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Abstract
Cognitive load plays an important role during learning and working, as it has been linked to well-functioning cognitive 
processes, performance, burnout and depression. Nonetheless, attempts to assess cognitive load in real-time by means of 
physiological data have been proven difficult, and interpreting these data remains challenging. The aim of this study is to 
examine whether and how well experienced cognitive load can be measured through psycho-physiological data. The approach 
of this study is rather unique, for a combination of reasons. First, this study takes a multimodal approach, monitoring EDA 
(electrodermal activity), EEG (electroencephalography) and EOG (electrooculography). Second, this study is based on a 
relatively intensive data collection (N = 46) in a controlled lab setting in which varying cognitive load levels are deliberately 
induced. Finally, not only focussing on statistical significance but also on the size of the association gives insights into how 
suitable physiological markers are to measure cognitive load. Results from a multilevel analysis suggest that the following 
physiological markers might be related to cognitive load, for example, in an industrial context: the rate and the duration of 
skin conductance responses, the alpha power, the alpha peak frequency and the eye blink rate. About 22.8% of the variance 
in self-reported cognitive load can be explained using these five measures.
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1 Introduction

1.1  The relevance of cognitive load in view 
of cognitive performance and well‑being

Cognitive load has been studied in various scientific domains 
(i.e. cognitive psychology, instructional design, human fac-
tors and ergonomics), as it plays an important role in how 
well human cognitive processes function, as well as in psy-
chological well-being.

The relationship between cognitive load and the func-
tioning of cognitive processes follows from several studies 

(Chen et al. 2016; Johannsen 1979) arguing that too high 
levels of cognitive load (referred to as “cognitive overload”1) 
can have a negative impact on the performance of the work-
ing memory. Correspondingly, too low levels of cognitive 
load (referred to as “cognitive underload”) can yield a worse 
performance as well, due to boredom or a lack of motivation 
(Young et al. 2014). These studies stress the importance of 
inducing adequate levels of cognitive load in view of well-
functioning cognitive processes. As suboptimal cognitive 
load levels hamper cognitive processes, they may be detri-
mental to the productivity and quality of industrial processes 
(in a blue-collar context), or to the performance of office 
environment processes (in a white-collar context).

Cognitive load has also been studied in view of 
human–machine interaction applications. Wearable cog-
nitive assistants that provide operators with the right 
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information at the right time offer a way to minimize errors, 
to enhance the person job-fit and to keep the cognitive load 
in the “comfort zone” (Belletier et al. 2019).

Next to cognitive load’s impact on the functioning of cog-
nitive processes and on performance, the cognitive load has 
also been related to psychological well-being. A study from 
Iskander (2018) among medical professionals argues that 
cognitive overload is likely to be an immediate precedent of 
burnout. The author stresses the importance of metacogni-
tive training to monitor one’s own cognitive load as a skill 
to help prevent burnout. Furthermore, as it is mostly agreed 
upon that given the plurality of depressive disorders, burn-
out and depression are connected conditions (Schonfeld and 
Bianchi 2016), tracking cognitive (over)load could also be 
highly relevant for the prevention of depression. More evi-
dence hereto can be found in the systematic review from 
Bianchi et al. (2015).

Given the relevance of cognitive load in terms of cogni-
tive performance and well-being, keeping track of cognitive 
load is, therefore, an important endeavour in fundamental 
research, but may also have interesting applications in prac-
tice. Although this study can be understood in a relatively 
wide range of applications, a specific context is highlighted 
as an example: industrial assembly work.

In industry, the cognitive load of operators during assem-
bly tasks is likely to depend on the complexity of the task at 
hand, the work instructions that are provided and the experi-
ence of the operator. Industry 4.0 refers to the fourth indus-
trial revolution, following the previous mechanical, electri-
cal and digital revolution. In this fourth industrial revolution, 
an advanced digitalization transforms factories in smart 
organizational units in which technological components are 
increasingly interconnected via sensors and via the internet 
(Lasi et al. 2014). Smaller lot sizes and an increasing prod-
uct diversification are another typical property of Industry 
4.0. The range of products that manufacturing companies 
deliver (i.e. product-portfolios) becomes even more diver-
sified and new products are being introduced more rapidly. 
This leads to increasingly complex manufacturing processes 
(El Maraghy et al. 2012; Wan and Sanders 2017).

In this increasingly complex industrial ecosystem, opera-
tors spend less time on repetitive processes, as these can 
increasingly be fulfilled by machines. This also means that 
operators can rely less on routine skills. They are confronted 
with new learning tasks on a more frequent basis, which is, 
from a cognitive perspective, a challenging evolution. Diver-
sified and rapid manufacturing may result in more informa-
tion processing (understanding how to assemble increasingly 
complex products) and information storage (the need to 
remember for more products how they need to assembled). 
Note that this effect of complexity on cognitive load is not 
a priori given, as it depends on the application at hand. As 
an example, the increased automation and interconnectivity 

of Industry 4.0 may, to a certain extent, also facilitate these 
complex processes for the operator.

Technological evolutions have opened the possibility to 
keep track of numerous types of data, such as physiological 
data, which can indirectly reflect humans’ emotions. How-
ever, it remains unclear how and to what extent cognitive 
load is reflected in these data. Noroozi et al. (2019) state that 
it is not yet clear which constructs (self-regulation, cogni-
tive load, attention, engagement, etc.) different physiological 
signals can measure and how the data should be triangulated 
and interpreted in the light of the construct that is being 
studied. Brouwer et al. (2015) mention that the potential 
of neurophysiological signals to infer mental states is often 
overestimated, mainly because conclusions are not always 
warranted and generalizations made are potentially problem-
atic. The authors attribute these deficiencies to two main root 
causes: the highly interdisciplinary nature of the field which 
makes it difficult to master all aspects on the one hand, and 
the unjustifiable belief to consider neurophysiological data 
as conveying an objective truth on the other hand. To over-
come these deficiencies, the authors give six recommenda-
tions to avoid common pitfalls when performing research 
in this scientific domain: defining a ground truth, formulat-
ing hypotheses about the link between neurophysiological 
measures and the mental state of interest, eliminating con-
founding factors, using proper statistical analyses, providing 
insight into the data and clarifying the added value of using 
neurophysiology.

To contribute to clarifying how experienced cognitive 
load is reflected in physiological data, this study collects 
multimodal physiological data in a controlled lab environ-
ment, in which various levels of cognitive load are induced. 
In doing so, this study aims to respond to the six aforemen-
tioned recommendations of Brouwer et al. (2015).

In what follows, first the concept of cognitive load is 
defined. Next, traditional ways of assessing experienced 
cognitive load by means of self-reporting are described. 
Hereafter, physiological measures are discussed, and the 
theoretical underpinning for their relatedness with cogni-
tive load is explained. In addition, the main findings from 
studies that also aim to measure cognitive load by means of 
physiological data are listed. This is followed by the research 
aim and a detailed description of the employed methodology. 
Finally, the results are reported and discussed.

1.2  Definition of cognitive load

The concept of cognitive load originates from early work 
in the field of instruction and education and is specified in 
the so-called Cognitive Load Theory (CLT; Sweller 1988; 
Sweller 1994; Sweller et  al. 1998). CLT defines cogni-
tive load as the demands being put on the storage and the 
processing of information in the human working memory 
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(Schnotz and Kürschner 2007). In cognitive psychology, 
cognitive load is defined similarly, as the amount of work-
ing memory resources that is used (Chen et al. 2016). Cog-
nitive load is also studied in ergonomics and human factors 
literature, where it is referred to as mental workload, mental 
effort or mental demand and defined as the amount of mental 
activity required to perform a task (e.g., Van Acker et al. 
2018; Young et al. 2014). In sum, definitions of cognitive 
load differ from domain to domain but show a clear common 
ground, i.e. the proportion of the human working memory 
capacity that is addressed. This capacity is limited, which 
is in contrast to our sensory and long-term memory that 
are able to process (and store) a quasi-unlimited amount of 
information.

1.3  Traditional self‑reporting assessment scales 
for cognitive load

A traditional and relatively simple way to measure (expe-
rienced) cognitive load is via self-reports, which are often 
considered as a gold standard. Previous research has used 
both unidimensional and multidimensional self-reporting 
scales. Multidimensional scales distinguish several compo-
nents out of which cognitive load consists. These compo-
nents typically depend on the way in which cognitive load is 
conceptualised, and can thus differ across scientific domains. 
In instructional design research, for example, cognitive load 
encompasses three constructs: the cognitive load associated 
with interpreting the learning instructions, understanding the 
actual content, and storing the acquired knowledge (Lep-
pink et al. 2013). In the field of ergonomics and human 
factors, Reid and Nygren (1988) address mental workload 
by means of their Subjective Workload Assessment Tech-
nique (SWAT) and state it can be largely explained by three 
components: time load, mental effort load and physiologi-
cal stress load. Although mental workload definitions are 
sometimes divergent, cognitive load is often closely linked 
to the mental effort load component (Young et al. 2014). 
Another commonly used multidimensional scale in the field 
of ergonomics and human factors is the NASA Task Load 
Index (NASA-TLX, Hart and Staveland 1988) that assesses 
workload on five scales with 21 gradations each. The mental 
demand component of the NASA-TLX closely aligns to cog-
nitive load. Next to multidimensional scales, unidimensional 
scales have also been proven to be reliable and valid assess-
ment tools of cognitive load. A frequently used unidimen-
sional scale in cognitive load research is Paas’ nine-point 
mental effort rating scale (Paas 1992). The scale ranges from 
“very, very low mental effort” to “very, very high mental 
effort” and assumes that learners can retrospectively assess 
their own cognitive load.

Self-reports are widely used and are considered a valuable 
source of information by a large body of literature. Fryer and 

Dinsmore (2020) for instance claim that in certain instances, 
self-reporting may be the only viable way to unearth covert 
constructions, such as emotional or cognitive states. Pekrun 
(2020) acknowledges certain limitations of self-reporting 
but argues they are still indispensable for any more nuanced 
assessment of mental states. Although the construct valid-
ity of self-reporting can be disputed, self-reports at least 
directly inquire the construct of interest. For these and other 
more practical reasons, subjective measures have been used 
in research for decades as a valuable source of information 
and sometimes tend to be seen as a “gold standard”.

However, self-reports also have several disadvantages. 
First, they do not permit measuring a person too frequently, 
let alone continuously (in real-time) (Matthews et al. 2019; 
Young et al. 2014). In addition, self-reports are intrusive, as 
they interrupt subjects by redirection their attention from 
the mental state they are into the self-report measure (Zim-
merman 2008). Also retrospective self-reporting has dis-
advantages, for instance because the self-report may be a 
post-hoc reconstruction rather than a real reflection of the 
actual cognitive load. Finally, it is important to be aware of 
other types of biases that self-reports are prone to, such as 
individual differences in interpreting the question and rat-
ing the numerical scales. Note that the existence of several 
types of biases that self-reports are prone to implies that the 
observed associations between cognitive load and its poten-
tial indicators may be underestimating the real associations.

Sensor data are not prone to these shortcomings. These 
(objective) data allow automatic and real-time measure-
ments without subjects’ involvement and thus remedy 
the aforementioned shortcomings of self-reporting data. 
Although one may consider certain physiological measure-
ment devices (EEG headsets, wristbands, patches, etc.) as 
obtrusive as well, it is expected that technological devel-
opments will lead to comfortable and wearable sensors in 
the future. Indeed, Zheng et al. (2014) give an overview of 
emerging unobtrusive wearable technologies, and explain 
how technological evolutions (micro- and nanotechnologies, 
mobile communications, human computer interfaces, etc.) 
are continuously making wearable sensors less obtrusive. 
The authors give examples of sensors that can be weaved 
or integrated into clothing, accessories and even the human 
skin. They explain how these developments enable to acquire 
information from these sensors in less interfering ways.

Understanding how the self-reported cognitive load 
relates to physiological data would enable to measure cog-
nitive load in real-time and in a non-obtrusive way (without 
interrupting the subject), through directly measurable mani-
fest variables. The (construct) validity of physiological data 
in terms of measuring cognitive load is obviously crucial, 
and depends on the extent to which cognitive load induces a 
certain physiological reaction. The next paragraphs discuss 
this in more detail.
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1.4  Psycho‑physiological measures for cognitive 
load

Previous research has shown that there is a theoretical 
ground for a link between cognitive load and physiology 
(Chen et al. 2016; Haapalainen et al. 2010; Kramer 1990). 
Several types of physiological measures have already been 
addressed in the context of cognitive load measurement, 
such as electrodermal activity (EDA), skin temperature, 
electrocardiograms (ECG, reflecting different heart rate 
measures, including heart rate and heart rate variability), 
electroencephalography (EEG) including event-related 
potentials (ERPs), electrooculography (EOG), functional 
near-infrared (fNIR) spectroscopy (e.g., Ayaz et al. 2012; 
Liu et al. 2017) and eye tracking (e.g., pupillometry).

Table 1 lists the different physiological measures that 
have often been used in an aim to measure cognitive load. 
First, a short description of the physiological measure itself 
is given. Next to that, an elaboration is given of the neuro-
biological underpinning on which the presumed relation-
ship between the physiological measure and cognitive load 
relies. For some physiological measures, this table suggests 
a relatively direct association with cognitive load. This is the 
case for EEG measures (both the power of frequency bands 
and event-related potentials) as well as for EOG measures, 
eye tracking and pupillometry. This rather narrow neurobio-
logical link opens up the possibility for strong associations 
between these physiological measures and cognitive load. 
However, for EDA measures, skin temperature and heart rate 
measures, the neurobiological link is much more indirect, 
which suggests that their association with cognitive load 
may be weaker, or potentially non-existing.

Kramer’s overview (1990) on physiological measures for 
mental workload stresses that given the inherent multidimen-
sional nature of cognitive load, no single measurement tech-
nique can capture all its aspects. Each physiological measure 
will perform differently related to the five main criteria that 
Kramer mentions: sensitivity, diagnosticity, intrusiveness, 
reliability and generality of application. In addition, it is 
acknowledged that multimodal approaches can overcome the 
limitations of single-source measurements and provide more 
robust representations of cognitive load (Chen et al. 2016).

Whereas Table  1 is primarily theoretically oriented, 
Table 2 dives into findings from previous empirical stud-
ies. Table 2 gives a non-exhaustive overview of the char-
acteristics and findings of different studies that have inves-
tigated how the cognitive load is reflected in physiological 
measures.

Several limitations can be observed from the studies 
listed in Table 2. These limitations are directly linked to the 
research gaps that are mentioned in Sect. 2, Research aim.

Another important deduction of Table 2 is that for some 
physiological measures no significant associations with cog-
nitive load are observed. This is the case for EDA measures, 
skin temperature and heart rate. For other measures, there is 
evidence that they are related to cognitive load. This applies 
to heart rate variability as well as to EEG (mainly the alpha 
activity). Finally, concerning EOG, results suggest that sev-
eral eye measures are associated with cognitive load: the 
blink rate (and interval), the blink latency, the pupil micro-
saccades magnitude and the pupil diameter. We can also 
conclude from the literature review that the strength of the 
associations (effect sizes) with cognitive load is not always 
mentioned, and when it is mentioned, effect sizes are rather 
moderate or small.

When measuring latent variables by means of (a combi-
nation of) manifest variables, we are not merely looking for 
significant relationships between the manifest variables and 
(a proxy of) the latent variable, but especially for manifest 
variables that are strongly related to the latent variable, and, 
therefore, can be considered as reliable and valid indicators.

Haapalainen et al. (2010) for example found two signifi-
cant physiological measures to discriminate cognitive load 
(see Table 2) that could predict the complexity condition 
of the task (as either high or low) with an accuracy of 81%. 
Important to mention is that this accuracy is an average and 
results from individual models that were created for each 
participant separately. The authors also attempted to find a 
single model across all participants to discriminate the dif-
ferent complexity levels, but mention that due to individual 
differences between participants they have not yet been able 
to do so. This shows how challenging it is to measure cogni-
tive load at the individual subject’s level.

Fisher et al. (2018) express their concern about research 
that unjustifiably applies “group-to-individual” generaliz-
ability, and argue how this results in imprecise and poten-
tially invalid conclusions. They explain that only for ergodic 
processes, inferences based on associations across individu-
als also generalise to the individual level. Typical of such 
processes is that the mean and the variance of the construct 
of study do not vary over time, which is rarely the case in 
research that studies human behaviour. The authors evalu-
ated six studies with a repeated measures design and found 
that the variance within individuals was two to four times 
larger than the variance between individuals. The authors 
state that “the highest-impact publications in medical and 
social sciences have been largely based on data aggregated 
across large samples, with best-practice guidelines almost 
exclusively based on statistical inferences from group 
designs” (p. 1).
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2  Research aim

A literature review shows that there are several studies that 
have explored and evaluated the significance of a psycho-
physiological measure in the light of studying cognitive 
load. However, several research gaps can be identified.

A first research gap is that not all studies take an advanced 
multimodal approach: some only address a single or a few 
physiological markers, which may prevent capturing all 
aspects of cognitive load.

A second research gap concerns different aspects that 
relate to the design and the methodology of previous 

studies. A first aspect is that most studies involve multi-
ple complexity conditions, but do not deliberately inquire 
about the induced cognitive load. Nonetheless, cognitive 
load is a subjective experience and not only the effect 
of the context on cognitive load but also the way cogni-
tive load is manifested can be person-dependent. In this 
respect, self-reports are well suited to capture each partic-
ipant’s subjective experience for each condition. A second 
aspect is that existing studies do typically not include a 
high complexity condition, intended to induce cognitive 
overload, although such a condition can make associa-
tions between cognitive load and manifest variables more 

Table 1  An overview of most commonly studied physiological measures and a brief theoretical underpinning for their link with cognitive load

Physiological measure Brief description and theoretical underpinning of the presumed association between the physiological measure 
and cognitive load

EEG: power of frequency bands Brief description: EEG allows to measure brain activity rather noninvasively. Performing a spectral analysis on 
the measured electric potential differences (by means of a fast-Fourier transform, FFT) allows to analyse the 
power of different frequency bands (delta, theta, alpha, beta and gamma) that are present in the signal

Underlying hypothesis: An increase in cognitive load can be measured by an increase in brain activity, i.e. 
oscillations within a certain frequency band with a larger amplitude (Antonenko et al. 2010)

EEG: Event-related potentials Brief description: An example of an event-related potentials approach is to let humans listen to beep tones, of 
which a small fraction has a deviating frequency (i.e., some beeps are higher or lower in tone)

Underlying hypothesis: Humans, whether conscious or not, process auditory stimuli via their sensory working 
memory. This is reflected in brain activity, which can be measured by a voltage difference before and after 
the beep tone. Previous research has found that higher cognitive load levels result in less profound working 
memory processing and thus in smaller voltage differences (E.g. Luck 2012)

EOG Brief description: EOG (i.e., electrooculography, deploying the same sensors as EEG) enables to assess eye 
blinks in a non-obtrusive way

Underlying hypothesis: During high cognitive load levels, eye blinking is reduced, as blinking interrupts visual 
information, which is then undesirable (e.g. Ledger 2013). Next to an increase in endogenous eye blink 
rate (other than reflexive and voluntary eye-blinks), a decline in blink closure time and an increase in blink 
latency (the time between a stimulus and the blink initiation) have been associated with higher cognitive load 
levels as well (e.g., Zagermann et al. 2018)

Eye-tracking and pupillometry Brief description: Measuring the pupil diameter, blink latency, eye fixations and saccade characteristics
Underlying hypothesis: Eye-tracking and pupillometry have been related to cognitive load in previous studies 

(e.g. an increase in cognitive load has been associated with pupil dilations) via neurobiological mechanisms 
underlying the link between these eye-measures and cognitive load (e.g., Van der Wel & Van Steenbergen 
2018), such as the innervation of neurons of the autonomic nervous system with radial fibres of the iris

EDA Brief description: Electrodermal activity (EDA), which is also referred to as Galvanic Skin Response (GSR) 
assesses electrical characteristics of the skin to infer changes from the sympathetic nervous system

Underlying hypothesis: A psychological state that causes a human to experience stress or arousal, will give rise 
to an increase in skin conductance. The hypothesis for the cognitive load to be reflected in EDA is that cogni-
tive load has an effect on stress or arousal, which in turn impacts EDA (e.g. Setz et al. 2010)

Skin temperature Brief description: Measuring the temperature of the outermost surface of the human body
Underlying hypothesis: Stress or arousal results in vasoconstriction (narrowing of the blood vessels from the 

human skin), which reduces the temperature of the skin. The hypothesis for the cognitive load to be reflected 
in the human skin temperature implies that cognitive load has an effect on stress or arousal, which in turn 
impacts the skin temperature (e.g. Herborn et al. 2015)

Heart rate measures Brief description: Heart rate and heart rate variability can be assed via electrocardiograms or photoplethys-
mography (a light-based technology)

Underlying hypothesis: Heart rate is directly linked to physical activity, but is also a measure of both the 
sympathetic and parasympathetic autonomic nervous system activity. However, these only have a very 
indirect link with cognitive load (Jerčić et al. 2018). Heart rate variability is often used as an indication of the 
modulation of the autonomic nervous system. Stress or arousal will cause an increase in blood pressure and a 
decrease in heart rate variability (Solhjoo et al. 2019), which makes the link with cognitive load also indirect
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visible. A third aspect is that quite some studies lack sta-
tistical power, because of a rather limited sample size 
and because each participant is only once or a few times 
measured within the same condition.

A third research gap relates to the statistical analyses 
and the interpretation of the results in view of implica-
tions for research and for practice. A first aspect is that if 
studies include repeated measurements, these are some-
times not statistically analysed in an appropriate way. A 
second aspect is that often no measure is mentioned of 
how well manifest variables succeed in measuring cogni-
tive load (such as the proportion of explained variance), 
or if such a measure is reported, it is not interpreted in 
the light of using the studied physiological markers as 
a measurement tool for the cognitive load. Nonetheless, 
such a measure of association or goodness of fit rep-
resents an important criterion if one wants to actually 
consider the use of physiological data as a measurement 
instrument for the cognitive load.

The aim of this study is to simultaneously meet these 
research gaps, and to examine whether and how well par-
ticipants’ experienced cognitive load can be measured 
through psycho-physiological data.

To effectively measure cognitive load, a measurement 
model is required that takes several manifest variables as 
input and is thereby capable to measure cognitive load 
sufficiently precise and in an automatic way. However, 
the exact appearance of such a measurement model is not 
self-evident. This study monitors EEG, EOG and EDA 
data, as previous studies have shown that these physi-
ological sources might be promising in terms of measur-
ing cognitive load.

To be more precise, this study pursues the following 
objectives:

– Investigate how well we can measure the latent expe-
rienced cognitive load, using a stringent methodologi-
cal approach, by means of the following physiological 
manifest variables:

• EDA and skin temperature,
• EEG,
• EOG, and
• a composite score based on EDA, skin temperature, 

EEG and EOG.

– Uncover the possibilities and limitations of measuring 
cognitive load through physiological data to evaluate 
the corresponding implications both for research and 
for practice.

3  Methodology

3.1  Participants

Participants in this study were recruited in January 2019 
in Gent (Belgium), in a public library which is situated in 
the same building as a university (see also Morton et al. 
2019). In total, 46 participants voluntarily signed up for 
the study and received a small financial reward. They were 
aged between 19 and 40 years old (the average age was 
25.8 years, as most participants were students). There were 
25 female and 21 male participants.

3.2  Experimental design and tasks

To manipulate cognitive load across the different condi-
tions, we act on two processes from the working memory, 
namely storing (remembering) information and process-
ing information (Sweller 2010). According to Kyllonen 
and Christal (1990), good measures for working memory 
should (1) include simultaneous processing and storage, 
(2) not involve learning and (3) require knowledge that all 
subjects are presumed to have.

A first method to vary cognitive load is by manipulating 
(visuo-spatial) information processing, through the diffi-
culty of the task. For that purpose, tangram puzzles are 
used. These are dissection puzzles that consist of seven 
flat pieces with different sizes and forms. These individual 
pieces have to be arranged together in a certain way and 
without overlap to form a shape. As the pieces can be put 
together in a quasi-unlimited number of ways, many dif-
ferent shapes can be formed. The difficulty of the puzzle 
stems from the extent to which only contours (outlines) 
are shown, which masks the way in which the individual 
pieces should be arranged to form the required shape. In 
the low complexity phase, participants assembled several 
tangram puzzles of which the contours of each of the seven 
pieces are individually visible. In the medium complex 
phase, all puzzles have three pairs of two pieces touching 
each other, so only their surrounding contour is visible, 
which requires more (mainly visuo-spatial) information 
processing to find out how they should be assembled. In 
the highly complex phase, all puzzles have multiple touch-
ing sides, which makes it even more difficult to find out 
how the puzzle should be assembled (this is also illustrated 
in Fig. 1). This method to manipulate information process-
ing through the difficulty of the task fits in the framework 
proposed by Richardson et al. (2006) in which several vari-
ables that predict object assembly difficulty are identified. 
Applied to Tangram puzzles, a higher complexity is char-
acterised by more possible ways to orient and align the 
pieces as well as a higher amount of symmetrical planes.
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A second method to vary cognitive load is by manipulat-
ing information storage, by varying the type and amount 
of visual stimuli. Each stimulus is shown for a duration of 
30 s on a computer screen in front of the participant while 
performing the tangram tasks. The time intervals between 
the different stimuli are held constant. The participants were 
asked to remember the stimuli and write down the ones they 
remember after each phase. The number of stimuli that is 
shown increased with the increasing complexity of the 
condition. Two different kinds of stimuli were alternately 
shown: pictures representing a tool that is typically used 
in industry (such as a safety helmet, a conveyor belt or a 
drilling machine) and a two-digit number. During the low 
complex phase, two pictures and two numbers were shown. 
During the medium complex phase, three pictures and three 
numbers were shown. During the high complex phase, five 
pictures and five numbers were shown.

3.3  Procedure

All participants were exposed to the procedure illustrated 
in Fig. 1. At the beginning of the data collection, a base-
line measurement was performed in which the participant 
was in a quiet condition (resting state) and no tasks needed 
to be performed. During that baseline measurement, the 
participant first had to close his/her eyes for two minutes, 
after which (s)he had to look ahead with his/her eyes open 
for two minutes. During the entire baseline phase, EEG, 
EOG and EDA data were collected. Collecting baseline 

measurements enables to account for the highly individual 
nature of physiological data, by comparing each partici-
pant’s data collected during the different conditions to 
their own baseline values (see 3.5.1., Data pre-processing).

Subsequently, the participant went through three phases 
of ten minutes each, which are characterized by a different 
complexity level: a low complexity, a medium complexity 
or a high complexity. In doing so, we aim to induce three 
levels of cognitive load: a low level of cognitive load, a 
medium level of cognitive load and a high level of cog-
nitive load (or cognitive overload, as it was intended to 
approximate the participants’ maximum cognitive load). 
For each condition and for each participant, data were col-
lected during a time span of 10 min. Because the time 
to complete one puzzle typically ranges from less than a 
minute to a few minutes, sufficient puzzles of the same 
complexity were made available to span the ten minutes 
time period. As such, during each condition, participants 
can assemble as many puzzles as they can, until the ten 
minutes period ends. By increasing the variation in cog-
nitive load, we aim to ease the assessment of the value 
of physiological measures as indicators. To avoid learn-
ing or order effects, the sequence of the tasks was varied 
over participants by applying counterbalancing. This was 
operationalized by systematically alternating all six pos-
sible task sequences across participants.

Self-reported data inquiring the perceived cognitive load 
were collected three times, each time after the completion 
of a condition (see next subsection).

Fig. 1  The design and procedure of the study
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After measuring the participants under the three con-
ditions, another baseline measurement was performed in 
which the participant is again in a resting state.

3.4  Apparatus to measure the physiological data 
and the self‑reported data

The following physiological data (manifest variables) are 
monitored (each of the physiological measures is aggre-
gated per participant over the entire ten minutes length of 
the condition):

– Measured with a Biosemi ActiveTwo (BioSemi, Amster-
dam, Netherlands):

• EEG data (with a focus on the power of the alpha 
frequency band and the maximum frequency within 
the alpha band)

• EEG Event-Related Potentials: The N200 voltage 
difference (a usually negative voltage difference 
assessed 200 ms after the initiation of the beep tone)

• EOG data: eye blink rate (via external electrodes, 
horizontally and vertically relative to the pupil)

– Measured with the imec Chillband + (imec, Leuven, Bel-
gium):

• EDA measures: tonic component of skin conduct-
ance, phasic component of skin conductance, rate of 
skin conductance responses, duration and magnitude 
of these skin conductance responses.

• Skin temperature
• Acceleration of the participants’ left wrist (an indica-

tion for movement intensity)
• Heart rate measures are monitored, but could not be 

included in the analyses, as the calculation algorithm 
to derive heart rate measures from photoplethys-
mography (light-based technology) was not reliable 
enough.

  The interpretation of the different EDA measures 
deserves some additional explanation. The tonic skin 
conductance can be understood as the component of the 
skin conductance that changes slowly over time and is 
not impacted by sudden stimuli. The phasic skin conduct-
ance, on the other hand, shows up as abrupt and short-
term increases in the skin conductance signal, which are 
caused by external stimuli, typically related to stress or 
arousal. The skin conductance response rate is a meas-
ure for the frequency in time at which such phasic peaks 
occur. These phasic peaks are short, but can still differ 
in duration, a phenomenon which is characterised by the 
skin conductance response duration. Finally, the skin 

conductance magnitude is the integral of the phasic skin 
conductance over time and is as such related to both the 
duration and the magnitude of the phasic peaks.

  The latent variable, cognitive load, is retrospectively 
assessed after each condition. A similar unidimensional 
approach is used as Paas (1992), but instead of using a 9 
point rating scale, this study inquires cognitive load digi-
tally via a quasi-continuous scale, on which participants 
can indicate scores ranging from 0 to 100 by means of a 
slider. We consider this subjective self-report as a gold 
standard for experienced cognitive load and use it as a 
criterion to find suitable physiological indicators.

– In addition, also the following variables are kept track of 
in each condition:

  The perceived complexity: to be rated by participants 
on a 7 point Likert scale. The purpose of including this 
question is to assess whether our manipulation is suc-
cessful, i.e. if the different conditions indeed induced 
different levels of perceived complexity (with an aim to 
consequently induce different levels of cognitive load).

– The number of correctly assembled tangram puzzles: a 
first performance indicator (mainly linked to processing 
information)

– The proportion of correctly remembered stimuli: a sec-
ond performance indicator (mainly linked to remember-
ing information)

3.5  Data analysis

3.5.1  Data pre‑processing

Prior to the actual analysis, the data are first pre-processed. 
Spectral analysis is performed on the EEG data, transfer-
ring the time domain to the frequency domain, via a fast 
Fourier transform (FFT). Hereafter, a baseline correction is 
applied, correcting the actual measured value X (raw data) 
for the baseline measurement B. This is a common practice 
for physiological data, as they are highly person-depend-
ent. For EEG data, a decibel baseline correction is applied, 
10*10log(X/B). For the EDA data, absolute baselining is 
applied, deducting the baseline measurement from the actual 
measurement (X−B). EOG is operationalised by means of 
the blink rate, which is obtained by dividing the total amount 
of detected blinks during a condition by the duration of that 
condition.

3.5.2  Manipulation check of the perceived complexity 
experienced cognitive load and performance

To check the manipulation of the perceived complexity 
and cognitive load, we compare these scores in the three 
conditions by means of descriptive side-by-side boxplots. 
In addition, multilevel analyses are conducted in which we 
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use the complexity condition as a categorical predictor, and 
perceived complexity or self-reported cognitive load as a 
criterion variable. Subjects’ effects are included as ran-
dom effects. In this way, we take into consideration that the 
within-subjects residuals are not independent: because the 
physiological measures (and the effect of the conditions on 
these measures) are likely to be person-dependent, devia-
tions of the observed scores from the same person are likely 
to be more similar than deviations from different persons. 
Acknowledging this dependency is important, as failing to 
do this could possibly lead to flawed standard errors and 
therefore unjustified significant associations. Pairwise com-
parisons between conditions are performed, in which p-val-
ues are corrected for multiple testing according to Holm’s 
method.

Possible order effects are also investigated, by including 
an interaction effect between the condition (low, medium or 
high complexity) and the order in which the participant was 
exhibited to that condition (first, second or third).

Next, the performance measures are plotted. They are 
analysed by means of a multilevel approach in which the 
dependent variables are the proportion of remembered 
stimuli and the number of correctly assembled puzzles. The 
complexity condition is taken into account as a fixed effect 
and the subject as a random effect.

3.5.3  Evaluation of the physiological measures 
as indicators

After the pre-processing of the data (as described earlier), 
the data are explored by means of correlation matrices. 
These correlation matrices give a first idea about how the 
physiological measures interrelate with each other and with 
the self-reported cognitive load. These analyses are not con-
clusive, as they do not account for repeated measures (for 
each variable, we have three scores per participant, i.e., one 
score per condition) nor for possible confounding effects of 
other predictor variables.

Next, the data are analysed via a multilevel approach, 
regressing the self-reported cognitive load on the physiologi-
cal data. By allowing the intercept to vary among subjects, 
we explicitly model that self-reported scores from the same 
participant can be systematically low (or high).

Multilevel (or mixed effects) models are well suited to 
address the “group-to-individual” generalizability concern 
as they allow to assess the proportion of variance in self-
reported cognitive load that the predictor variables can 
explain. More specifically, we are interested in describing 
the within-subjects or residual variance (rather than the 
between-subjects variance) using the physiological indica-
tors. By comparing the proportion of additional explained 
residual variance between a null model without predictors 
and another model that does include predictor variables, we 

can assess the proportion of residual variance that these pre-
dictors can explain.

Another advantage of multilevel models is that they can 
disentangle between-subjects variation (which arises from 
inter-individual differences, such as participants systemati-
cally scoring higher than others, which is very common for 
physiological measures) from within-subjects variation (e.g., 
arising from actual differences in perceived cognitive load 
between conditions). Less sophisticated statistical techniques 
such as bivariate correlations, for example, are often used in 
research, but cannot make this distinction. As a result, these 
simple correlation measures can represent an underestima-
tion of the true relationship between self-reported cognitive 
load and a certain physiological measure.

A final advantage is that multilevel models are insight-
ful: the relationship between the dependent variable and the 
predictor variables follows directly from the obtained model.

All physiological measures are centered around their 
mean, so the intercept of the different models refers to the 
expected value for the self-reported cognitive load score 
(outcome variable Y) when all physiological measures are 
equal to their mean value. The regression coefficients β 
express to what degree the latent variable of interest, the 
experienced cognitive load, is expected to increase with one-
unit increases of the potential physiological indicators.

In the first step, each physiological feature is included 
in a separate multilevel model. In the second step, the most 
distinct measures are included together in three multilevel 
models. Measures for which the Variance Inflation Factor 
(VIF) is larger than 10 are excluded from the analyses, given 
their high multicollinearity. Models are made respectively 
for the physiological data measured with the imec Chill-
band + , for EEG data and for EOG data. These models give 
an idea about how well these types of physiological data can 
indicate cognitive load.

Finally, the physiological features that are most explana-
tory for cognitive load, regardless of their “type”, are 
included in a single model. This model will elucidate how 
well cognitive load can be measured when combining the 
best indicators across all “types” of physiological data 
(EDA, skin temperature, EEG and EOG).

4  Results

4.1  Manipulation check of the perceived complexity 
experienced cognitive load and performance

Results indicate that participants perceived the study’s 
three conditions indeed different in terms of complexity, 
F(2,90) = 263.9, p < 0.001, R2 = 0.80. This is also illus-
trated by Fig. 2 (left side). In addition, pairwise comparisons 
show that each condition differs from each other condition 
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in terms of perceived complexity (all p < 0.001). Moreover, 
these complexity levels induced three different levels of 
cognitive load, F(2,84) = 117.3, p < 0.001, R2 = 0.66, as can 
be seen in Fig. 2 (right side), supported by the results from 
pairwise comparisons (all p < 0.001).

In sum, conditions that required more information pro-
cessing and storage were perceived as more complex, and 
induced a higher cognitive load. These findings are indi-
cations that we were able to manipulate the (experienced) 
cognitive load, which will make it easier to answer the 
research questions.

An investigation of order effects (see Fig. 3) reveals that 
when the low complexity task is performed as the last of 
the three phases, it induces (on top of the general effect 
that the low complexity has on cognitive load) a lower 
cognitive load (p = 0.01, β = − 16.1, S.E. = 7.6).

Figure 4 displays the performance measures across 
conditions. An interesting observation is that the propor-
tion of remembered stimuli decreases across conditions 
(F(2,90) = 51.7, p < 0.001, R2 = 0.52, and for all pairwise 
comparisons, p < 0.001). This means that participants tend 
to remember a smaller proportion of pictures as the total 
number of pictures that is shown increases. In addition, 
the number of tangram puzzles that participants assem-
bled correctly also decreases with increasing complexity 
(F(2,90) = 539.1, p < 0.001, R2 = 0.89 and for all pairwise 
comparisons, p < 0.001).

Fig. 2  Participants’ perceived complexity (figure on the left) and mental investment (figure on the right) across the different conditions

Fig. 3  Distribution of participants’ self-reported cognitive load scores 
(y-axis). Within blocks representing the levels of complexity, the 
x-axis indicates the order in which a participant is subjected to a cer-
tain complexity condition

Fig. 4  The proportion of stimuli that participants remembered across the different conditions (information storage, figure on the left) and the 
number of tangram puzzles that participants correctly assembled (information processing, figure on the right)
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4.1.1  Evaluation of the physiological measures 
as indicators

The correlation matrix in Table 3 displays the relatedness 
between skin temperature, EDA measures and the self-
reported cognitive load, together with the Pearson cor-
relation coefficients.

The numbers in the first column indicate that none of 
the bivariate correlations between these measures and 
cognitive load is significant. However, as previously men-
tioned, care should be taken when interpreting these bivar-
iate correlations, as they do not account for the repeated 
nature of the measures. Meanwhile, EDA measures seem 
to interrelate well.

The skin temperature initially correlated with the EDA 
measures, but that correlation disappeared upon removal 
of two outliers.

To have a first view on how EEG and EOG measures 
interrelate with each other and with participants’ self-
reported cognitive load, a second correlation matrix is 
depicted in Table 4. Although it is only a preliminary indi-
cation, one can see that the strongest correlations with 
cognitive load arise from the eye blink rate and the alpha 
peak frequency.

Multilevel analyses can alleviate the aforementioned 
flaws of bivariate correlations and are elaborated in the 
next paragraph. An analysis is made for EDA, EEG and 
EOG measures separately, and then for a combination of 
these measures.

4.2  Multilevel analyses

4.2.1  EDA measures and skin temperature as indicators 
of cognitive load

Each physiological measure monitored by the wrist-worn 
wearable is included in a separate multilevel analysis. 
These measures are the tonic and phasic component of 
skin conductance, the rate of skin conductance responses, 
the duration and magnitude of these skin conductance 
responses and the skin temperature. Results from these 
separate multilevel analyses show that none of these meas-
ures has a significant effect on the self-reported cognitive 
load (for each effect, p > 0.05). However, when analysing 
the five most distinct EDA measures (VIF < 10) together 
in a multilevel model, the skin conductance response dura-
tion (p = 0.002, β = − 0.002) and the skin conductance 
response rate (p < 0.001, β = 388) are found to be signifi-
cant (see Table 5). When combined, these five measures 
explain 11.5% of the variance in self-reported cognitive 
load. Note that the acceleration of the participants’ left 
wrist has a highly significant effect (p < 0.001) on the self-
reported cognitive load, but is not withheld in the analysis 
as it is a confounding factor that results from the design of 
the study: a more difficult condition automatically resulted 
in participants completing less puzzles, causing less move-
ment of the wrist. These results provide some evidence 
for an association between the skin conductance response 
duration and response rate on the one hand and cognitive 
load on the other hand. The sizes of these effects, however, 
are small.

Table 3  Correlation matrix 
showing relationships (Pearson 
correlation) between the 
self-reported cognitive load 
and the EDA measures and 
skin temperature, and between 
these physiological measures 
themselves

Significance codes: ***p < .001, **p < 0.01, *p < 0.05, ‘.’ p < 0.10; df = 136

Measure 1 2 3 4 5 6 7

1. Cognitive load –
2. Mean skin temperature − 0.15 –
3. EDA: tonic skin conductance 0.05 − 0.06 –
4. EDA: phasic skin conductance 0.11 0.04 0.81*** –
5. EDA: skin conductance response rate 0.18 0.08 0.56*** 0.81*** –
6. EDA: skin conductance response duration − 0.05 0.14 0.58*** 0.74*** 0.80*** –
7. EDA: skin conductance magnitude 0.01 0.05 0.64*** 0.82*** 0.77*** 0.93*** –

Table 4  Correlation matrix 
showing relationships between 
the self-reported cognitive load 
and the alpha power, alpha 
peak frequency and eye blink 
rate, and these physiological 
measures themselves

Significance codes: ***p < 0.001, **p <0.01, * p < 0.05, ‘.’ p < 0.10; df = 136

Measure 1 2 3 4 5

1. Cognitive load –
2. ERP: N200 voltage difference − 0.05 –
3. Alpha absolute power (Log, POz) − 0.12 − 0.28** –
4. Alpha Peak frequency (Log, POz) 0.17* − 0.24** 0.23** –
5. Eye blink rate − 0.38*** 0.03 0.05 − 0.03 –
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4.2.2  EEG measures as indicators of cognitive load

Results from a multilevel analysis of EEG measures are 
depicted in Table 5. They indicate that the event-related 
N200 potential, i.e. the negative voltage difference assessed 
200 ms after the initiation of deviating beep tones, does not 
relate to the self-reported cognitive load (p > 0.05). The 
logarithm of the alpha power has nearly a significant effect 
on the self-reported cognitive load (p = 0.08, β = − 2.0). The 
logarithm of the alpha peak frequency has a positive and 
also nearly significant effect on the self-reported cognitive 
load (p = 0.06, β = 4.4). When combined, these two meas-
ures explain 3.4% of the variance in self-reported cognitive 
load. These nearly significant associations provide weak 
evidence for an increase in cognitive load to be associated 
with a lower alpha power and a higher alpha peak frequency.

4.2.3  EOG (eye blink rate) as an indicator of cognitive load

When analysing participants’ eye blink rate, a clear signifi-
cant negative association is found (p < 0.001, β = − 0.56), in 
the sense that participants blinked their eyes less frequently 
when they reported a higher cognitive load (Table 5 shows 
the results). This measure allows to explain 15.5% of the 
variance in cognitive load. Of all investigated effect sizes, 
the strongest association is established between cognitive 
load and eye blink rate.

4.2.4  A model combining all data: EDA, skin temperature, 
EEG and EOG measures as indicators of cognitive load

Finally, a multilevel model is built consisting of the physi-
ological measures that are most explanatory for cognitive 
load, across all “types”: the skin conductance response dura-
tion and response rate, the logarithm of the alpha power, the 
logarithm of the alpha peak frequency and the eye blink rate.

The results from this multilevel analysis (last column of 
Table 5) show that with increasing cognitive load, partici-
pants’ skin conductance response rate increases (p = 0.02), 
and the response rate durations decrease (p = 0.05). Alpha 
power is on average lower when cognitive load increases, 
but this is not significant. In addition, the frequency within 
the alpha power spectrum with the highest power increases 
with increasing cognitive load (p = 0.03). Finally, there is 
strong evidence for the rate of endogenous eye blinks to 
decrease with increasing cognitive load (p < 0.001). These 
five predictors can explain 22.8% of the variance in self-
reported cognitive load. In sum, these results yield evidence 
for the cognitive load to be manifested by several physiologi-
cal measures. The size of the different effects, however, is 
rather small: the majority of the variance in cognitive load 
can still not be explained through these measures.

5  Discussion

5.1  Implications for research

This study investigates whether and how well self-reported 
cognitive load can be measured through psychophysiologi-
cal data. For that purpose, a controlled lab-setting inducing 
different levels of cognitive load is set up. The skin conduct-
ance response duration and response rate, the alpha power, 
the alpha peak frequency and the eye blink rate are identi-
fied as the best physiological markers for the cognitive load. 
However, they can only explain a limited proportion of the 
variance in cognitive load (22.8%). This limits the usability 
of EDA, EEG and EOG measures as measurement instru-
ments for the cognitive load.

This study’s results (Table 5) are partly in line with pre-
vious work (Table 2), in that some of the previous studies 
also observed a parietal alpha activity suppression (Ryu 
and Myung 2005; Antonenko et al. 2010) and a blink rate 
decrease (Ryu and Myung 2005) with an increasing cog-
nitive load. However, some studies obtained insignificant 
or mixed results for these measures (Marquart et al. 2015; 
Haapalainen et al. 2010). In addition, none of the studies 
mentioned in Table 2 established EDA measures as sig-
nificant, whereas this study’s findings indicate that par-
ticipants’ skin conductance response rate increases and the 
response rate durations decrease with increasing cognitive 
load. Finally, this study did not cover pupil and eye-related 
measures, but it is noteworthy that previous work provides 
strong evidence for an association between these measures 
and cognitive load (Krejtz et al. 2018; Marquart et al. 2015; 
Rosch and Vogel-Walcutt 2013). Similarly, previous work 
also resulted in some evidence for an increase in cognitive 
load to be associated with an increase in heart rate variability 
(Solhjoo et al. 2019), a measure which this study could not 
cover.

Presumably, these differences can mainly be attributed to 
the limited statistical power of previous studies, especially 
because the effect sizes under study are probably inherently 
small. Next to that, differences in task design and the way 
in which cognitive load is inquired might influence how the 
physiological measures relate to the cognitive load scores.

This study also shows that a multimodal approach that 
includes multiple physiological markers is useful to increase 
the accuracy of the measurement. The more physiological 
markers that are included, the larger the proportion of vari-
ance that can be explained.

Next to that, the stringent methodological approach 
including the within-subjects design and the relatively 
large sample size have resulted in a relatively accu-
rate parameter estimation, making the evidence about 
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associations between physiological measures and cogni-
tive load much stronger.

This study also deliberately inquires the induced cogni-
tive load. This entails a contribution from a methodological 
perspective, as it allows to account for the cognitive load 
being induced by a certain condition being person-depend-
ent. When analysing repeated measures data of which out-
come variables systematically vary from person to person, 
multilevel models are recommended, as they are especially 
suited to handle such inter-individual differences, for exam-
ple when a participant systematically scores higher than 
others. In addition, we have shown that these models are 
convenient to evaluate the proportion of explained variance.

Another important theoretical insight that this study 
emphasizes (see Table 1) is that if one wants to measure 
a latent variable, it is very important that there is a rather 
direct link between the manifest variables (the physiological 
measures) and the latent variable (cognitive load). Without a 
theoretical underpinning of the relation between a manifest 
variable and the latent variable, it is likely that no or a very 
weak association will be found.

We also recommend to include a cognitive overload con-
dition as it is interesting from a methodological point of 
view, making associations between cognitive load and physi-
ological data more visible. Next to that, cognitive overload is 
interesting to study as it negatively impacts performance and 
well-being (frustration, stress and burn-out) and is thus rel-
evant to white- and blue-collar contexts (Young et al. 2014).

The existence of significant physiological indicators 
enables researchers to conduct cross-sectional studies on 
a group level to compare the effect of different conditions 
on cognitive load (i.e. different tasks, instructional designs, 
boundary conditions, etc.). Provided that lab-settings 
are sufficiently controlled and that the tested samples are 
sufficiently large, it will be likely to discover differences 
between conditions in terms of participants’ cognitive load, 
if these are large enough when measuring these physiologi-
cal signals.

However, as also concluded by Cranford et al. (2014) 
and by Fisher et al. (2018), significant findings across indi-
viduals do not automatically imply that accurate (real-time) 
measurements on an individual subject’s level are possible. 
Despite the observed significant physiological markers, the 
majority of the variance (77.2%) in cognitive load cannot 
be explained. This implies that cognitive load cannot be 
measured accurately on a single subject by means of the 
physiological measures used in this study. It is important 
for researchers and practitioners to realize that shortcom-
ing in order not to mistakenly overestimate the potential of 

measuring the cognitive load on a single subject, and to have 
a realistic view on possible applications in practice.

The findings from the performance measures seem 
straightforward and indeed confirm the theory that the 
human working memory and spatial ability are limited: the 
more information processing and storage is required, the 
lower the proportion of stimuli that can actually be remem-
bered and the puzzles that can be completed.

5.2  Implications for practice

Developments of wearable sensors, increasing computa-
tional power and evolutions in information technology and 
in cognitive psychology may potentially lead to wearable 
devices that measure cognitive load. Applied to the example 
of assembly workers, one could think of identifying opera-
tors who frequently suffer from high cognitive load levels 
and may need more support or training, would be better 
assigned to other tasks, or need professional help in view of 
burn-out prevention.

However, the results of our multimodal approach and of 
much-related work (see Table 2) show that such accurate 
measurements on a particular single operator are not yet 
possible.

Next to measuring individual operators, one could also 
monitor and compare the cognitive load between groups of 
operators, for instance in view of evaluating and comparing 
assembly stations or new production methods. Our results 
indicate that such comparisons based on a group design 
should be possible. However, in an assembly context, it 
seems unlikely that there will be many cases in which the 
costs (measurement equipment, time and corresponding pro-
duction loss) of this application will outweigh its benefits.

Note that this study’s experimental task does not solely 
apply to assembly work. The study may be understood in a 
broader context of applications that consist of (visuo-spatial) 
information processing and storage.

Next to the accuracy of measuring, privacy is another 
hurdle when measuring the physiology of employees. As 
this is not the focus of the current study, this concern is not 
further elaborated here.

5.3  Limitations

This study is prone to several limitations. These limitations 
also represent the underlying reasons for the very limited 
obtained proportion of variance in cognitive load.

First, although this study considers multiple physiological 
measures, these still represent a selection. To be more specific, 
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this study does not consider eye-tracking nor pupillometry, 
although several studies (e.g., Krejtz et al. 2018) have shown 
the relationship between pupil dilatation and microsaccades 
magnitude on the one hand and cognitive load on the other 
hand. In a similar way, the heart rate and heart rate variabil-
ity (see Ryu and Myung 2005) could not be analysed either. 
Including these and other relevant measures in the model 
may eventually further increase the proportion of explained 
variance.

A second limitation is that subjects are only measured dur-
ing a relatively short timeframe. As subjects are not followed 
over a longer time span, it is not possible to include person-
specific parameters to enhance the model fit.

A third limitation is that we used self-reports as the gold 
standard, although also this measure does not perfectly reflect 
the cognitive load. The validity of self-reports can be ham-
pered by incorrectly interpreting the question and by the dif-
ficulty in retrospectively assessing one’s own cognitive load. 
Note that Matthews et al. (2019) even claim that self-reports 
and psychophysiological measures are divergent, and conclude 
that “various available workload measures assess not one but 
several distinct constructs” (p. 20). They attribute the reasons 
for this divergence to several causes, such as deficiencies in 
subjective measurement scales, absence of the latent construct 
of interest, deficiencies in objective measures themselves or 
workload being non-unitary. Another drawback to the validity 
of self-reporting is that we inquired cognitive load by means 
of a unidimensional approach (similarly as Paas 1992), and 
not via multiple items.

5.4  Future work

Future work could include extending the multimodal 
approach by including heart rate measures and pupillometry. 
Next to that, it could be interesting to investigate how and 
how well cognitive load could be measured in less controlled 
contexts, such as in factory environments. Note that combin-
ing EEG, EOG, ECG and pupillometry poses several new 
challenges when moving these techniques from a lab envi-
ronment to less controlled environments in the “real world”. 
An obstacle particularly related to pupillometry is that this 
technique is not adequate yet for in-the-field usage, mainly 
due to variance in luminance coming from for instance the 
factory environment (assembly components, work table, 
etc.) (Van Acker et al. 2020). Finally, the person-specific 
nature of psychophysiological encourages new research lines 
in which longitudinal designs are set up, in which subjects 
are measured on multiple occasions during longer time 
spans to examine whether personalised models can enhance 
the proportion of variance in the cognitive load that can be 
explained (in a similar line of thought as e.g. Haapalainen 
et al. 2010).

6  Conclusion

The first research aim of this study was to investigate how 
well cognitive load can be measured through physiological 
data. The results highlight that finding significant markers 
across individuals does not automatically imply that accu-
rate measurements on an individual level are possible. The 
skin conductance response duration and response rate, the 
alpha power, the alpha peak frequency and the eye blink rate 
are identified as significant markers for cognitive load, but 
together, they can only explain 22.8% of its variance.

The second research aim was to evaluate the correspond-
ing implications both for research and for practice. Results 
show that the multimodal approach addressed in this study 
does not enable to measure cognitive load in an accurate 
way.

A first way to try to improve the measurement in future 
work is by extending the multimodal approach, by includ-
ing eye-tracking, pupillometry and heart rate variability. A 
second way may be to collect more longitudinal measure-
ments and consider personalised models that allow the way 
in which cognitive load manifests itself in a physiological 
variable (i.e., the regression coefficients) to differ from per-
son to person.

Improving the measurement model and re-evaluating its 
accuracy is necessary before even starting to consider appli-
cations in practice.
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