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Abstract
In this paper, we focus on the innovative advanced data analysis dedicated for product owners in software development 
teams. The goal of our novel solutions is to increase cognition and decision making in rapid software development process. 
The major contribution of this work is the methodology and the tool that gathers the input raw data from the tools such as 
GitLab or SonarQube, and processes the data further (e.g., using Apache Kafka, Kibana, and Spark) to calculate and visual-
ize more advanced metrics, product factors (e.g., in accordance to Quamoco model), and indicators, and to find correlations 
between them. Then, such high-level data are shown to product owners to increase their cognition, situational awareness, 
and decision-making capabilities. We have now implemented the proof-of-concept system which was positively validated 
by product owners using the real data from their projects.

Keywords Software quality · Data analysis · Cognition and decision support · Product owner · Quamoco model · Product 
factors

1  Rationale

In the current IT ecosystems, that are highly interconnected 
and relying on software components, challenges such as 
optimization of the software code development process, 
minimization of the risk of software failures and code test-
ing/debugging are critical for business, service providers, 
and societies.

Indeed, in the rapid software development process, the 
product owners have to make quick and efficient decisions 
on a daily basis. Product owners are in between the pro-
grammers, technicians, and testers on one side, and manage-
ment and CTO/CEO on the other side. They need to have 
the skills to talk to both of those groups, and usually, they 
need different languages, arguments, and data to talk and 
report to them. From product owner’s perspective, they plan 

and monitor the sprints, assign tasks, and lead the program-
mers work. They also need aggregated business and project 
management level data to report to the managers in organi-
zations. All the time product owners have to rely on many 
cognitive processes. It is now obvious that increasing cog-
nition capabilities is an important aspect for, e.g., air traffic 
control (ATC) operators (Friedrich et al. 2018) and critical 
infrastructure (CI) operators (Amantini et al. 2012) and such 
is the case also for software product owners.

In the realistic scenario, product owners have raw data to 
inspect from standard tools like GitLab, Redmine, Sonar-
Qube, JIRA, Jenkins, etc. Product owners look at such data 
and tools and perform cognitive processes. They look for 
important aspects in the data and for certain indicators to 
take effective decisions, which is not the easy duty espe-
cially in time pressure. Of course, they try to cognitively 
match some of the data patterns and indicators with their 
experience and past cases (e.g., of bad, delayed or good, 
and high-quality software projects). The process is highly 
cognitive intensive and requires data inspection (sometimes 
of big volume of data), data analysis, matching, building 
hypotheses, predicting, guessing, etc.

Unfortunately, there are no tools to support product 
owner’s tasks with higher level data aggregation, analysis, 
prediction, and decision support.
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Therefore, in our work, we try to close this gap by propos-
ing data analysis methods and framework. Our work is the 
part of H2020 Q-Rapids project (Q-Rapids—Quality-aware 
rapid software development, http://www.q-rapid s.eu/) and 
part of our ongoing work on advanced machine learning and 
data analysis. It should be stressed that the Q-Rapids has a 
goal to implement quality requirements into the software 
development processes, and in particular, our research is 
oriented on application it to agile and lean software devel-
opments, as well as rapid software development processes 
which are the reality especially at SME type of software 
houses, where projects start and end quickly, but still have 
to fulfill customers quality requirements.

The remaining of this paper is structured as follows: in 
Sect. 2, we overview the context and related work. In Sect. 3, 
we present the architecture and the chosen proposed solu-
tions, as well as information on implementation and initial 
results. Conclusions are given thereafter.

2  Context and related work

A large quantity of software is developed worldwide and 
software development projects are becoming increasingly 
complex. One of the examples of the code complexity is 
popular graphics editor—Photoshop, developed by Adobe. 
An early version of the tool (v1.0, 1990) included approxi-
mately 100 thousands of code lines, while the version from 
2012 (CS6) had more than 4 million of code lines (increased 
by 3730%) (Visual 2015).

The problems of ensuring software quality, its assess-
ment, and testing are multidimensional. Software failures 
after the product release impact the product vendors’ com-
petitiveness, reputation, and market position. Moreover, 
software flaws generate financial losses. As estimated, 
software bugs can decline product stock price with aver-
age of 4–6% (for companies experiencing multiple software 
failures), what generates almost 3 billion dollars of market 
losses (QASymphony 2016). In addition, low quality of code 
significantly impacts the overall cost of the software devel-
opment, deployment, and further maintenance (Jones and 
Bonsignour 2011). Software flaws and bugs can impact not 
only its usability, functional value, and user experience, but 
also security of users, due to the fact that bugs in the design 
or implementation phase can be exploited by cyber criminals 
(Kozik et al. 2016). According to study (Telegraph 2015), 
consequences of cyber attacks cost about £18 billion per 
year to British companies in terms of lost revenues.

Currently, IT organizations spent approximately 1/3 
of their budgets on quality assurance with the trend of 
raising this value to approximately 40% in next 3 years 
(Jorgensen 2016; Capgemini 2017). Although the process 
of debugging software during its design phase costs 4–5 

times less than fixing bugs after its release (Jones and 
Bonsignour 2011), it is a non-trivial task that consumes a 
significant part of budgets and companies’ effort. It could 
be less impactful for a big companies and software houses; 
however, SMEs operating often with limited budgets and 
resources (Felderer and Ramler 2016) are becoming more 
and more focused on techniques allowing automation and 
adequacy of the testing process, to be competitive in rela-
tion with big players in the market in terms of software 
quality, optimization of the development cost, and time-
to-market factor.

In the H2020 Q-Rapids project (Q-Rapids 2017; Franch 
et al. 2017; Guzmán et al. 2017), the concept of quality-
aware decision making based on key strategic indicators 
is proposed. The overall goal of the project is to support 
strategic decision-making processes by providing strategic 
indicators in the context of quality requirements in agile and 
rapid software development. For the purposes of the project, 
a strategic indicator is defined as a specific aspect that a soft-
ware development company has to consider as crucial for the 
decision-making process during the software development. 
Aspects such as, e.g., time-to-market, maintenance cost, cus-
tomer satisfaction, etc. can be considered as strategic indica-
tors depending on the context. These strategic indicators are 
built on top of the measurements and factors calculated on 
the basis of the software development-related data, stored in 
the management tools such as GitLab or SonarQube.

The Q-Rapids project and our concept of measuring 
quality of software products and processes are not only 
approaches presented in this field. Evolution of software 
metrics, aspects of static and dynamic measurements and 
state-of-the-art analysis of various approaches are presented 
by Voas and Kuhn (2017). Monitoring of software develop-
ment processes based on the software metrics is the core 
of the approach presented by Mäkiaho et al. (2017) to sup-
port project managers in reporting, and to ensure program-
ming team members awareness of the project status. On the 
other hand, Vytovtov and Markov (2017) have presented 
their approach to source code quality estimation based on 
software metrics with the use of LLVM compiler, which can 
assess the code at compile time to provide a programmer 
information about its current quality. Decision making and 
related concept of situational awareness—with considera-
tions on risk analysis and associated implications of losing 
the situational awareness are presented in Dekker (2015) and 
Salmon et al. (2015).

In our previous Q-Rapids related papers (Kozik et al. 
2017, 2018), we showed the presented results of software-
related data analysis and correlation.

Hereby, in this paper, we present more advanced solu-
tions that allow for synchronization and inspection of data 
related to software development gathered in GitLab and 
SonarQube tools. Hereby, we focus on improving cognition 

http://www.q-rapids.eu/
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of the product owners and decision support by innovative 
advanced software-related data analysis.

3  Proposed system architecture

In this section, the architecture of the proposed solution is 
presented. First, we demonstrate the general approach to sys-
tem architecture, information flow used for the data analysis 
and the information data sources. Afterwards, we present the 
subsequent steps of data collection, processing, and presen-
tation to provide Key Strategic Indicators for software engi-
neering product owners and decision makers.

3.1  General approach and data flow

The conceptual architecture of the system is presented in 
Fig. 1.

We use several data sources to measure the statistics (we 
call those metrics) related to the software code and software 
development process. In the current prototype, these metrics 
are retrieved from GitLab1 and SonarQube2 project manage-
ment tools, taking into account the relevant data protection 
and privacy regulations and guidelines (Choraś et al. 2015). 
Git is distributed version control system used to maintain 
developed code regardless of the development project size. 
The main feature that characterizes Git is allowing develop-
ers to work on multiple local, independent branches that can 
be merged to the master branch. GitLab is web-based Git 
repository, offering visualization, issue tracking and project 
management features, such as task labeling, effort allocation, 
etc. SonarQube is the tool designed to support continuous 

inspection of the code quality with features allowing auto-
matic review of the code, bug detection, code security analy-
sis (e.g., vulnerabilities discovery), and static analysis of the 
code. SonarQube provides its reports based on the number of 
pre-defined metrics defined to quantify code characteristics, 
including, e.g., code complexity, testing coverage, etc.

In the future, we plan to extend our solution and not limit 
data sources to those two data producers, since in different 
organizations and software houses, different tools are used 
(e.g., some teams/organizations may use Jenkins and some 
GitLab CI instead).

It will require the task of implementing the right connec-
tor between a project management tool and our prototype. 
Obviously, interfacing with third-party tools for software 
project management is not a trivial task. In our case, we 
have used tools that have advanced and well-documented 
web interfaces allowing us to retrieve the data in a form 
of JSON documents. However, it may not be the case for 
other tools. In particular situations, additional effort will 
be required (e.g., HTML scrapping) to retrieve the relevant 
data. In addition, using unofficial, self-written, and custom-
ized data crawlers requires additional effort when the format 
of source data changes.

As shown in the figure above, the raw data maintained in 
the GitLab and SonarQube tools feed distributed data sink 
and data analysis and processing modules. To achieve this, 
we implemented the GitLab and SonarQube connectors 
focused on the acquisition of the data produced by software 
development tools. The synchronized data are preliminar-
ily processed, filtered, and anonymized. Synchronization 
can be done with different time intervals (e.g., once a day) 
both automatically and manually (please refer to Sect. 3.3). 
GitLab-based data are additionally preprocessed due to the 
fact that the structure of such data, scheme for labeling, etc. 
is highly dependent on the software development method-
ologies, and definition of development processes used in 

Fig. 1  Conceptual architecture 
of the proposed solution

1 https ://gitla b.com/.
2 https ://www.Sonar Qube.org/.

https://gitlab.com/
https://www.SonarQube.org/
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the organization that can be different for different product 
owners, project managers, or projects even within the same 
company (e.g., we found out that even teams within the same 
organization use different label conventions).

3.2  Data producers

For the purpose of Q-Rapids project, we plan to feed our 
system with three categories of the source data:

• Code-related, including code repository statistics and 
information from tools used to static code analysis and 
quality review (e.g., SonarQube). Those can include for 
example data based on the SonarQube review reports, 
covering such aspects as code complexity, duplication, 
maintainability, reliability, security, size, and testing sta-
tus.

• Development process-oriented, including information 
from management tools related to software development 
projects effort allocation, scheduling, issue tracking, etc. 
Those data can include complete backlog information, 
in particular time-stamped activities of developers cat-
egorized using the labels, backlog size and content (e.g., 
planned and executed tests, finalized product functionali-
ties), and overall progress of the development.

• Software behavior (data collected at runtime during 
testing)—based on the usage of already developed and 
deployed products, including, e.g., aspects of usability, 
functionalities usage/failures, user-friendliness, etc.

However, at the current stage in this paper, we focus only 
on the implemented connectors to code-related and process-
related data, obtained from GitLab and SonarQube tools.

As presented in Fig. 2, all the issues (e.g., user stories, 
bugs, etc.) maintained in the GitLab allow for extraction 
of time stamp for each modification, e.g., adding/removing 
labels, closing/opening/reopening issues, etc.

On the basis of such data, we can track the course of 
the given project in terms of work intensification and then 
combine and/or compare the data to the code-related met-
rics, e.g., extracted from the SonarQube tool, such as code 
complexity, number of duplicated code lines in relation with 
total number of lines, etc.

3.3  Data ingestion

As mentioned in the previous sub-section, the data collection 
from the currently connected tools (GitLab, SonarQube) can 
by synchronized and stored for further processing and analy-
sis both automatically with scheduled intervals, as well as 
manually if needed. Therefore, historical data will be avail-
able for the analysis or re-analysis even after the project 
finalization, e.g., to compare different projects or to add a 
new data gathered from the other sources. In addition, the 
evolution of the code-related metrics can be built based on 
the code changes, tracked in the code repository (e.g., Git 
repository).

Both GitLab and SonarQube provide WebAPIs for exter-
nal accessing of the data maintained in the tools. For exam-
ple GitLab default API3 allows for gathering issue-related 
data using JSON format GET requests. More information 
about SonarQube WebAPI can be found in the official tech-
nical documentation.4 In addition, both tools provide plugin 
libraries for most of the popular programming languages. 
However, for our purposes to fully control the analyzed data, 
and to be able to extend the solution to other tools, we had 
to develop our own connectors.

Fig. 2  Example of user story 
tracking in GitLab

3 https ://docs.gitla b.com/ee/api/READM E.html.
4 https ://docs.Sonar Qube.org/pages /viewp age.actio n?pageI d=23921 
72.

https://docs.gitlab.com/ee/api/README.html
https://docs.SonarQube.org/pages/viewpage.action?pageId=2392172
https://docs.SonarQube.org/pages/viewpage.action?pageId=2392172
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3.4  Data modeling, analysis and processing

In the Q-Rapids project, we use the hierarchical model 
of the software (code) quality proposed as Quamoco 
approach (Wagner et al. 2012, 2015; Ferenc et al. 2014). 
The starting point for the Quamoco was two-tier mod-
eling of the software quality applied in the ISO/IEC 25010 
standard, where product quality and quality in use is dif-
ferentiated. In the Quamoco, authors implemented three 
levels of abstraction, from bottom to up: (1) measures 
that are quantified into (2) product factors that impact (3) 
top-level entity—quality aspects. The latter two levels of 
the hierarchy are quantified factors, i.e., product factors 
and quality factors, that in this chain indicate on how spe-
cific measures (retrieved from the source code), impact 
product quality, either positively or negatively. Finally, 
the idea behind the Quamoco was to build a technology-
independent quality model, allowing for limiting effort and 
complexity of building models for specific domains or for 
specific programming language.

In the Q-Rapids, we also assumed three-level hierarchy 
(from the low level to the high-level of the model):

1. Software quality metrics, derived directly from the 
source code/data sources;

2. Quality factors, calculated based on the gathered metrics 
with the defined weights

3. Key strategic indicators, calculated based on the aggre-
gated and interpreted quality factors.

Based on this hierarchy and available data producers, 
namely GitLab and SonarQube tools connected to our pro-
totype system, we derived two key strategic indicators sup-
porting decision makers in the task of product development 
process. Those indicators are “Product Quality” indicator 
and “Blocking” indicator. According to our quality model, 
those two indicators are quantified based on quality factors, 
i.e., “Code Quality” and “Testing Status” constitute “Prod-
uct Quality” indicator, while factor named “Blocking Code” 
has a direct impact on “Blocking” strategic indicator. As 
explained earlier, quality factors are computed based on the 
metrics obtained from the data producers. Relations between 
the two bottom concepts of our model are as follows:

• “Code Quality” factor is computed based on three Sonar-
Qube metrics (directly related to the code), namely ratio 
of commented code lines, complexity of the code and 
density of the code duplication

• “Blocking Code” factor is computed based on the Sonar-
Qube metric called “Non-blocking files”

• “Testing Status” factor is computed based on two metrics 
obtained using the GitLab tool, namely density of non-
bugged code, and the percentage of passed tests.

3.4.1  Data indexing

The next step after the collection of data is the data index-
ing. In the Distributed Data Sink we use the Elastick-
Search cluster. We defined four indexes for three different 
classes of metrics—metrics are indexed as the raw data 
and as the normalized data.

As presented in Fig. 3, the metrics index includes such 
properties as:

• metric: unique identifier of metric used in Kibana/Elas-
ticsearch,

• name: defined name of the metric,
• description: way for the metric calculation,
• evaluationDate: time of calculation,
• value: current value (for normalized metrics can take 

on values in 0–1 range),
• factors: denotes quality factors constituted from given 

metric,
• datasource: address of the given index (measure) stor-

age.

Such convention allows us for efficient indexing and cal-
culation of the relevant concepts.

Fig. 3  Example of quality metric index
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3.4.2  Metrics calculation

Basic metrics are retrieved directly from the connected tools, 
as explained in section presenting data sources. Currently, 
in practice for real software projects we can collect the fol-
lowing metrics for the further aggregation:

• SonarQube-based

• Comments ratio,
• Complexity,
• Duplication density,
• Non-blocking files,

• GitLab-based

• Percentage of passed tests,
• Non-bug density,

However, a number of basic quality metrics that are not 
used for calculation of quality factors and quality indicators 
can be accessed using our connectors and can be visualized 
to provide added value for decision makers. Those include 
for example statistics calculated based on the GitLab data, 
related to programming sprints (e.g., presenting actual work 
in progress), to sprint backlog content (e.g., presenting ratio 
of opened/closed/delayed issues in the backlog) and to test-
ing status.

Figure 4 shows the visualization of the project evolution 
based on the testing performance statistics.

Moreover, the huge number of the SonarQube ratings is 
accessible using our connectors, such as project files and 
directory size, maintainability and reliability scores, etc.

3.4.3  Calculation of quality factors and indicators

As explained in the Sect. 3.4, quality factors are calculated 
based on the metrics that are aggregated using the pre-
defined weights.

Currently we calculate following quality factors:

• Code Quality—based on:

• comments density/ratio—percentage of commented/
annotated code lines in relation with total number of 
code lines;

• code complexity scoring—based on number of 
linearly independent paths within the code, that 
depends on the number of functions, loops, condi-
tional expressions, etc.;

• duplicated code density—percentage of duplicated 
code blocks in relation with the whole code;

• Blocking Code—based on non-blocking files metric, and
• Testing Status—based on:

• non-bug density—percentage of non-bugged (or 
debugged) code blocks in relation with the whole 
analyzed code;

• percentage of passed tests.

Quality Indicators that are the highest level of the adopted 
quality model that are currently calculated are:

• Product Quality—based on code quality and testing sta-
tus;

• Blocking—based on blocking code factor.

Fig. 4  Example of testing-
related statistics visualization 
(number failed tests, pending 
tests and test flagged as bug in 
the GitLab)
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3.5  Data presentation/visualization (GUI)

For the visualization purposes in the current version of 
the system, we decided to use Kibana solutions as well as 
our own charts. Kibana is an open source for Elasticsearch 
providing data visualization functionalities. As a part of 
Elasticsearch platform, Kibana allows to visualize data 
indexed through Elasticsearch cluster. User has wide capa-
bilities to create and configure different types of charts 
(such as bar, line, pie charts, etc.) on top of large volumes 
of data processed by the Elasticsearch. The most common 
combination of Elasticsearch platform, Kibana visualiza-
tion tool, and Logstash engine used to data collection and 
log-parsing is called Elastic Stack.

In the current version of the proposed solution, we pro-
vide visualized aggregated data to the end-user through 
the web-based GUI. Calculated code characteristics (from 
metrics to strategic indicators) can be displayed in two dif-
ferent modes, including textual presentation of the data, 
and the data projected on the charts. In addition, the visu-
alization module allows user to display those data calcu-
lated for the current point of the project, as well as charts 
presenting evolution of the metrics, factors, and indicators 
over the time, from the beginning of the project. This also 
allows for analysis of historical data (if provided) to the 
data gathering module. Another configurable property of 
the data visualization is possibility to adjust grid of the 
time-based charts to the current needs and present evolu-
tion of data with granularity from days up to months.

In Fig. 5, metrics related to the code quality (code com-
plexity, code duplication, and comments density) are pre-
sented using time-based chart.

Furthermore, the quality factors can be visualized, 
including evolution charts and radar charts allowing 
decomposition of quality factors into more generic met-
rics and separate analysis of particular quality factor 
components.

Finally, the most general, top view of the quality analy-
sis is quality indicators allowing decision maker for quick 
evaluation of the quality-related aspects in particular soft-
ware development project. This will allow the product owner 
(or other decision maker) to assess the code quality ver-
sus the quality requirements, specific in given company or 
organization.

3.6  Verification and validation

In this section, we present some results of the preliminary 
experiments conducted in the real environment. For the 
experiments, we have used the real data collected while 
developing real commercial products for customers at soft-
ware development companies.

The companies used GitLab tool to manage the project-
related data, namely, issues (backlog, user stories, features, 
tasks, and bugs), source code repository, and continuous 
integration (CI). To control the quality of the produced code, 
SonarQube tool has been used. The data from GitLab and 
SonarQube tools were collected incrementally as received.

The goal of our experiments was to validate the cor-
rectness of the architectural assumptions and to assess the 
usefulness of the provided functionalities (e.g., to visualize 
calculated and aggregated data).

The results have been presented at the validation sessions 
to product owners involved in the development project in 
their companies. The validation was following our hierar-
chical approach to build key strategic indicators, i.e., first 
direct metrics based on the GitLab and SonarQube data were 
presented, and then calculated quality factors and indicators 
were discussed.

In general, usefulness of the system has been assessed 
positively; in particular, aggregated and visualized data 
related to backlog tracking (as presented in Fig. 6) were 
evaluated as an added value in relation with the standard 
capabilities of the GitLab, allowing product owner to verify 

Fig. 5  Visualization of quality 
metrics (complexity of func-
tions, classes, and file) used to 
compute the quality factor
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development team productivity and/or correctness of sprints 
planning.

As for quality factors (e.g., Fig. 7), the visualization 
was also assessed as useful; however, the product owners 
expect the capabilities for customization of particular metric 
weights constituting the factor. These weights can depend 
on the current project and different priorities defined for this 
project. In addition, product owners reported that time-based 

charts could be scaled using “sprint” unit (alongside days 
and months) with the possibility to define custom duration of 
the sprint, to better adjust chart grid to the actual milestones 
defined in the project.

The current implementation allowed to meet the need 
expressed by senior staff and product owners to plan and 
assign tasks and sprints in rapid software development 
processes. Indeed, looking at the proposed and calculated 

Fig. 6  Proposed charts for 
increasing cognition and deci-
sion making related to sprints 
planning and assessment

Fig. 7  Example of the current 
visualization solution for quality 
indicators
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metrics allows for taking such decisions with more knowl-
edge and situational awareness, also showing the hidden cor-
relations between various aspects in the projects.

4  Conclusions

In this paper, we described our work on increasing cogni-
tion and decision-making capabilities of product owners at 
software development companies and organizations. We 
presented the architecture and the advanced data analysis 
methodology to close the gap between the current software 
development support tools and the real needs of product 
owners in rapid software development environment.

Moreover, in the paper, we addressed the validation of 
our solutions, e.g., in one of the SME companies that run 
software development projects and commercially develops 
tools for, e.g., healthcare domain.

Our future work is devoted to enlarging the set of the 
analyzed data sources and the calculation of more metrics, 
product factors, and strategic indicators.

Moreover, we currently work on predictive modeling and 
analysis based on software-related data using the advanced 
machine learning techniques (Choraś and Kozik 2015). In 
fact, the prediction of the metrics related to software devel-
opment process (e.g., number of bugs, time) is currently one 
of the needs of the product owners. Currently, we work on 
the time series based approach for such prediction, and we 
use models such as Holt–Winters, Exponential Smoothing 
and ARIMA as well as deep neural networks (Andrysiak 
et al. 2014; Viji et al. 2018).

We also work on finding correlations between various 
metrics and on the lifelong learning intelligent system 
approach to use data learnt on past projects and still use the 
for predictions. The future work is also devoted, for example, 
to alerting, generation of quality requirements, and what-if 
analysis that could be used to simulate and show the differ-
ent courses of actions taken by product owners [similarly as 
for example in the critical infrastructures protection services 
(Kozik et al. 2015)].

Furthermore, we are continuously in the process of vali-
dating our solution at more use-cases (software development 
companies) both internal and external to the project.
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