity to control a process. The more complex a pro-
cess is, the more an agent needs competence (or procedure) 
to control it. The more complicated a process is, the more 
agents require training and practice to control it, while man-
aging their capacity (e.g. workload). The KH also relates 
the ability to access the process information and the ability 
to act on this process. The identification of the KH of each 
agent in the control of a process helps the designer to iden-
tify type of data, functions, and sub-functions that can be 
shared or traded between those agents. The Know-How-to-
Cooperate (KHC) allows one agent to take advantage of the 
complementary KH of other agents. The KHC allows agent 
to build up a model of other agents to facilitate the coopera-
tion with them. This model allows them to be aware of the 
other actors’ concerns, expectations, and intentions (Schmidt 
2002). Working, training, and interact with others enable the 
development of such a model. Agents progressively identi-
fied, memorized, and used KH and KHC of other agents 
to achieve cooperative activities. A Common Work Space, 
materialized by HMI, is a combination of a representation 
of a process and a representation of each agent’s KH and 
KHC, and it supports those cooperative activities (Pacaux-
Lemoine and Debernard 2007). Therefore, when the CWA 
method proposes to analyze the functions to be achieved 
and at the end of the method the identification of workers’ 
competences, the HMC approach uses the opposite direction 

by identifying at first the current or future competences of 
agents, i.e., their KH and KHC. When designers reach to 
have a detailed description of those competences, they can 
combine them to extract the shared or traded functions that 
answer to the process objectives. In the use case previously 
presented, designers would have studied the KH and KHC 
of all the agents involved in the control of the IMS, i.e., the 
human supervisor and the three types of technical agents, 
the shuttles, the production robots, and the mobile ground 
robots. The HMC approach proposes using grids to conduct 
the analysis (Pacaux-Lemoine, Simon, and Popieul 2015). 
In this use case, six grids would have been used to analyzing 
cooperation: human supervisor vs. shuttles, production and 
mobiles robots; shuttles vs. production and mobile robots; 
production robots vs. mobile robots. The shared or traded 
functions, as well as individual functions, are identified and 
displayed on the Common Work Space to support the com-
munication and negotiation.

However, the HMC approach focuses on functions that 
can be shared between human and technical agents, and usu-
ally deals with sub-parts of the process and specific catego-
ries of workers. Moreover, there is no way to cross various 
points of view about the process to check and improve mod-
els and system design, except with experiments. Therefore, 
CWA method and HMC approach are complementary. CWA 
and HMC could be conducted in parallel and/or bridges 
could be built to connect some aspects of both methods. For 
example, from CHM to CWA, the Work Domain Analysis 
would be enriched by criteria about the quality of coop-
eration between agents, cooperative functions, and supports 
for cooperation with dedicated HMI-based, i.e., Common 
Work Space. The strategies analysis would be enriched by 
strategies for task allocation as proposed by Rauffet et al. 
(2015). The SOCA and the Workers Competences Analysis 
would be detailed through the grids previously mentioned 
and enriched by the human supervisor’s KHC and the techni-
cal agents’ HK and KHC. From CWA to HMC, all functions 
stemming from the CWA method would be crossed with 
functions identified with HMC to check the coherence and 
completeness.

The last part of the discussion concerns the participants’ 
answers to questionnaires and comments regarding the 
shortcomings in the training. It is due to the complexity of 
the process and/or the DSS, but it was not perceived in the 
same way by all the participants. The participants who were 
not used to working on production cells agreed the shut-
tles’ actions, though they were enough trained and found 
the HMI useful. In the experiment protocol, it would have 
been interesting to test the training level of the participants 
to improve the training or to adapt the IMS. Flexibility and 
adaptability are ones of main objectives of Industry 4.0 with 
a continuous adaptation of the work according to the physi-
cal, sensory, and cognitive abilities of the workers. Human 
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factors’ characteristics and models were already studied 
[e.g., (Grosse et al. 2017; Oborski 2004)] to conduct such 
an adaptation. Therefore, more training can be provided and 
an evaluation can be done to control if a requested level 
is reached. However, another way to proceed would be to 
use the evaluation, or knowledge an industry has about its 
employees, to adapt the IMS functioning to human com-
petences. A graduated adaptation could be performed and 
controlled by defining the levels of automation of the IMS 
(Dencker et al. 2009; Frohm et al. 2008; Lindström and Win-
roth 2010; Säfsten, Winroth, and Stahre 2007). However, 
how to manage the balance between a high level of automa-
tion of an IMS and human competences? Industry 4.0 deals 
with an increase in human competences, but what happens 
if enough trained and competent workers are not available? 
Is it possible to compensate lack of human competence with 
robust and efficient IMS? Nevertheless, in this case, workers 
might be less competent than the IMS, and so the IMS might 
have more authority? Is it an ethical possibility, especially 
if workers are still responsible? The right balance between, 
ability, authority, and responsibility must be found (Flemisch 
et al. 2012). Studies carried out on Human–Machine Coop-
eration, on Shared, Traded, and supervisory control may 
give some answers to those questions (Flemisch et al. 2019). 
Moreover, regarding the organizational level, some answers 
may be given by the study of cooperation between the deci-
sional levels (Pacaux-Lemoine and Flemisch 2018).

6 � Conclusion and perspective

This paper evaluated the Cognitive Work Analysis meth-
odology, and its applicability when designing an assistance 
system to support Human in the control of Intelligent Man-
ufacturing System in Industry 4.0. The evaluation of the 
methodology through the one of the Designed Support Sys-
tem was done using a micro-world, an intelligent manufac-
turing system composed of intelligent mobile ground robots, 
products, and static production robots interacting together 
and with a human supervisor in charge of the reaching of 
several time-based and energy-based performances indica-
tors. Twenty-three participants took part in experiments to 
evaluate the DSS and the interactions between the human 
supervisor and the technical agents. In the current state of 
the analysis, the scope of the evaluation of the DSS useful-
ness is reduced and other analyses will be deepened soon. 
However, several interesting comments and results from 
answers to questionnaires put forward the need to increase 
the autonomy of the technical agents of the operational level. 
The participants require more cooperation between those 
agents.

This result points the methodological aspects out. 
Indeed, even if the Cognitive Work Analysis would have 

deepened the analysis of the strategies for task allocation, 
this method could benefit from the method initiated by the 
Human–Machine Cooperation approach. The continuation 
of our work will include studies of the possible combination 
of both methods, as well as further experiment to strengthen 
our results and refine the system used as demonstrator.
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