
Vol.:(0123456789)1 3

Cognition, Technology & Work (2019) 21:191–200
https://doi.org/10.1007/s10111-018-0494-y

ORIGINAL ARTICLE

Increasing product owners’ cognition and decision-making
capabilities by data analysis approach

Michał Choraś1,2 · Rafał Kozik1 · Damian Puchalski2 · Rafał Renk2,3

Received: 13 January 2018 / Accepted: 30 May 2018 / Published online: 5 June 2018
© The Author(s) 2018

Abstract
In this paper, we focus on the innovative advanced data analysis dedicated for product owners in software development
teams. The goal of our novel solutions is to increase cognition and decision making in rapid software development process.
The major contribution of this work is the methodology and the tool that gathers the input raw data from the tools such as
GitLab or SonarQube, and processes the data further (e.g., using Apache Kafka, Kibana, and Spark) to calculate and visual-
ize more advanced metrics, product factors (e.g., in accordance to Quamoco model), and indicators, and to find correlations
between them. Then, such high-level data are shown to product owners to increase their cognition, situational awareness,
and decision-making capabilities. We have now implemented the proof-of-concept system which was positively validated
by product owners using the real data from their projects.

Keywords Software quality · Data analysis · Cognition and decision support · Product owner · Quamoco model · Product
factors

1 Rationale

In the current IT ecosystems, that are highly interconnected
and relying on software components, challenges such as
optimization of the software code development process,
minimization of the risk of software failures and code test-
ing/debugging are critical for business, service providers,
and societies.

Indeed, in the rapid software development process, the
product owners have to make quick and efficient decisions
on a daily basis. Product owners are in between the pro-
grammers, technicians, and testers on one side, and manage-
ment and CTO/CEO on the other side. They need to have
the skills to talk to both of those groups, and usually, they
need different languages, arguments, and data to talk and
report to them. From product owner’s perspective, they plan

and monitor the sprints, assign tasks, and lead the program-
mers work. They also need aggregated business and project
management level data to report to the managers in organi-
zations. All the time product owners have to rely on many
cognitive processes. It is now obvious that increasing cog-
nition capabilities is an important aspect for, e.g., air traffic
control (ATC) operators (Friedrich et al. 2018) and critical
infrastructure (CI) operators (Amantini et al. 2012) and such
is the case also for software product owners.

In the realistic scenario, product owners have raw data to
inspect from standard tools like GitLab, Redmine, Sonar-
Qube, JIRA, Jenkins, etc. Product owners look at such data
and tools and perform cognitive processes. They look for
important aspects in the data and for certain indicators to
take effective decisions, which is not the easy duty espe-
cially in time pressure. Of course, they try to cognitively
match some of the data patterns and indicators with their
experience and past cases (e.g., of bad, delayed or good,
and high-quality software projects). The process is highly
cognitive intensive and requires data inspection (sometimes
of big volume of data), data analysis, matching, building
hypotheses, predicting, guessing, etc.

Unfortunately, there are no tools to support product
owner’s tasks with higher level data aggregation, analysis,
prediction, and decision support.

 * Michał Choraś
 chorasm@utp.edu.pl; mchoras@itti.com.pl

1 Institute of Telecommunications and Computer Science,
UTP University of Science and Technology, Bydgoszcz,
Poland

2 ITTI Sp. z o.o., Poznan, Poland
3 Faculty of Physics, Adam Mickiewicz University,

61-614 Poznan, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10111-018-0494-y&domain=pdf

192 Cognition, Technology & Work (2019) 21:191–200

1 3

Therefore, in our work, we try to close this gap by propos-
ing data analysis methods and framework. Our work is the
part of H2020 Q-Rapids project (Q-Rapids—Quality-aware
rapid software development, http://www.q-rapid s.eu/) and
part of our ongoing work on advanced machine learning and
data analysis. It should be stressed that the Q-Rapids has a
goal to implement quality requirements into the software
development processes, and in particular, our research is
oriented on application it to agile and lean software devel-
opments, as well as rapid software development processes
which are the reality especially at SME type of software
houses, where projects start and end quickly, but still have
to fulfill customers quality requirements.

The remaining of this paper is structured as follows: in
Sect. 2, we overview the context and related work. In Sect. 3,
we present the architecture and the chosen proposed solu-
tions, as well as information on implementation and initial
results. Conclusions are given thereafter.

2 Context and related work

A large quantity of software is developed worldwide and
software development projects are becoming increasingly
complex. One of the examples of the code complexity is
popular graphics editor—Photoshop, developed by Adobe.
An early version of the tool (v1.0, 1990) included approxi-
mately 100 thousands of code lines, while the version from
2012 (CS6) had more than 4 million of code lines (increased
by 3730%) (Visual 2015).

The problems of ensuring software quality, its assess-
ment, and testing are multidimensional. Software failures
after the product release impact the product vendors’ com-
petitiveness, reputation, and market position. Moreover,
software flaws generate financial losses. As estimated,
software bugs can decline product stock price with aver-
age of 4–6% (for companies experiencing multiple software
failures), what generates almost 3 billion dollars of market
losses (QASymphony 2016). In addition, low quality of code
significantly impacts the overall cost of the software devel-
opment, deployment, and further maintenance (Jones and
Bonsignour 2011). Software flaws and bugs can impact not
only its usability, functional value, and user experience, but
also security of users, due to the fact that bugs in the design
or implementation phase can be exploited by cyber criminals
(Kozik et al. 2016). According to study (Telegraph 2015),
consequences of cyber attacks cost about £18 billion per
year to British companies in terms of lost revenues.

Currently, IT organizations spent approximately 1/3
of their budgets on quality assurance with the trend of
raising this value to approximately 40% in next 3 years
(Jorgensen 2016; Capgemini 2017). Although the process
of debugging software during its design phase costs 4–5

times less than fixing bugs after its release (Jones and
Bonsignour 2011), it is a non-trivial task that consumes a
significant part of budgets and companies’ effort. It could
be less impactful for a big companies and software houses;
however, SMEs operating often with limited budgets and
resources (Felderer and Ramler 2016) are becoming more
and more focused on techniques allowing automation and
adequacy of the testing process, to be competitive in rela-
tion with big players in the market in terms of software
quality, optimization of the development cost, and time-
to-market factor.

In the H2020 Q-Rapids project (Q-Rapids 2017; Franch
et al. 2017; Guzmán et al. 2017), the concept of quality-
aware decision making based on key strategic indicators
is proposed. The overall goal of the project is to support
strategic decision-making processes by providing strategic
indicators in the context of quality requirements in agile and
rapid software development. For the purposes of the project,
a strategic indicator is defined as a specific aspect that a soft-
ware development company has to consider as crucial for the
decision-making process during the software development.
Aspects such as, e.g., time-to-market, maintenance cost, cus-
tomer satisfaction, etc. can be considered as strategic indica-
tors depending on the context. These strategic indicators are
built on top of the measurements and factors calculated on
the basis of the software development-related data, stored in
the management tools such as GitLab or SonarQube.

The Q-Rapids project and our concept of measuring
quality of software products and processes are not only
approaches presented in this field. Evolution of software
metrics, aspects of static and dynamic measurements and
state-of-the-art analysis of various approaches are presented
by Voas and Kuhn (2017). Monitoring of software develop-
ment processes based on the software metrics is the core
of the approach presented by Mäkiaho et al. (2017) to sup-
port project managers in reporting, and to ensure program-
ming team members awareness of the project status. On the
other hand, Vytovtov and Markov (2017) have presented
their approach to source code quality estimation based on
software metrics with the use of LLVM compiler, which can
assess the code at compile time to provide a programmer
information about its current quality. Decision making and
related concept of situational awareness—with considera-
tions on risk analysis and associated implications of losing
the situational awareness are presented in Dekker (2015) and
Salmon et al. (2015).

In our previous Q-Rapids related papers (Kozik et al.
2017, 2018), we showed the presented results of software-
related data analysis and correlation.

Hereby, in this paper, we present more advanced solu-
tions that allow for synchronization and inspection of data
related to software development gathered in GitLab and
SonarQube tools. Hereby, we focus on improving cognition

http://www.q-rapids.eu/

193Cognition, Technology & Work (2019) 21:191–200

1 3

of the product owners and decision support by innovative
advanced software-related data analysis.

3 Proposed system architecture

In this section, the architecture of the proposed solution is
presented. First, we demonstrate the general approach to sys-
tem architecture, information flow used for the data analysis
and the information data sources. Afterwards, we present the
subsequent steps of data collection, processing, and presen-
tation to provide Key Strategic Indicators for software engi-
neering product owners and decision makers.

3.1 General approach and data flow

The conceptual architecture of the system is presented in
Fig. 1.

We use several data sources to measure the statistics (we
call those metrics) related to the software code and software
development process. In the current prototype, these metrics
are retrieved from GitLab1 and SonarQube2 project manage-
ment tools, taking into account the relevant data protection
and privacy regulations and guidelines (Choraś et al. 2015).
Git is distributed version control system used to maintain
developed code regardless of the development project size.
The main feature that characterizes Git is allowing develop-
ers to work on multiple local, independent branches that can
be merged to the master branch. GitLab is web-based Git
repository, offering visualization, issue tracking and project
management features, such as task labeling, effort allocation,
etc. SonarQube is the tool designed to support continuous

inspection of the code quality with features allowing auto-
matic review of the code, bug detection, code security analy-
sis (e.g., vulnerabilities discovery), and static analysis of the
code. SonarQube provides its reports based on the number of
pre-defined metrics defined to quantify code characteristics,
including, e.g., code complexity, testing coverage, etc.

In the future, we plan to extend our solution and not limit
data sources to those two data producers, since in different
organizations and software houses, different tools are used
(e.g., some teams/organizations may use Jenkins and some
GitLab CI instead).

It will require the task of implementing the right connec-
tor between a project management tool and our prototype.
Obviously, interfacing with third-party tools for software
project management is not a trivial task. In our case, we
have used tools that have advanced and well-documented
web interfaces allowing us to retrieve the data in a form
of JSON documents. However, it may not be the case for
other tools. In particular situations, additional effort will
be required (e.g., HTML scrapping) to retrieve the relevant
data. In addition, using unofficial, self-written, and custom-
ized data crawlers requires additional effort when the format
of source data changes.

As shown in the figure above, the raw data maintained in
the GitLab and SonarQube tools feed distributed data sink
and data analysis and processing modules. To achieve this,
we implemented the GitLab and SonarQube connectors
focused on the acquisition of the data produced by software
development tools. The synchronized data are preliminar-
ily processed, filtered, and anonymized. Synchronization
can be done with different time intervals (e.g., once a day)
both automatically and manually (please refer to Sect. 3.3).
GitLab-based data are additionally preprocessed due to the
fact that the structure of such data, scheme for labeling, etc.
is highly dependent on the software development method-
ologies, and definition of development processes used in

Fig. 1 Conceptual architecture
of the proposed solution

1 https ://gitla b.com/.
2 https ://www.Sonar Qube.org/.

https://gitlab.com/
https://www.SonarQube.org/

194 Cognition, Technology & Work (2019) 21:191–200

1 3

the organization that can be different for different product
owners, project managers, or projects even within the same
company (e.g., we found out that even teams within the same
organization use different label conventions).

3.2 Data producers

For the purpose of Q-Rapids project, we plan to feed our
system with three categories of the source data:

• Code-related, including code repository statistics and
information from tools used to static code analysis and
quality review (e.g., SonarQube). Those can include for
example data based on the SonarQube review reports,
covering such aspects as code complexity, duplication,
maintainability, reliability, security, size, and testing sta-
tus.

• Development process-oriented, including information
from management tools related to software development
projects effort allocation, scheduling, issue tracking, etc.
Those data can include complete backlog information,
in particular time-stamped activities of developers cat-
egorized using the labels, backlog size and content (e.g.,
planned and executed tests, finalized product functionali-
ties), and overall progress of the development.

• Software behavior (data collected at runtime during
testing)—based on the usage of already developed and
deployed products, including, e.g., aspects of usability,
functionalities usage/failures, user-friendliness, etc.

However, at the current stage in this paper, we focus only
on the implemented connectors to code-related and process-
related data, obtained from GitLab and SonarQube tools.

As presented in Fig. 2, all the issues (e.g., user stories,
bugs, etc.) maintained in the GitLab allow for extraction
of time stamp for each modification, e.g., adding/removing
labels, closing/opening/reopening issues, etc.

On the basis of such data, we can track the course of
the given project in terms of work intensification and then
combine and/or compare the data to the code-related met-
rics, e.g., extracted from the SonarQube tool, such as code
complexity, number of duplicated code lines in relation with
total number of lines, etc.

3.3 Data ingestion

As mentioned in the previous sub-section, the data collection
from the currently connected tools (GitLab, SonarQube) can
by synchronized and stored for further processing and analy-
sis both automatically with scheduled intervals, as well as
manually if needed. Therefore, historical data will be avail-
able for the analysis or re-analysis even after the project
finalization, e.g., to compare different projects or to add a
new data gathered from the other sources. In addition, the
evolution of the code-related metrics can be built based on
the code changes, tracked in the code repository (e.g., Git
repository).

Both GitLab and SonarQube provide WebAPIs for exter-
nal accessing of the data maintained in the tools. For exam-
ple GitLab default API3 allows for gathering issue-related
data using JSON format GET requests. More information
about SonarQube WebAPI can be found in the official tech-
nical documentation.4 In addition, both tools provide plugin
libraries for most of the popular programming languages.
However, for our purposes to fully control the analyzed data,
and to be able to extend the solution to other tools, we had
to develop our own connectors.

Fig. 2 Example of user story
tracking in GitLab

3 https ://docs.gitla b.com/ee/api/READM E.html.
4 https ://docs.Sonar Qube.org/pages /viewp age.actio n?pageI d=23921
72.

https://docs.gitlab.com/ee/api/README.html
https://docs.SonarQube.org/pages/viewpage.action?pageId=2392172
https://docs.SonarQube.org/pages/viewpage.action?pageId=2392172

195Cognition, Technology & Work (2019) 21:191–200

1 3

3.4 Data modeling, analysis and processing

In the Q-Rapids project, we use the hierarchical model
of the software (code) quality proposed as Quamoco
approach (Wagner et al. 2012, 2015; Ferenc et al. 2014).
The starting point for the Quamoco was two-tier mod-
eling of the software quality applied in the ISO/IEC 25010
standard, where product quality and quality in use is dif-
ferentiated. In the Quamoco, authors implemented three
levels of abstraction, from bottom to up: (1) measures
that are quantified into (2) product factors that impact (3)
top-level entity—quality aspects. The latter two levels of
the hierarchy are quantified factors, i.e., product factors
and quality factors, that in this chain indicate on how spe-
cific measures (retrieved from the source code), impact
product quality, either positively or negatively. Finally,
the idea behind the Quamoco was to build a technology-
independent quality model, allowing for limiting effort and
complexity of building models for specific domains or for
specific programming language.

In the Q-Rapids, we also assumed three-level hierarchy
(from the low level to the high-level of the model):

1. Software quality metrics, derived directly from the
source code/data sources;

2. Quality factors, calculated based on the gathered metrics
with the defined weights

3. Key strategic indicators, calculated based on the aggre-
gated and interpreted quality factors.

Based on this hierarchy and available data producers,
namely GitLab and SonarQube tools connected to our pro-
totype system, we derived two key strategic indicators sup-
porting decision makers in the task of product development
process. Those indicators are “Product Quality” indicator
and “Blocking” indicator. According to our quality model,
those two indicators are quantified based on quality factors,
i.e., “Code Quality” and “Testing Status” constitute “Prod-
uct Quality” indicator, while factor named “Blocking Code”
has a direct impact on “Blocking” strategic indicator. As
explained earlier, quality factors are computed based on the
metrics obtained from the data producers. Relations between
the two bottom concepts of our model are as follows:

• “Code Quality” factor is computed based on three Sonar-
Qube metrics (directly related to the code), namely ratio
of commented code lines, complexity of the code and
density of the code duplication

• “Blocking Code” factor is computed based on the Sonar-
Qube metric called “Non-blocking files”

• “Testing Status” factor is computed based on two metrics
obtained using the GitLab tool, namely density of non-
bugged code, and the percentage of passed tests.

3.4.1 Data indexing

The next step after the collection of data is the data index-
ing. In the Distributed Data Sink we use the Elastick-
Search cluster. We defined four indexes for three different
classes of metrics—metrics are indexed as the raw data
and as the normalized data.

As presented in Fig. 3, the metrics index includes such
properties as:

• metric: unique identifier of metric used in Kibana/Elas-
ticsearch,

• name: defined name of the metric,
• description: way for the metric calculation,
• evaluationDate: time of calculation,
• value: current value (for normalized metrics can take

on values in 0–1 range),
• factors: denotes quality factors constituted from given

metric,
• datasource: address of the given index (measure) stor-

age.

Such convention allows us for efficient indexing and cal-
culation of the relevant concepts.

Fig. 3 Example of quality metric index

196 Cognition, Technology & Work (2019) 21:191–200

1 3

3.4.2 Metrics calculation

Basic metrics are retrieved directly from the connected tools,
as explained in section presenting data sources. Currently,
in practice for real software projects we can collect the fol-
lowing metrics for the further aggregation:

• SonarQube-based

• Comments ratio,
• Complexity,
• Duplication density,
• Non-blocking files,

• GitLab-based

• Percentage of passed tests,
• Non-bug density,

However, a number of basic quality metrics that are not
used for calculation of quality factors and quality indicators
can be accessed using our connectors and can be visualized
to provide added value for decision makers. Those include
for example statistics calculated based on the GitLab data,
related to programming sprints (e.g., presenting actual work
in progress), to sprint backlog content (e.g., presenting ratio
of opened/closed/delayed issues in the backlog) and to test-
ing status.

Figure 4 shows the visualization of the project evolution
based on the testing performance statistics.

Moreover, the huge number of the SonarQube ratings is
accessible using our connectors, such as project files and
directory size, maintainability and reliability scores, etc.

3.4.3 Calculation of quality factors and indicators

As explained in the Sect. 3.4, quality factors are calculated
based on the metrics that are aggregated using the pre-
defined weights.

Currently we calculate following quality factors:

• Code Quality—based on:

• comments density/ratio—percentage of commented/
annotated code lines in relation with total number of
code lines;

• code complexity scoring—based on number of
linearly independent paths within the code, that
depends on the number of functions, loops, condi-
tional expressions, etc.;

• duplicated code density—percentage of duplicated
code blocks in relation with the whole code;

• Blocking Code—based on non-blocking files metric, and
• Testing Status—based on:

• non-bug density—percentage of non-bugged (or
debugged) code blocks in relation with the whole
analyzed code;

• percentage of passed tests.

Quality Indicators that are the highest level of the adopted
quality model that are currently calculated are:

• Product Quality—based on code quality and testing sta-
tus;

• Blocking—based on blocking code factor.

Fig. 4 Example of testing-
related statistics visualization
(number failed tests, pending
tests and test flagged as bug in
the GitLab)

197Cognition, Technology & Work (2019) 21:191–200

1 3

3.5 Data presentation/visualization (GUI)

For the visualization purposes in the current version of
the system, we decided to use Kibana solutions as well as
our own charts. Kibana is an open source for Elasticsearch
providing data visualization functionalities. As a part of
Elasticsearch platform, Kibana allows to visualize data
indexed through Elasticsearch cluster. User has wide capa-
bilities to create and configure different types of charts
(such as bar, line, pie charts, etc.) on top of large volumes
of data processed by the Elasticsearch. The most common
combination of Elasticsearch platform, Kibana visualiza-
tion tool, and Logstash engine used to data collection and
log-parsing is called Elastic Stack.

In the current version of the proposed solution, we pro-
vide visualized aggregated data to the end-user through
the web-based GUI. Calculated code characteristics (from
metrics to strategic indicators) can be displayed in two dif-
ferent modes, including textual presentation of the data,
and the data projected on the charts. In addition, the visu-
alization module allows user to display those data calcu-
lated for the current point of the project, as well as charts
presenting evolution of the metrics, factors, and indicators
over the time, from the beginning of the project. This also
allows for analysis of historical data (if provided) to the
data gathering module. Another configurable property of
the data visualization is possibility to adjust grid of the
time-based charts to the current needs and present evolu-
tion of data with granularity from days up to months.

In Fig. 5, metrics related to the code quality (code com-
plexity, code duplication, and comments density) are pre-
sented using time-based chart.

Furthermore, the quality factors can be visualized,
including evolution charts and radar charts allowing
decomposition of quality factors into more generic met-
rics and separate analysis of particular quality factor
components.

Finally, the most general, top view of the quality analy-
sis is quality indicators allowing decision maker for quick
evaluation of the quality-related aspects in particular soft-
ware development project. This will allow the product owner
(or other decision maker) to assess the code quality ver-
sus the quality requirements, specific in given company or
organization.

3.6 Verification and validation

In this section, we present some results of the preliminary
experiments conducted in the real environment. For the
experiments, we have used the real data collected while
developing real commercial products for customers at soft-
ware development companies.

The companies used GitLab tool to manage the project-
related data, namely, issues (backlog, user stories, features,
tasks, and bugs), source code repository, and continuous
integration (CI). To control the quality of the produced code,
SonarQube tool has been used. The data from GitLab and
SonarQube tools were collected incrementally as received.

The goal of our experiments was to validate the cor-
rectness of the architectural assumptions and to assess the
usefulness of the provided functionalities (e.g., to visualize
calculated and aggregated data).

The results have been presented at the validation sessions
to product owners involved in the development project in
their companies. The validation was following our hierar-
chical approach to build key strategic indicators, i.e., first
direct metrics based on the GitLab and SonarQube data were
presented, and then calculated quality factors and indicators
were discussed.

In general, usefulness of the system has been assessed
positively; in particular, aggregated and visualized data
related to backlog tracking (as presented in Fig. 6) were
evaluated as an added value in relation with the standard
capabilities of the GitLab, allowing product owner to verify

Fig. 5 Visualization of quality
metrics (complexity of func-
tions, classes, and file) used to
compute the quality factor

198 Cognition, Technology & Work (2019) 21:191–200

1 3

development team productivity and/or correctness of sprints
planning.

As for quality factors (e.g., Fig. 7), the visualization
was also assessed as useful; however, the product owners
expect the capabilities for customization of particular metric
weights constituting the factor. These weights can depend
on the current project and different priorities defined for this
project. In addition, product owners reported that time-based

charts could be scaled using “sprint” unit (alongside days
and months) with the possibility to define custom duration of
the sprint, to better adjust chart grid to the actual milestones
defined in the project.

The current implementation allowed to meet the need
expressed by senior staff and product owners to plan and
assign tasks and sprints in rapid software development
processes. Indeed, looking at the proposed and calculated

Fig. 6 Proposed charts for
increasing cognition and deci-
sion making related to sprints
planning and assessment

Fig. 7 Example of the current
visualization solution for quality
indicators

199Cognition, Technology & Work (2019) 21:191–200

1 3

metrics allows for taking such decisions with more knowl-
edge and situational awareness, also showing the hidden cor-
relations between various aspects in the projects.

4 Conclusions

In this paper, we described our work on increasing cogni-
tion and decision-making capabilities of product owners at
software development companies and organizations. We
presented the architecture and the advanced data analysis
methodology to close the gap between the current software
development support tools and the real needs of product
owners in rapid software development environment.

Moreover, in the paper, we addressed the validation of
our solutions, e.g., in one of the SME companies that run
software development projects and commercially develops
tools for, e.g., healthcare domain.

Our future work is devoted to enlarging the set of the
analyzed data sources and the calculation of more metrics,
product factors, and strategic indicators.

Moreover, we currently work on predictive modeling and
analysis based on software-related data using the advanced
machine learning techniques (Choraś and Kozik 2015). In
fact, the prediction of the metrics related to software devel-
opment process (e.g., number of bugs, time) is currently one
of the needs of the product owners. Currently, we work on
the time series based approach for such prediction, and we
use models such as Holt–Winters, Exponential Smoothing
and ARIMA as well as deep neural networks (Andrysiak
et al. 2014; Viji et al. 2018).

We also work on finding correlations between various
metrics and on the lifelong learning intelligent system
approach to use data learnt on past projects and still use the
for predictions. The future work is also devoted, for example,
to alerting, generation of quality requirements, and what-if
analysis that could be used to simulate and show the differ-
ent courses of actions taken by product owners [similarly as
for example in the critical infrastructures protection services
(Kozik et al. 2015)].

Furthermore, we are continuously in the process of vali-
dating our solution at more use-cases (software development
companies) both internal and external to the project.

Acknowledgements This work has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
Grant agreement no. 732253. We would like to thank all the members
of the Q-Rapids H2020 project consortium.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate

credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Amantini A, Choraś M, D’Antonio S, Egozcue E, Germanus D, Hut-
ter R (2012) The human role in tools for improving robustness
and resilience of critical infrastructures. Cogn Technol Work
14(2):143–155

Andrysiak T, Saganowski Ł, Choraś M, Kozik R (2014). Network
traffic prediction and anomaly detection based on ARFIMA
model. In: International joint conference SOCO’14-CISIS’14-
ICEUTE’14, Springer, Cham, pp 545–554

Capgemini (2017) World quality report 2016-17, 8th ed. https ://
www.capge mini.com/world -quali ty-repor t-2016-17/. Accessed
9 Oct 2017

Choraś M, Kozik R (2015) Machine learning techniques applied
to detect cyber attacks on web applications. Logic J IGPL
23(1):45–56

Choraś M, Kozik R, Renk R, Hołubowicz W (2015) A practical
framework and guidelines to enhance cyber security and pri-
vacy. In: Herrero Á, Baruque B, Sedano J, Quintián H, Cor-
chado E (eds) International joint conference CISIS’15 and
ICEUTE’15. Springer, Cham, pp 485–496

Dekker SW (2015) The danger of losing situation awareness. Cogn
Technol Work 17(2):159–161

Felderer M, Ramler R (2016) Risk orientation in software testing
processes of small and medium enterprises: an exploratory and
comparative study. Softw Qual J 24(3):519–548

Ferenc R, Hegedűs P, Gyimóthy T (2014) Software product quality
models. In: Mens T, Serebrenik A, Cleve A (eds) Evolving soft-
ware systems. Springer, Berlin, Heidelberg, pp 65–100

Franch X, Ayala C, López L, Martínez-Fernández S, Rodríguez P,
Gómez C, Rytivaara V (2017) Data-driven requirements engi-
neering in agile projects: the Q-Rapids approach. In: 2017 IEEE
25th international requirements engineering conference work-
shops (REW), IEEE, pp 411–414

Friedrich M, Biermann M, Gontar P, Biella M, Bengler K (2018)
The influence of task load on situation awareness and control
strategy in the ATC tower environment. Cogn Technol Work
20:205. https ://doi.org/10.1007/s1011 1-018-0464-4

Guzmán L, Oriol M, Rodríguez P, Franch X, Jedlitschka A, Oivo
M (2017) How can quality awareness support rapid software
development?—A research preview. In: REFSQ2017, pp 167–173

Jones C, Bonsignour O (2011) The economics of software quality.
Addison-Wesley Professional, Boston

Jorgensen PC (2016) Software testing: a Craftsman’s approach. CRC
Press, Boca Raton

Kozik R, Choraś M, Flizikowski A, Theocharidou M, Rosato V, Rome
E (2015) Advanced services for critical infrastructures protection.
J Ambient Intell Hum Comput 6(6):783–795

Kozik R, Choraś M, Renk R, Hołubowicz W (2016) Cyber security
of the application layer of mission critical industrial systems. In:
IFIP international conference on computer information systems
and industrial management, Springer, Cham, pp 342–351

Kozik R, Choraś M, Puchalski D, Renk R (2017) Data analysis tool
supporting software development process. In: Informatics,
2017 IEEE 14th international scientific conference on, IEEE,
pp 179–184

Kozik R, Choraś M, Puchalski D, Renk R (2018) Q-Rapids framework
for advanced data analysis to improve rapid software develop-
ment. J Ambient Intell Hum Comput. https ://doi.org/10.1007/
s1265 2-018-0784-5

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.capgemini.com/world-quality-report-2016-17/
https://www.capgemini.com/world-quality-report-2016-17/
https://doi.org/10.1007/s10111-018-0464-4
https://doi.org/10.1007/s12652-018-0784-5
https://doi.org/10.1007/s12652-018-0784-5

200 Cognition, Technology & Work (2019) 21:191–200

1 3

Mäkiaho P, Vartiainen K, Poranen T (2017) MMT: a tool for observ-
ing metrics in software projects. Int J Hum Cap Inf Technol Prof
(IJHCITP) 8(4):27–37

QASymphony (2016) The cost of poor software quality. https ://www.
qasym phony .com/blog/cost-poor-softw are-quali ty/. Accessed 9
Oct 2017

Q-Rapids (2017) H2020 project Q-Rapids. http://www.q-rapid s.eu/.
Accessed 9 Oct 2017.

Salmon PM, Walker GH, Stanton NA (2015) Broken components ver-
sus broken systems: why it is systems not people that lose situa-
tion awareness. Cogn Technol Work 17(2):179–183

Telegraph (2015) http://www.teleg raph.co.uk/finan ce/newsb ysect or/
indus try/defen ce/11663 761/Cyber -attac ks-cost-Briti sh-indus try-
34bn-a-year.html. Accessed 9 Oct 2017

Viji C, Rajkumar N, Duraisamy S (2018) Prediction of software fault-
prone classes using an unsupervised hybrid SOM algorithm. Clus-
ter Comput. https ://doi.org/10.1007/s1058 6-018-1923-7

Visual (2015) http://www.visua lcapi talis t.com/milli ons-lines -of-code/.
Accessed 9 Oct 2017

Voas J, Kuhn R (2017) What happened to software metrics? Computer
50(5):88

Vytovtov P, Markov E (2017) Source code quality classification based
on software metrics. In: Open innovations association (FRUCT),
2017 20th conference of, IEEE, pp 505–511

Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch
R et al (2012) The quamoco product quality modeling and assess-
ment approach. In: Proceedings of the 34th international confer-
ence on software engineering, IEEE Press, pp 1133–1142

Wagner S, Goeb A, Heinemann L, Kläs M, Lampasona C, Lochmann
K, Trendowicz A (2015) Operationalised product quality mod-
els and assessment: The Quamoco approach. Inf Softw Technol
62:101–123

https://www.qasymphony.com/blog/cost-poor-software-quality/
https://www.qasymphony.com/blog/cost-poor-software-quality/
http://www.q-rapids.eu/
http://www.telegraph.co.uk/finance/newsbysector/industry/defence/11663761/Cyber-attacks-cost-British-industry-34bn-a-year.html
http://www.telegraph.co.uk/finance/newsbysector/industry/defence/11663761/Cyber-attacks-cost-British-industry-34bn-a-year.html
http://www.telegraph.co.uk/finance/newsbysector/industry/defence/11663761/Cyber-attacks-cost-British-industry-34bn-a-year.html
https://doi.org/10.1007/s10586-018-1923-7
http://www.visualcapitalist.com/millions-lines-of-code/

	Increasing product owners’ cognition and decision-making capabilities by data analysis approach
	Abstract
	1 Rationale
	2 Context and related work
	3 Proposed system architecture
	3.1 General approach and data flow
	3.2 Data producers
	3.3 Data ingestion
	3.4 Data modeling, analysis and processing
	3.4.1 Data indexing
	3.4.2 Metrics calculation
	3.4.3 Calculation of quality factors and indicators

	3.5 Data presentationvisualization (GUI)
	3.6 Verification and validation

	4 Conclusions
	Acknowledgements
	References

