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Abstract
For a successful market introduction of Level 3 Automated Driving Systems (L3 ADS), a careful evaluation of human–
machine interfaces (HMIs) is necessary. User preference has often focused on usability, user experience, acceptance and trust. 
However, a thorough evaluation of measures when applied to ADS HMIs is missing. We investigated the appropriateness 
of nine self-reported measures in terms of reliability and validity. A sample of N = 57 participants completed two 15-min 
simulator drives with a L3 ADS. They experienced two variations of a HMI that differed in the degree of complying with 
common guidelines. Consistency analysis identified scales that showed insufficient reliability. Validity examination revealed 
a three-factorial structure of self-reports for construct validity. These factors are design-orientation, usability-orientation 
and acceptance-orientation. All measures were sensitive to the HMI manipulation and therefore exhibited criterion-related 
validity. The present study provides researchers and practitioners in the area of ADS with a recommendation for self-report 
measure application.

Keywords Automated driving · Tools and methods · Human–machine interfaces · Human–computer interaction · 
Psychometrics

1 Introduction

Level 3 (L3) automated driving systems (ADS) are on the 
doorstep to the consumer market. These systems are charac-
terized by taking over longitudinal and lateral vehicle control 
and the driver does not have to constantly monitor correct 
system functioning (Society of Automotive Engineers Inter-
national J3016 2018). Instead, he/she has the possibility to 

engage in non-driving related tasks (NDRT) such as read-
ing a newspaper or watching a movie. The driver has to be 
ready as fallback performer if the system function fails or 
the operational design domain of the function ends. Poten-
tial benefits of automating the driving task are increased 
comfort, safety and traffic efficiency (Nunes et al. 2018). 
However, there might be resistance of people to actually use 
the ADS (König and Neumayr 2017). To overcome resist-
ance and for the potential benefits to become reality, it is 
important that people use the available technology and do 
not decide to disable the functions (van der Laan et al. 1997).

While ensuring the safe use of ADS is of primary impor-
tance, human factors researchers and designers need to 
accomplish two tasks related to usage intention. First, they 
have to enable HMIs that users evaluate positively to pro-
mote the adoption of this technology. Second, this requires 
development of a methodology on how to evaluate HMIs 
in the area of automated driving. Society of Automotive 
Engineers International J3016 (2018) describes the levels of 
driving automation from L0 (manual driving) up to L5 (full 
automation). The step from one level to the next higher level 
of automation is characterized by an incremental transfer 
of responsibility for certain task components (e.g., steering 
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and/or accelerating, monitoring, fallback performance). The 
SAE J3016R considers systems up to L2 as “driver sup-
port features” and starting at L3, systems are considered as 
“automated driving features”. Here, conditions have changed 
from active driving (SAE L0) to being a passenger (SAE L3 
and higher), who is relieved of the former primary task of 
driving.

In principle, both self-report (e.g., questionnaires) and 
behavioral measures (e.g., interaction performance) can be 
used for HMI evaluation (Hornbæk and Law 2007; Nielsen 
and Levy 1994). In that sense, it is necessary to investigate 
the suitability of the ample range of available self-report 
measures. Since the driver becomes the mere fallback per-
former, circumstances of HMI evaluation have fundamen-
tally changed at this level of automation compared to manual 
driving or partial automation (Naujoks et al. 2019a). Test-
ing scenarios for automated vehicle HMIs include not only 
voluntary transitions of control initiated by the driver but 
also system-initiated transitions from the ADS to the driver 
(so called Take-Over Requests, TOR). There is dearth of 
research concerning appropriateness of self-report applica-
tion for L3 ADS evaluation despite the ample range of self-
report measures. Scales that are applied without intensive 
investigation of its suitability for a particular context can 
lead researchers and practitioners astray in their decision of 
the quality of an HMI. Another problem arises when trying 
to compare results across studies. Without a consensus about 
methodological application, studies differ substantially in 
terms of user education, testing scenarios and dependent 
measures. There have been first efforts into standardization 
of testing scenarios (Gold et al. 2017; Naujoks et al. 2018). 
Concerning self-report measures, a recent study by Zoellick 
et al. (2019) outlined concerns about attitude measures for 
automated vehicles and brought forth empirical evidence 
that data structure and validity of attitude measures lack 
suitability for this context. Similarly, Forster et al. (2018b) 
have pointed towards the examination of self-report measure 
suitability. Therefore, the aim of the present methodological 
work is to thoroughly examine self-report measures for the 
evaluation of L3 ADS HMIs. The following paragraphs will 
give an overview of preliminary findings and constructs for 
the evaluation of HMIs and driving automation. Further-
more, psychometric measures as an evaluation criterion are 
outlined. From there, research questions are derived result-
ing in a study that eventually presents a comparative evalu-
ation of different self-report measures.

1.1  Background

According to François et al. (2016), usability and acceptance 
are important evaluation criteria for HMIs. Additionally, the 
construct of trust has gained considerable research inter-
est in the evaluation of automated driving lately (Lee and 

See 2004). Moreover, the construct User Experience (UX) 
became popular since the 1990s (Norman et al. 1995). The 
following paragraphs briefly outline those four constructs 
and relate them to automated driving research.

1.1.1  Usability

When it comes to design for automation, the human-centered 
design approach gains importance (International Organiza-
tion for Standardization 2018). According to the ISO 9241, 
effectiveness, efficiency and satisfaction compose usability. 
The satisfaction component as a self-report measure refers to 
the user’s attitude towards product use. A frequently applied 
scale to quantify self-reported usability is the System Usa-
bility Scale (Brooke 1996). It consists of ten items in total 
on the two subscales usability and learnability (Lewis and 
Sauro 2009). It was initially developed to serve as a usability 
measure that is applicable across a wide range of contexts. 
The SUS has previously been applied in research on auto-
mated driving (Forster et al. 2016, 2017; Hergeth 2016). The 
Post Study System Usability Questionnaire (Lewis 2002) 
was initially developed for the evaluation of speech dicta-
tion systems. Its structure with a total of 19 items can be 
described with the three subscales system usefulness, infor-
mation quality and interface quality. Thus, it already bridges 
the gap to acceptance through its usefulness subscale (see 
Sect. 1.1.2) and to design-related interface features of user 
experience (e.g., attractiveness) through its interface qual-
ity subscale (see Sect. 1.1.3). The PSSUQ has been used by 
Walch et al. (2017) to evaluate a L3 ADS HMI. The present 
study thus examined the applicability of these questionnaires 
for the evaluation of L3 ADS HMIs.

1.1.2  Acceptance

In the automotive context, researchers have built upon 
acceptance theory (Davis 1985; Venkatesh et al. 2003) to 
develop models that predict usage of car technology. The 
Unified Theory of Acceptance and Use of Technology 
(UTAUT; Venkatesh et al. 2003) comprises the four sub-
scales Performance Expectancy, Effort Expectancy, Social 
Influence and Intention to Use with a total of 13 items. The 
UTAUT combines eight different acceptance models within 
one generic framework and is a popular tool to evaluate 
acceptance.

Questionnaires on its basis have been adapted to auto-
motive technology in general (Osswald et al. 2012), L1 
driving automation (Adell et al. 2014), L2 driving automa-
tion (Rahman et al. 2017), L3 ADS (Rahman et al. 2017), 
L4 ADS (Nordhoff et al. 2016) and L5 ADS (Nees 2016). 
According to the acceptance framework by van der Laan 
et al. (1997), usefulness and satisfaction as two independ-
ent dimensions compose acceptance. The van-der-Laan 
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scale consists of nine items on a 7-point semantic differen-
tial scale. Since its acceptance definition includes satisfac-
tion as an integral component, it might also be linked with 
the definition of usability in International Organization for 
Standardization (2018). This framework has been applied 
for the evaluation of auditory HMI components for an L3 
ADS by Bazilinskyy et al. (2017). Many studies on accept-
ance focus on acceptability of system functions without 
providing an experience of the respective technology (For-
ster et al. 2018a; Kyriakidis et al. 2015; Nees 2016; Payre 
et al. 2014). The present work fills this gap by examining 
and comparing acceptance measures for L3 ADS after an 
experience of the technology in a driving simulator.

1.1.3  User experience

Usability measures cover satisfaction with pragmatic 
aspects of interaction with a product (i.e., perception of 
interaction performance). However, they largely neglect 
non-pragmatic aspects such as interface attractiveness or 
joy during interaction. The lack of including such quali-
ties into the evaluation of product perception led to the 
rise of User Experience (UX) in the 1990s (Norman et al. 
1995). To quantify UX, Hassenzahl et al. (2003) developed 
and validated the AttrakDiff questionnaire. The 28 item 
questionnaire covers pragmatic aspects (pragmatic quality) 
and hedonic aspects (stimulation, identification). It was 
originally developed in a website and MP3-player con-
text. Stating that the AttrakDiff puts too much emphasis on 
non-instrumental product aspects, Laugwitz et al. (2008) 
developed the User Experience Questionnaire (UEQ) 
over six different contexts such as cell-phones, statisti-
cal packages (SYSTAT) or SAP-tools (customer relation-
ship management; CRM). Subsequently the authors report 
positive results of the UEQ in two validation studies using 
software products. The 26 semantic differentials describe 
six subscales (i.e., attractiveness, perspicuity, efficiency, 
dependability, stimulation, novelty). Minge et al. (2016) 
developed the modular evaluation of key Components of 
User Experience (meCUE) as a tool to measure UX. In 
their self-report measure, 33 items are allocated to 9 sub-
scales (see Table 3) representing hedonic and pragmatic 
product qualities, emotions towards a product and usage 
intention. Hence, the meCUE includes aspects of accept-
ance through its intention subscale (see Sect. 1.1.2) and 
usability through its UX definition of pragmatic product 
qualities. There have been applications of the AttrakDiff 
(Frison et al. 2017), meCUE (Auricht et al. 2014) and 
UEQ (Häuslschmid et al. 2017) in the driving automation 
context. However, empirical support for the appropriate-
ness of scale application is still missing.

1.1.4  Trust

Trust is an influential factor on acceptance of technology 
(Ghazizadeh et al. 2012). Consequently, low levels of trust 
lead to low acceptance and to rejection of a system (Eich-
inger 2011; Lee and See 2004). Among others, Jian et al. 
(2000) and Chien et al. (2014) have developed psychomet-
ric scales to measure the attitude trust in automation. The 
12-item Automation Trust Scale (ATS; Jian et al. 2000) 
was explicitly developed for the automation context in 
computerized systems. From a three-phased experiment 
(i.e., word elicitation study, questionnaire study, paired 
comparison study) the authors report the development 
of a scale to assess human–machine trust. The Univer-
sal Trust in Automation scale (UTA; Chien et al. 2014) 
consists of two components which are “general automa-
tion” and “specific automation”. Each dimension includes 
the three subscales of performance, process and purpose. 
To evaluate a product or HMI in particular, the “specific 
automation” component is sufficient. It combines 18 items 
in total. One important aspect that the authors consid-
ered during the development process was inter-cultural 
differences in trust evolution. In the context of driving 
automation, these questionnaires or selected items have 
been frequently used in HMI evaluation (Beggiato et al. 
2015; Forster et al. 2017; Gold et al. 2015; Hergeth et al. 
2017; Naujoks et al. 2016; Verberne et al. 2012; Waytz 
et al. 2014). Up to now, it is not clear which scale fits best 
for evaluating HMIs for L3 ADS. In their work on the 
development of the Automation Trust Scale (ATS), Jian 
et al. (2000) recommend to examine the questionnaire in 
terms of validity and reliability. The current study follows 
this recommendation and thoroughly examines self-report 
measures for trust in automation.

The previous outline of constructs and measures has 
shown that there is a heterogeneity of constructs and meas-
ures that can theoretically be applied in HMI evaluation 
for L3 ADS. The constructs are not completely distinct, 
but overlap in certain parts. Hassenzahl (2001) describes 
usability in the sense of pragmatic product quality as one 
dimension of UX. Satisfaction can be found in both accept-
ance (van der Laan et al. 1997) and usability (International 
Organization for Standardization 2018) definitions. There 
are also links between usability and trust based on theo-
retical considerations (Hoff and Bashir 2016; Lee and See 
2004) as well as on empirical research on ADS (Hergeth 
2016). A recent study by Frison et al. (2019) found a link 
between interface aesthetics and trust in the ADS. Finally, 
Ghazizadeh et al. (2012) included trust as a precursor for 
technology acceptance in the framework of Davis (1989). 
Thus, the issue arises which constructs are necessary and 
suitable for L3 ADS HMI evaluation.
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1.1.5  Psychometrics

The present study aims to examine and compare the psycho-
metric properties of self-report measures for HMI evaluation 
in the context of L3 ADS. The quality of questionnaires 
is determined through psychometrics (Bühner 2011; Nun-
nally 1978). There are main quality criteria and side quality 
criteria. A high-quality measure adheres to the main qual-
ity criteria of objectivity, reliability, validity. The following 
paragraphs briefly outline these criteria.

Objectivity. Objectivity of a test refers to the degree to 
which test results are independent from the experimenter. 
If a test does not vary between experimenters, evaluators 
and interpreters, it conforms to this criterion. The present 
work focused on self-report measures that provide standard-
ized instructions for participants when giving their ratings. 
They also provide instructions for researchers when scoring 
the questionnaire. Objectivity of conductors, evaluators and 
interpreters of these methods can thus be assumed and is not 
in the focus of this study.

Reliability. Reliability refers to the degree of accuracy 
that a test measures a certain trait with, independent whether 
the test claims to measure this construct or not. There are 
several different measures for reliability (Bühner 2011). 
Sijtsma (2009) describes Cronbach’s alpha as the most fre-
quently used measure. Here, each item is considered as an 
independent test. Accordingly, its accuracy is reflected in the 
average relationship between all single tests in consideration 
of the test length. Reliability is a necessary but not sufficient 
prerequisite for validity.

Validity. There are three types of validity, which are 
content validity, construct validity, and criterion validity 
(Bühner 2011). A test has sufficient content validity if its 
items are representative of the construct. A quantification of 
content validity is not possible. A closely related concept is 
face validity. A test has face validity if one can immediately 
form a connection between an item and a to-be-assessed 
behavior. Construct validity indicates whether an instrument 
measures the construct it intends to measure. Convergent 
(i.e., strong relationships between similar constructs) and 
divergent validity (i.e., weak relationships between dis-
similar constructs) together determine construct validity 
(Campbell and Fiske 1959; Cronbach and Meehl 1955). A 
possible numerical method to evaluate construct validity is a 
factor analytical approach (Bühner 2011). Finally, criterion 
validity describes the relationship between the test and an 
external criterion. In HMI research, there is a wide range of 
guidelines for HMI design (Bubb et al. 2015; Green et al. 
1994; Naujoks et al. 2019b). The degree of compliance of an 
interface to these guidelines can be an external criterion to 
self-report measures. Thus, the questionnaire should provide 
statistically significant results for different compliant and 
non-compliant HMIs.

Side quality criteria. Side quality criteria also add to the 
overall quality. These criteria are standardization (i.e., avail-
ability of norms), comparability (i.e., availability of parallel 
test forms), economy (i.e., brief and effortless administration) 
and usefulness (i.e., practical relevance of assessed criterion). 
These criteria are beyond the scope of the present study but 
should be considered individually when designing a study and 
using these questionnaires.

1.2  Research questions and study aim

In a review on usability measures, Hornbæk (2006) recom-
mends the validation of self-report measures. For the con-
structs usability, acceptance, UX and trust there are several 
scales that have been applied in HMI research settings (see 
Sect. 2.7). To date, there exists no general recommendation 
and no study on the appropriateness of self-report measures for 
the evaluation of HMIs for driving automation. The scales that 
are frequently used such as the SUS, AttrakDiff or van-der-
Laan certainly bear the advantage of flexibility and adaptabil-
ity to many different contexts. However, once circumstances 
of human-technology interaction have changed with the step 
to L3 automated driving, it is no proper procedure to simply 
assume method suitability since it had been applied in other 
automotive contexts such as in-vehicle information systems 
(IVIS). The current study aims to fill this gap and provide 
researchers and practitioners with a recommendation for 
choosing an appropriate self-report measure. Hence, the pri-
mary aim is the investigation of the suitability of different self-
report measures when evaluating automated vehicle HMIs. 
A possible criterion to evaluate such self-report measures is 
psychometrics (Bühner 2011; Nunnally 1978). Therefore, the 
questionnaires in this study were evaluated in regard to reli-
ability and validity. We do explicitly not claim to conduct a 
rigorous psychometric evaluation of measures but rather use 
psychometrics as evaluative criteria to guide the quantifica-
tion of self-report measure performance. The contribution of 
this work lies in methodological development for automated 
vehicle HMI testing. Since high-fidelity driving simulation 
experiments are time- and cost-consuming, particular circum-
stances of such setups (e.g., sample size, experimental dura-
tion, external validity of safety critical vehicle behavior) apply. 
Eventually, the goals of this study are (1) to find out whether 
the self-report measures would exhibit sufficient reliability 
and (2) meet the validity in terms of content-, construct- and 
criterion-related validity.
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2  Method

2.1  Participants

In total, N = 57 (9 female, 48 male) participants took 
part in the driving simulation experiment. Mean age was 
40.56 years (SD= 9.32, max= 60, min= 25). All partici-
pants were BMW Group employees, held a German driv-
er’s license, had normal or corrected-to-normal vision and 
had not previously partaken in a driving simulator study 
on L3 ADS. Thus, we ensured that there was no familiar-
ity of any of the participants with HMIs for automated 
driving.

2.2  Driving simulation

The study was conducted in a high-fidelity static driving 
simulator (see Fig. 1). The integrated vehicle’s console 
contained all necessary instrumentation and was identical 
to a BMW 5 series with automatic transmission. The front 
channels were displayed through three LED screens (each 
1920 × 1080 pixels, 50′ size) providing a combined field 
of view of 120°. Three LED screens behind the vehicle 
displayed the rear-view for the mirrors. Driving simulation 
was rendered with a frequency of 60 Hz.

2.3  Automated driving function

Once activated, the L3 ADS executed both longitudinal and 
lateral vehicle control. When the L3 ADS encountered a 
scenario that exceeded its operational design domain (see 
Sect. 2.6), a three-stage 20-s TOR was initiated and dis-
played to the driver (see Sect. 2.5).

2.4  Study design and procedure

There were two different HMIs in the present study. The 
study employed a one-factor within-subject design with 
two levels of HMI guideline compliance. Participants were 
randomly assigned to either the (1) high-compliance HMI 
or the (2) low-compliance HMI condition in the first drive 
and experienced the respective other condition in the second 
drive. The two HMIs and respective differences are outlined 
in the Sect. 2.5.

Upon arrival, participants were welcomed and gave 
informed consent. The experimenter explained that the study 
purpose was to examine two HMIs for automated driving 
and to evaluate different measures. To accustom themselves 
with the driving simulation, participants completed a 5-min 
familiarization drive. Prior to each experimental drive, the 
experimenter explained that, once activated, the L3 ADS 
would execute lateral and longitudinal vehicle guidance. 
Furthermore, the experimenter pointed out, that in case of 
exceedance of the system’s limits, it would inform them with 
sufficient notice to take over manual control. Participants 
completed the first drive with all use cases (see Table 2) 
and subsequently evaluated the HMI in the first inquiry on 
all nine questionnaires. After this inquiry participants again 
completed the experimental drive with the respective other 
HMI. In the second inquiry, they evaluated the HMI again 
with the same scales as in inquiry 1. Participants received 
the questionnaires in a randomized order to counteract 
sequential effects. The experimental procedure is depicted 
in Fig. 2.

2.5  Human–machine interface

A HMI for automated driving, that had previously been 
used in studies by Jarosch et  al. (2017) and Hergeth 
et al. (2017) served as the high-compliance HMI. It was 

Fig. 1  Static driving simulator with mockup and three front channels 
used in the current study

Fig. 2  Flowchart of experimental procedure
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depicted in the instrument cluster. When activated, the 
blue colour of the lane symbols, the text and the steering 
wheel indicated that the system function carried out longi-
tudinal and lateral vehicle guidance. This HMI (see Fig. 3) 
resembles that of existing HMI solutions for adaptive 
cruise control (i.e., longitudinal vehicle guidance; ACC) 
with additional steering assistance (Naujoks et al. 2015). 
Information was redundantly communicated by means of 
pictograms and a textbox above (Stevens et al. 2002). Tex-
tual information was displayed in German language. Dur-
ing the approach of the system limits, the HMI announced 
system limitations through three-staged TOR in form of 
an announcement, a conditional Take-Over request (‘soft 
TOR’) and an immediate take-over request (‘hard TOR’) 
(Forster et al. 2016). The stages lasted for 7 s (announce-
ment and soft TOR) and 6 s (hard TOR), respectively. 
20 s before reaching the limitation, a generic warning tone 
announced the upcoming limit. Additionally, the textbox 
displayed messages. The low-compliance HMI did not pro-
vide textual feedback. The soft TOR followed this notifica-
tion after 6 s and the HMI colour switches from blue to 
yellow. The HMI shows hands that grab the steering wheel 
and additional information in the text. After seven more 
seconds, the hard TOR appeared with the HMI coloured in 
red and hands grabbing the steering wheel. A more critical 
warning tone accompanies the visual information. Drivers 

could activate the L3 ADS by pressing a button on the left 
side of the steering wheel with the label ‘AUTO’. Deac-
tivation was possible through either braking/accelerating, 
active steering input or pressing the ‘AUTO’-button with 
subsequently putting hands on the steering wheel. During 
the hard TOR, a hands-on signal immediately deactivated 
the L3 ADS.

The development of a non-guideline compliant HMI and 
comparison with a compliant HMI is a mean for the purpose 
of investigating criterion-related validity. To create a differ-
ence between two HMIs, compliance with common HMI 
guidelines was systematically impaired in the low-compli-
ance condition. A checklist for ADS HMI design by Naujoks 
et al. (2019b) served as the criterion for HMI compliance. 
From the high-compliance HMI, both the display component 
and the operation component (i.e., ‘AUTO’-button) were 
changed by intentionally violating five items of the checklist. 
Table 1 provides an overview of variations in the HMI, the 
accordingly varied guideline and reference. The guideline 
items from Naujoks et al. (2019b) were the following:

• Item 3: System state changes should be effectively com-
municated.

• Item 7: The visual interface should have a sufficient con-
trast in luminance and/or colour between foreground and 
background.

Fig. 3  HMI for high compli-
ance (left) and low compliance 
(right) during normal function-
ing (top) and soft TOR (bot-
tom). Numbers indicate HMI 
variations described in Table 1 
column 2

Table 1  Variations for low-compliance HMI for the two components with respective criterion and reference

Component Variation Guideline number Reference in guideline of Naujoks et al. 
(2019b)

Operation component Activation and deactivation through long-press 
(i.e., .8 s)

Item 3 AdaptIVe Consortium (2017)

Display (1) Pictograms are 60% of the original size Item 8 Tullis et al. (1995)
(2) No text information except for L3 ADS 

availability
Item 2, item 3, item 9 AdaptIVe Consortium (2017), CAMP (2016), 

Stevens et al. (2002)
(3) No colour coding for cautionary and immi-

nent TOR
Item 3, item 7, item 14 AdaptIVe Consortium (2017), ISO 15008 

(2012), Stevens et al. (2002)
(4) No blue colour coding for active L3 ADS Item 3, item 7, item 14 AdaptIVe Consortium (2017), ISO 15008 

(2012), Stevens et al. (2002)
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• Item 8: Texts (e.g., font types and size of characters) 
and symbols should be easily readable from the permit-
ted seating position.

• Item 9: Commonly accepted or standardized symbols 
should be used to communicate the automation mode. 
Use of non-standard symbols should be supplemented 
by additional text explanations or vocal phrases.

• Item 14: The colours used to communicate system 
states should be in accordance with common conven-
tions and stereotypes.

Figure 3 depicts the high-compliance HMI (left) and the 
low-compliance HMI (right) when the L3 ADS is activated 
(top) and the soft TOR (bottom).

2.6  Use cases

Use-cases of the present study were chosen based on the 
HMI testing scenario catalogue for L3 ADS proposed by 
Naujoks et al. (2018). Use-cases included driver-initiated 
activations and deactivations, two TORs due to road works 
and the end of L3 ADS availability as well as indepen-
dently executed system maneuvers (Naujoks et al. 2017). 
The eight use-cases were arranged in a fixed order. This is 
necessary in studies on automated driving since for exam-
ple a TOR always requires a user-initiated transition to an 
automated mode as the subsequent UC. The TOR scenario 
itself lasted 30 s in total if the driver does not intervene. 
The driver initiated UCs took until the UC was completed 
successfully. At a maximum, the experimenter waited for 
2 min. If the participant could not complete the respec-
tive transition, he/she was instructed by the experimenter. 
An analysis of the duration of the activation scenarios is 
reported in Forster et al. (2019). One drive lasted approxi-
mately 15 min. Table 2 shows the eight UCs with informa-
tion about the initiator (i.e., driver vs. system).

2.7  Dependent variables

Table 3 summarizes the dependent measures used in the 
present study. Section 1.1 Background already provided 
information about the development of the respective 
scales. Questionnaires that did not exist in German lan-
guage (i.e., UTAUT, PSSUQ) were translated and back-
translated by a German and an English native speaker 
(Jones et al. 2001). To investigate face validity, partici-
pants were asked to additionally indicate when they strug-
gled in answering a specific item due to unclear formu-
lation of the item or inappropriateness in the automated 
driving context.

2.8  Manipulation check

An expert evaluation served as manipulation check to ensure 
a successful variation of HMI compliance. It consisted of 
eight items on a 7-point Likert scale from 1 (“not at all”) to 7 
(“very much”) concerning guidelines for HMI design (Nau-
joks et al. 2019b). Participants answered each item for both 
the high- and low-compliance HMI. The manipulation check 
for HMI guideline criteria was averaged into a composite. 
The items number with the wording are shown in Table 4.

2.9  Statistical procedure and data analysis

To ensure that no confounding factor (i.e., HMI guideline 
compliance) is present which could lead to an interaction 
between dependent measures and stages of the independ-
ent variable, reliability and validity are examined separately 
for both HMI conditions. Subscales were averaged into a 
composite as described in the original source. Mean ATS 
scores were calculated separately for trust and distrust as 
suggested by Spain et al. (2008). Hence, there are two sepa-
rate mean scores (i.e., trust, distrust) with a value between 
1 and 7 each.

Cronbach’s alpha was calculated as a measure of scale 
reliability (Cronbach 1951). To evaluate reliability coeffi-
cients in an absolute sense, the present values were com-
pared to a minimum value of α = .7 (Kline 1999; Nunnally 
1978) as well as the coefficients in the original source (if 
reported).

We evaluated content validity by means of participants’ 
evaluation about whether they struggled giving their rating 
on the respective item (i.e., face validity). Here, we counted 
the total number of indications for each item.

To determine construct validity, the correlations of the 
entire set of subscales in the present study were evaluated 
by means of an exploratory factor analysis (EFA) approach 
(Bühner 2011). This approach allows combining subscales 
to a certain number of factors that assess a similar construct 
and distinguish them from other subscales that assess a dif-
ferent facet of user preference.

Table 2  Sequential order of use-cases for each experimental drive

Number Use-case Initiator

1 Initial activation Driver
2 Lane change System
3 Deactivation Driver
4 Re-activation Driver
5 TOR (road works) System
6 Re-activation Driver
7 Speed adaptation System
8 TOR (end of L3 ADS) Driver
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Criterion-related validity was evaluated by means of 
inferential statistical analysis of the within-subject factor 
HMI compliance. A repeated measures-ANOVA was cal-
culated for all self-report measures. Thus, criterion-related 

validity represents sensitivity of the questionnaires to the 
experimental HMI variation. If a questionnaire is valid in 
this sense, it must be sensitive to the manipulation and reveal 
a statistically significant main effect of HMI condition.

Table 3  Constructs, questionnaires, scales and original sources for self-report measures

Construct Questionnaire (subscales) Subscales Scale Source

Usability SUS (2) Usability
Learnability

Likert [1–5] Brooke (1996)

PSSUQ (3) System usefulness
Information quality
Interface quality

Likert [1–7] Lewis (2002)

Acceptance UTAUT (4) Performance expectancy
Effort expectancy
Social influence
Intention to use

Likert [1–7] Rahman et al. (2017) adapted from 
Venkatesh et al. (2003) and Adell 
(2010)

van-der-Laan Scale (2) Usefulness
Satisfaction

Semantic differential [1–5] van der Laan et al. (1997)

User Experience AttrakDiff (3) Stimulation
Identification
Pragmatic quality

Semantic differential [1–7] Hassenzahl et al. (2003)

UEQ (6) Attractiveness
Perspicuity
Efficiency
Dependability
Stimulation
Novelty

Semantic differential [1–7] Laugwitz et al. (2008)

meCUE (9) Usefulness
Usability
Status
Aesthetics
Commitment
Positive affect
Negative affect
Intention
Loyalty

Likert [1–7] Minge et al. (2016)

Trust ATS (2) Distrust
Trust

Likert [1–7] Jian et al. (2000)

UTA (3) Performance
Process
Purpose

Likert [1–5] Chien et al. (2014)

Table 4  Manipulation check item numbers, wording and respective guideline number in Naujoks et al. (2019b)

Item number Item wording Guideline number 
in Naujoks et al. 
(2019b)

1 The driver is supported by the HMI in his/her perception of system state changes 3
2 There is a sufficient contrast between foreground and background 7
3 The visual display and the background differ sufficiently by colour 7
4 Colour coding is according to urgency 14
5 The displayed symbols are easily readable from the permitted seating position 8
6 The displayed text is easily readable from the permitted seating position 8
7 The operating elements of the HMI is intuitive 3, 9
8 There is immediate feedback about user input on the HMI 3, 9
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3  Results

3.1  Manipulation check

N = 8 experts in the field of Human Factors (at a minimum 
Master’s degree in psychology, human–computer interac-
tion or related field) completed the manipulation check. 
The experts completed the manipulation check question-
naires (see Sect. 2.7) after experiencing both the high- and 
low-compliance HMI. Descriptive data for the fulfillment 
of HMI guidelines showed that the high-compliance HMI 
was considered superior (M = 5.30, SD= .57) compared to 
the low-compliance HMI (M = 2.31, SD= .42).

3.2  Missing data

Across all participants, only n = 4 missed to answer sin-
gle items. This led to a total of N = 13 missing items. 
One participant did not complete the van-der-Laan scale. 
With every participant answering 334 items in total, the 
percentage of missing data is very low and equals .1%. 
Reliability analysis used list-wise deletion. For valid-
ity, however, an exclusion of n = 4 participants would be 
necessary. According to Tabachnick and Fidell (2007) 
‘Expectation–Maximization-methods sometimes offer the 
simplest and most reasonable approach to imputation of 
missing data, as long as your preliminary analysis provides 
evidence that scores are missing randomly’ (p. 71). Since 
the loss of information looms larger than the overestima-
tion of effects through the expectation–maximization (EM) 
approach, missing raw values as well as the van-der-Laan 
scale scores were estimated by an EM Algorithm (Lüdtke 
et al. 2007).

3.3  Reliability

The following section outlines reliability results for the 
subscales of self-report measures. Table 5 summarizes 
coefficients of the present study for both the high and the 
low compliance HMI overall. In addition, the reliabil-
ity coefficient Cronbach’s alpha of the original source is 
reported. Concerning the ATS, Jian et al. (2000) did not 
provide Cronbach’s alpha for a two-factorial solution, so 
no comparison is possible.

Reliability analysis found that n = 7 subscales did not 
meet the minimum value of α = .7 in at least one of the 
two experimental conditions. If a low internal consistency 
was observed in the present data, the original source also 
reported comparably low Cronbach’s alpha values such 
SUS Learnability, UATUT Social Influence and UEQ 

Dependability. Conversely, there are also subscales (i.e., 
UTA Process, Purpose; meCUE Intention, Usefulness) 
that exhibited low internal consistency while the original 
source reports sufficient reliability.

Table 5  Reliability coefficients (Cronbach’s alpha) for each subscale 
by HMI (i.e., high compliance, low compliance) and the original 
source (if reported)

Cells failing to exceed a Cronbach’s alpha value of .7 are in bold

Scale Subscale High-
compliance 
HMI

Low-
compliance 
HMI

Original

SUS Learnability .571 .544 .70
Usability .824 .863 .90

PSSUQ System usefulness .940 .940 .96
Information quality .898 .903 .96
Interface quality .783 .880 .92

UTAUT Perf. expectancy .774 .832 .87
Effort expectancy .907 .902 .86
Social influence .194 − .133 .48
Intention to use .900 .879 .91

VDL Usefulness .795 .811 .73–.87
Satisfaction .887 .879 .81–.90

AttrakDiff Hed-Stim .829 .868 .76–.90
Hed-Ident .872 .927 .73–.83
Pragmatic .832 .872 .83–.85

meCUE Usefulness .588 .718 .83
Usability .890 .898 .89
Status .789 .793 .83
Aesthetics .799 .857 .89
Commitment .806 .768 .86
Positive affect .892 .886 .94
Negative affect .851 .814 .92
Intention .716 .571 .86
Loyalty .749 .838 .76

UEQ Attractiveness .896 .954 .89
Perspicuity .786 .863 .82
Efficiency .796 .729 .73
Dependability .669 .866 .65
Stimulation .791 .799 .76
Novelty .906 .922 .83

ATS Distrust .732 .826 N/A
Trust .940 .946 N/A

UTA Performance .820 .828 .889
Process .560 .751 .870
Purpose .691 .781 .864
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3.4  Validity

3.4.1  Content validity

We approached content validity via participants’ face 
validity ratings. Table 6 shows items with a minimum of 
n = 11 participants that considered an item as problem-
atic to answer which equals close to every fifth participant 
(19.3%). This threshold was not chosen out of convenience 
but because from an expert’s perspective, 20% or more of a 
sample indicating issues in answering a respective item is 
problematic. Analogous to the procedure to determine the 
number of factors for the EFA in Sect. 3.4.2, a Scree-plot 
of the number of indications across all 168 items led to the 
threshold of n = 11 that are worth mentioning here. When a 
smaller percentage (e.g., 3 out of 57 participants) indicated 
that they struggled in understanding, no consistent picture 
across the entire sample could be drawn. If a participant 
marked the same item at both times of measurement, he/
she was counted as one. Results revealed n = 15 items 
with low face validity. PSSUQ ratings depend on whether 
the experiment included use cases with error messages 
and participants who had made a mistake and needed to 
recover from these. Both items of the UTAUT Social Influ-
ence subscale were considered problematic. The Attrak-
Diff included the highest number of items (n = 5) with low 
face validity. A large number of participants also consid-
ered meCUE items related to status as problematic. This 
is in accordance with the UTAUT Social Influence result. 
Another reason for face validity concerns were unclear 
content of expressions as observed for ‘integrity’ (ATS) 
and ‘performance’ (UTA).

3.4.2  Construct validity

Construct validity was investigated for the high compli-
ance HMI condition by means of a factor analysis. The 
Kaiser–Meyer–Olkin (KMO) as a test for the appropriate-
ness of the entire correlation table (relationship between 
all subscales) for factor analysis revealed a score of .878. 
This that indicates appropriateness of data for a subse-
quent factor analysis. Bartlett’s test for sphericity became 
highly significant [Χ2(496) = 1955.340, p < .001]. To deter-
mine the factor structure of the preference ratings, an EFA 
with principal-component factor extraction and Varimax 
orthogonal rotation was carried out. The Scree-criterion 
and Velicer’s minimum average partial test (O’connor 
2000; Velicer 1976) suggested a three-factor solution. 
The factors can explain 28.33%, 25.70% and 16.30% of 
total variance, respectively, adding up to a total variance 
explained of 70.33%. Table 7 shows factor loadings for a 
three-factor Varimax orthogonal rotated solution sorted 
by size. Loadings smaller than .5 are coloured in grey. 
Self-report measures that use semantic differentials such 
as all subscales of the AttrakDiff, four subscales of the 
UEQ and the van-der-Laan scale show high loadings on 
factor 1. This factor combines measures that evaluate the 
graphical interface design. Self-report measures that focus 
on interaction and pragmatic qualities of the interface such 
as the SUS, UTAUT Effort Expectancy and PSSUQ Sys-
tem Usefulness exhibit large factor loadings on factor 2. 
Finally, subscales that assess future intentions regarding 
the use of the system function accumulate on factor 3. 
Both ATS subscales load only weakly on factor two. This 
indicates that trust as measured by ATS rather forms a 

Table 6  Items and respective 
scales with low face validity as 
indicated by the frequency of 
participants labelling an item as 
‘problematic to answer’

Scale Item Face validity 
concerns [n]

PSSUQ The system gave error messages that clearly told me how to fix problem 12
Whenever I made a mistake using the system, I could recover easily and quickly 17

UTAUT People who influence my behavior would think that I should use the system 19
People who are important to me would not think that I should use the system 12

AttrakDiff Isolating-connective 15
Alienating-integrating 17
Brings me closer to people-separates me from people 26
Cautious-bold 11
Harmless-challenging 11

meCUE The product would enhance my standing among peers 11
Using the product, I would be perceived differently 12
Compared to other products, this product seems incomplete 12

ATS The system has integrity 17
UTA The system uses appropriate methods to reach decisions 20

I can always rely on the system to ensure my performance 14
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fourth component of user preference or is not suitable for 
interface evaluation.

According to the Fornell–Larker criterion (Fornell and 
Larcker 1981), factor loadings of a component on its factor 
needs to be at least .7 for sufficient convergent validity. To 
meet requirements of divergent validity, the item’s factor 
loading on other factors must not exceed .3. The present 
results show that eight subscales on factor 1 show high 
convergent validity. This factor combines subscales that 
primarily assess an interfaces’ design features and graph-
ical appearance. Seven subscales show high convergent 
validity on factor 2. Scales that assess a user’s interaction 

and ease of it load high on this factor. These subscales 
are all closely tied to the usability construct. One sub-
scale of factor 3 showed sufficient convergent validity (i.e., 
UTAUT Intention). Subscales that assess usage intention 
accumulate on this factor. Scales that did not exhibit con-
vergent validity (e.g., meCUE Usefulness) neither met the 
divergent validity goal. These subscales are represented 
by a combination of two or more factors rather than by 
one factor alone. Results of the EFA procedure for ratings 
of the low compliance HMI conditions also revealed a 
three-factor solution for user preference with similar factor 
loadings. Due to pagination constraints, these results are 
not additionally reported here.

3.4.3  Criterion validity

To determine each scale’s criterion validity regarding 
guidelines for HMI design, 2-factorial repeated measures 
ANOVAs were calculated for all nine questionnaires. The 
within-subject factors were HMI compliance (high vs. low) 
and number of subscales. Table 8 shows descriptive (i.e., 
M, SD) and inferential results for the main effect of the 
HMI and the interaction between HMI and order of pres-
entation (i.e., Wilk’s λ). Statistically significant results are 
coloured in grey. Results of inferential statistics revealed 
that all scales could discriminate between the high and the 
low compliance HMI (significant main effects). Thus, the 
external criterion of HMI compliance is reflected in all self-
report measures. Significant interaction effects (i.e., PSSUQ, 
UTAUT, meCUE Module 1, UEQ, UTA) indicate that the 
difference between the high and the low compliance HMI is 
not equally present at all subscales of the respective ques-
tionnaire. These questionnaires contain subscales that are 
highly sensitive to the experimental variation and subscales 
that are not as sensitive to the HMI criterion.

4  Discussion

The current study examined self-report measures that are 
frequently applied to evaluate L3 ADS HMIs regarding 
psychometrics. N = 57 participants completed nine question-
naires for the constructs usability, acceptance, user experi-
ence and trust once for a high compliance and once for a low 
compliance L3 ADS HMI. Cronbach’s alpha served as an 
estimate of scale reliability. We applied an EFA approach for 
the investigation of construct validity. We furthermore fol-
lowed an inferential analysis of the high compliance and low 
compliance HMI for the examination criterion validity. This 
section discusses the outcomes and methodological aspects 
for each requirement.

Table 7  Matrix with factor loadings after Varimax rotation

Factor loadings are sorted by size and large values (i.e., > .5) are in 
bold

Subscale Factor 1 Factor 2 Factor 3

UEQ novelty .883 .083 .090
UEQ stimulation .841 .226 .315
meCUE aesthetics .811 .176 .175
AttrakDiff pragmatic quality .793 .339 .223
UEQ attractiveness .773 .378 .330
AttrakDiff stimulation .771 .454 .236
AttrakDiff identification .747 .510 .119
PSSUQ interface quality .721 .360 .076
UEQ efficiency .671 .416 .270
VDL usefulness .644 .396 .416
meCUE usefulness .589 .304 .444
PSSUQ information quality .581 .553 .109
UTAUT effort expectancy .226 .889 .112
UEQ perspicuity .269 .849 .053
meCUE usability .283 .841 .082
SUS usability .339 .827 .211
SUS learnability .101 .804 .004
PSSUQ system usefulness .291 .803 .207
UTA process .411 .714 .159
meCUE negative affect .378 .692 .170
VDL satisfaction .591 .606 .322
UEQ dependability .524 .605 .112
ATS distrust .461 .497 .306
ATS trust .038 .267 .116
meCUE positive affect .514 .102 .700
UTA performance .500 .138 .676
meCUE intention .510 .212 .664
meCUE commitment − .030 .029 .655
meCUE status .506 − .092 .610
UTAUT intention .498 .325 .598
UTAUT performance expectancy .463 .096 .594
UTA purpose .069 .305 .547
meCUE loyalty .402 .377 .491
UTAUT social influence − .098 .373 .378
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4.1  Reliability

Measures of reliability were mostly sufficient in an absolute 
sense (Kline 1999) and comparable to the values reported in 
the original source (see Table 4). The PSSUQ, van-der-Laan 
scale, AttrakDiff, UEQ and ATS showed positive results 
(i.e., high α values) of the reliability analysis. Reliability of 
the two-factorial structure of the SUS (Bangor et al. 2009) 
turned out to be sufficient for the usability subscale but 
insufficient for the learnability subscale. Reliability results 
for the SUS suggest following the SUS score calculation 
instructions in Brooke (1996) and rather rely on a one-facto-
rial solution. Subscales that revealed unreliable results were 
the UTAUT Social Influence subscale and UTA subscales 

Process and Purpose. These results discourage future admin-
istration of these scales in the ADS context because the 
UTAUT Social Influence subscale was highly unreliable 
and the UTA showed two out of three subscales that could 
not reach the criterion of .7. Furthermore, there were also 
instances in the meCUE (usefulness, intention) and UEQ 
(Dependability) with insufficient Cronbach’s alpha values. 
These are also considered as problematic to use. However, 
the UEQ subscale was just close to the threshold value. 
Regarding the meCUE, this does not mean that the entire 
scale might not be used since the modules can be applied 
separately. Still, one might consider the van-der-Laan scale 
for usefulness and UTAUT for intention as superior when it 
comes to reliability.

Table 8  Descriptive (i.e., M, SD) and inferential (i.e., main effect for HMI and interaction HMI × subscale) statistics for each scale

Scale Subscale High compliance M (SD) Low compliance M (SD) Main effect HMI Interaction HMI × subscale

SUS N/A 82.45 (14.01) 67.11 (19.14) t(56) = 5.959, p < .001, 
d = .778

N/A

PSSUQ SysUse 6.20 (.89) 5.36 (1.13) F(1,56) = 63.439, p < .001, 
η2 = .531

F(2,55) = 8.463, p < .05, 
η2 = .235InfoQual 5.48 (1.14) 4.08 (1.28)

IntQual 5.64 (1.09) 4.29 (1.57)
UTAUT Perf. expectancy 5.28 (.94) 4.79 (1.17) F(1,56) = 38.583, p < .001, 

η2 = .408
F(3,54) = 4.561, p < .05, 

η2 = .202Effort expectancy 6.10 (.88) 5.23 (1.20)
Social influence 4.71 (1.03) 4.41 (.93)
Intention to use 6.22 (.87) 5.73 (1.11)

van-der-Laan Usefulness 4.24 (.52) 3.73 (.66) F(1,56) = 40.736, p < .001, 
η2 = .421

F(1,56) = 3.726, p = .059, 
η2 = .062Satisfaction 4.24 (.59) 3.57 (.80)

AttrakDiff Hed-Stim 5.32 (.85) 4.47 (1.10) F(1,56) = 38.951, p < .001, 
η2 = .410

F(2,55) = 3.103, p = .053, 
η2 = .101Hed-Ident 5.07 (.81) 4.28 (.98)

Prag. 5.13 (.86) 4.89 (1.08)
meCUE Usefulness 5.64 (.83) 4.95 (1.02) F(1,65) = 41.276, p < .001, 

η2 = .424
F(3,54) = 8.652, p < .001, 

η2 = .395Usability 6.06 (.95) 5.05 (1.33)
Status 4.16 (1.26) 3.84 (1.35)
Aesthetics 4.74 (1.12) 3.61 (1.51)
Commitment 2.52 (1.11) 2.26 (1.15)
Pos. affect 4.65 (1.03) 4.07 (1.12) F(1,56) = 22.793, p < .001, 

η2 = .289
F(1,56) = .035, p = .852, 

η2 = .001Neg. affect 5.37 (1.00) 4.82 (1.06)
Intention 5.40 (1.04) 4.67 (1.07) F(1,56) = 40.383, p < .001, 

η2 = .419
F(1,56) = 3.678, p = .060, 

η2 = .062Loyalty 4.44 (1.13) 3.49 (1.31)
UEQ Attractiveness 5.72 (.86) 4.73 (1.34) F(1,56) = 48.355, p < .001, 

η2 = .463
F(5,52) = 3.402, p < .05, 

η2 = .274Perspicuity 6.02 (.89) 5.00 (1.25)
Efficiency 5.77 (.86) 5.23 (.97)
Dependability 5.79 (.79) 4.85 (1.23)
Stimulation 5.25 (.92) 4.50 (1.25)
Novelty 4.88 (1.37) 3.99 (1.61)

ATS Distrust 5.59 (.67) 4.70 (1.18) F(1,56) = 34.551, p < .001, 
η2 = .382

F(1,56) = 3.550, p = .065, 
η2 = .036Trust 5.63 (1.07) 5.03 (1.23)

UTA Performance 3.78 (.76) 3.46 (.80) F(1,56) = 58.848, p < .001, 
η2 = .512

F(2,55) = 12.442, p < .001, 
η2 = .311Process 4.11 (.56) 3.31 (.80)

Purpose 3.88 (.59) 3.41 (.76)
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4.2  Validity

4.2.1  Content validity

Content validity as indicated by face validity was high for 
the SUS, van-der-Laan scale and UEQ (see Table 6). Fur-
thermore, participants considered only one item each of the 
PSSUQ and ATS as problematic to answer. Thus, we con-
sider content validity for these two measures as given. Face 
validity investigation revealed that people struggled with 
scales and items that relate to the opinion to other people 
such as the UTAUT Social Influence and the meCUE Sta-
tus subscale. A possible explanation for this finding might 
be that L3 ADS are not yet commercially available. Thus, 
peer-related questions require a lot of imagination and do 
not lead to valid results. Items that cover the HMIs suitabil-
ity for communication such as three AttrakDiff items were 
considered as problematic to answer, as communication 
with other people was not a design purpose of the present 
HMIs for automated driving. The present results suggest 
omitting questions on other peoples’ opinions as long as 
there is no commercial availability or distribution on the 
consumer market. There are two different reasons for low 
validity of UTA items. First, complexity of an L3 ADS is 
high and people can hardly judge, how the system makes 
decisions and comes to conclusions. Furthermore, the term 
performance within the L3 ADS context remains unclear. 
Generally, the interaction success with a certain technology 
is considered as performance (e.g., driving a vehicle), while 
in the L3 ADS context, the performance per se (i.e., driving) 
is executed by the system function and the driver’s perfor-
mance is rather reflected in NDRT engagement or reaction 
to a TOR. Therefore, the performance term remains obscure 
for many participants and should be applied with caution in 
this context.

4.2.2  Construct validity

Construct validity examination led to a three-factor solu-
tion for self-report measures (see Table 7). The first fac-
tor includes mostly graphical design-related measures. The 
second factor is composed of the usability and instrumental 
scales and is therefore interaction-oriented. The third factor 
combines scales that assess usage intention and therefore 
we consider the factor acceptance-oriented. Two separate 
factors for instrumental and non-instrumental qualities as 
suggested by Hassenzahl et al. (2003) were apparent in the 
present solution. Acceptance-related scales are separated 
from instrumental and non-instrumental qualities. Minge 
et al. (2016) have suggested this additional dimension but 
point towards the fact that there are correlations between 
measures of acceptance and usability. Support for this 
assumption comes from the results of discriminant validity. 

Subscales from the intention factor also revealed remarkable 
loadings on both the design and usability factor. The present 
analysis found that the SUS and meCUE showed best results 
of construct validity due to high discriminant and convergent 
validity on the respective factors. SUS subscales loaded on 
the interaction-oriented factor and meCUE subscales loaded 
across all factors in the way that was expected according 
to Minge et al. (2016). It is unclear whether the construct 
of trust relates to these measures. The ATS subscales did 
not align with the present solution while the UTA subscales 
aligned with the interaction and intention factor. Consider-
ing that reliability and face validity results were more posi-
tive for the ATS, we argue against the application of trust 
measures when investigating HMI preference. The PSSUQ 
as a proposed usability measure was located not only on the 
expected interaction factor but also on the unexpected design 
factor. Therefore, validity is on a medium level. UTAUT’s 
intention and effort subscales loaded as expected. The per-
formance subscale was expected to also align with the inter-
action factor but eventually showed more alignment with 
the intention factor leading to a medium validity. Validity 
on the van-der-Laan scale was low due to the observation of 
loadings on multiple factors (e.g., usefulness on design and 
interaction). Factor loadings of the AttrakDiff revealed that 
they all assess design-oriented criteria in this context. This 
is not in accordance to the originally proposed structure of 
pragmatic and hedonic product qualities (Hassenzahl et al. 
2003). Hence, low validity was assigned. With efficiency as 
a clearly interaction-oriented factor loading on design, valid-
ity of the UEQ was impaired. The other subscales accumu-
lated on the factor that could be expected from their original 
proposition (Laugwitz et al. 2008). Table 9 summarizes the 
results of construct validity examination.

4.2.3  Criterion‑related validity

Examining criterion validity, main effects of the inferen-
tial tests showed that all scales could discriminate between 
the two experimental conditions (see Table 8). Even though 
there are scales with reliability and validity concerns they 
can detect a difference if HMI design guidelines are vio-
lated (Naujoks et al. 2019b). Significant interaction effects 
indicate that differences between the high compliance HMI 
and low compliance HMI are not reflected in the same way 
across all subscales. These questionnaires incorporate sub-
scales with a varying degree of sensitivity to the experimen-
tal HMI compliance manipulation. The SUS due to the sin-
gle percent measure for sensitivity, van-der-Laan, AttrakDiff 
and ATS showed continuously strong differences between 
the two HMI variations. When evaluating L3 ADS HMIs 
with any of the other scales, one has to be aware of differ-
ences in sensitivity of the subscales within the questionnaire. 
The evidence from the present study indicates that all the 
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present self-report measures adhere to the external criterion 
of adherence to HMI design guidelines.

4.3  Limitations and future research

Analysis of reliability through the calculation of internal 
consistency by means of Cronbach’s alpha is considered 
problematic. Sijtsma (2009) outlines that there are better 
measures for reliability such as the lower bounds (Guttman 
1945) or omega (Revelle and Zinbarg 2009). For the sake of 
comparability with the originally reported values, we chose 
the Cronbach’s alpha approach to reliability.

One drive in the present experiment lasted 15  min. 
This short amount of time restricts the possible amount 
of interactions with the HMI. Especially for attitudes that 
require long-term experience (i.e., trust, acceptance) this 
might represent a limitation. However, the use-cases (see 
Table 2) chosen for the present experiment already repre-
sent a good portion of interactions that are possible with 
an HMI for L3 ADS (for more possible use cases see Nau-
joks et al. 2018). Hence, participants could derive a good 
impression of HMI functionality and interaction possibili-
ties from the 15-min driver. Still, for evaluation of the ADS 
itself regarding lane or distance keeping and maneuvering, 
a longer experience might be required to provide informa-
tion about a user’s acceptance and trust. Since the study thus 
only allows short-term evaluation of the automated vehicle 
HMI, only initial knowledge and interactions are the basis 
for user preference ratings. However, there is evidence that 
interaction performance (Forster et al. 2019b) and mental 
models that discriminate between L2 and L3 automation 
(Forster et al. 2019a) change with rising experience. There-
fore, additional knowledge gained through experience might 
generate the occurrence of dissonances (Vanderhaegen and 

Carsten 2017). Such dissonances are characterized by an 
inconsistency between initial and additional knowledge and 
brings the potential of influencing long-term perception of 
the automated vehicle HMI. In this sense, future research 
should also consider conflicting information for different 
levels of automation over prolonged time periods.

As outlined in Sect. 1.2, particular circumstances apply 
to experimental settings in driving simulation research. The 
present study included N = 57 participants. Concerning 
the reliability analysis, the lowest subject-to-item ratio for 
the entire scale is observed for the meCUE equaling 1.73 
and this approach can be considered uncritical. To carry 
out factor analyses in psychometric evaluation, Anthoine 
et al. (2014) found that a large number of studies reported 
minimum subject-to-item ratios of close to two. Due to the 
present sample size, an EFA on item level was not possible 
here. Therefore, the EFA approach was conducted using the 
subscales instead of single items. The sample size of N = 57 
cases for the n = 34 subscales refers to a subject-to-case ratio 
of 1.68 and thus we conclude that this approach is reason-
able. Still, the sample size in relation to conducting an EFA 
with proposed requirements of up to 300 cases (Tabachnick 
and Fidell 2007) is a drawback of this study. Conclusions 
of the factor structure are drawn from an aggregated level. 
The possibility that a different factor structure for self-report 
measures might have emerged on item level might have 
emerged cannot be categorically ruled out.

The examination of criterion validity used a criterion 
on system level (i.e., HMI guideline compliance). Future 
research also needs to bring forth evidence of criterion valid-
ity on subject level. Especially for the usability-related factor 
of user preference, it remains to be seen whether and how 
well self-reports are reflected in interaction measures such as 
accuracy, speed or attentional demand (Wickens et al. 2015). 

Table 9  Result overview of construct validity analysis

Construct Questionnaire Result Interpretation

Usability SUS Both subscales located on interaction factor High validity
PSSUQ Located on both design and interaction factor Medium validity

Acceptance UTAUT Effort and intention loading on respective factors
Performance on acceptance dimension

Medium validity

van-der-Laan scale Usefulness loading on design and acceptance factor
Satisfaction loading on design and interaction factor

Low validity

User experience AttrakDiff All subscales on design-factor Low validity
UEQ High loadings on design and interaction factor

Efficiency loading on design factor
Medium validity

meCUE Loadings on all three factors
Module 1 and Module 3 factors loading as expected

High validity

Trust ATS Poor alignment with present factor solution
Suitability for HMI evaluation questionable

Low validity

UTA Congruency with acceptance and usability measures
Reflection of trust component in relation to ATS unclear

Medium validity
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In that vein, Forster et al. (2018a) outlined the importance of 
a multi-method approach (Hornbæk 2006; Nielsen and Levy 
1994) when evaluating ADS. The present work contributes 
to this call for methodological development as it provides 
empirical evidence of the suitability of different self-report 
measures for L3 ADS. However, future research efforts are 
necessary to find out about the suitability of different obser-
vational measures and their relationship with self-report 
measures. First empirical results on this issue are reported 
by Forster et al. (2019b).

The present sample was drawn from BMW employees 
and supplier companies. This might be a critique for the 
study outcome concerning self-report measures. Although 
BMW employees might differ from the general population 
in some aspects, this does not necessarily limit the exter-
nal validity of the current findings. The main focus of the 
current study was not participants’ general attitude towards 
automated driving and cars, but specific aspects of the HMI 
as targeted by the scale items. The sample consisted of peo-
ple with diverse backgrounds. Among others, the sample 
included participants working for suppliers, business part-
ners and interns, who differed in demographic variables 
(see for example age) as well as educational background 
(e.g., economists, psychologists, computer scientists). In this 
regard, it might be argued that the sample could have been 
even more representative of the population in question than, 
for example a sample drawn from college students, who have 
been shown to differ substantially from the population at 
large and “are among the least representative populations 
one could find for generalizing about humans” (Henrich 
et al. 2010). Taken together, inferences drawn from the sam-
ple investigated in the current study should also generalize 
to the population of drivers evaluating an ADS in the future.

The open question of how to proceed with scales that 
revealed limited psychometric properties remains. For exam-
ple, one might still apply a scale but discard certain items 
that were problematic in this context (see Table 6). This 
could also improve reliability of the respective subscale but 
at the same time one could debate whether the scale still 
covers the initially proposed construct comprehensively. 
If a scale, however, brings specific instructions on how to 
calculate overall scores such as the SUS, deleting items is 
not an option. The adaptation of wording of single items is 
also a possible approach. Especially in acceptance research 
using items of the UTAUT framework, subtle differences 
were apparent in the works on different levels of automation 
(Adell 2010; Rahman et al. 2017). When adapting existing 
items or even adding new items due to certain peculiarities 
of HMI functionality, one has to consider that this influences 
reliability of the scale. Moreover, adding items to an already 
reduced item pool can affect construct validity by adding to 
the correlational matrix between items and potentially lead-
ing to new dimensions in factor analyses. Also it can change 

content validity through shifting the focus of the subscale. 
Some tools such as the meCUE bear the advantage of their 
modular nature. This means that not all subscales need to 
be applied but can be administered independently from each 
other. Therefore, if the present work for example found lim-
ited reliability of one pragmatic subscale, the other scales 
can still be used regardless in terms of reliability. Conclud-
ing, there are several possibilities on how to improve certain 
questionnaires in new contexts but one has to keep in mind 
that interventions might affect psychometrics not only to 
the better.

5  Conclusion

To conclude, SUS, UTAUT, UEQ and meCUE revealed 
the most positive results concerning psychometrics in L3 
ADS evaluation. For an overall L3 ADS HMI evaluation, 
results from this study suggest to apply the meCUE when all 
dimensions of preference are of interest. Depending on the 
specific aspect of a particular study (i.e., design, interaction 
or acceptance evaluation), we recommend to apply scales or 
subscales that suit the respective purpose (see Sects. 3.4.2 
and 4.2.2). The present work points towards the importance 
of psychometric scale evaluation in a new context. Since 
the L3 ADS circumstances are fundamentally different from 
conventional human–computer interaction, self-report meas-
ures do not necessarily work as proposed in their original 
context. When setting up an experiment for automated driv-
ing and HMI research, one has to face challenge of choosing 
between available self-report measures. The present study 
provides researchers and practitioners with a recommenda-
tion of self-report measures and their suitability for evaluat-
ing L3 ADS.
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