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Abstract This article presents an overview of COSA, a
cognitive system architecture, which is a generic frame-
work proposing a unified architecture for cognitive
systems. Conventional automation and similar systems
lack the ability of cooperation and cognition, leading to
serious deficiencies when acting in complex environ-
ments, especially in the context of human-computer in-
teraction. Cognitive systems based on cognitive
automation can overcome these deficiencies. Designing
such artificial cognitive systems can be considered a very
complex software development process. Although a
number of developments of artificial cognitive systems
have already demonstrated great functional potentials in
field tests, the engineering approach of this kind of
software is still a candidate for further improvement.
Therefore, wide-spread application of cognitive systems
has not been achieved yet. This article presents a new
engineering approach for cognitive systems, imple-
mented by the COSA framework, which may be a cru-
cial step forward to achieve a wide-spread application of
cognitive systems. The approach is based on a new
concept of generating cognitive behaviour, the cognitive
process (CP). The CP can be regarded as a model of the
human information processing loop whose behaviour is
solely driven by “‘a-priori knowledge”. The main fea-
tures of COSA are the implementation of the CP as its
kernel and the separation of architecture from applica-
tion leading to reduced development time and increased
knowledge reuse. Additionally, separating the knowl-
edge modelling process from behaviour generation en-
ables the knowledge designer to use the knowledge
representation that is best suited to his modelling
problem. A first application based on COSA implements
an autonomous unmanned air vehicle accomplishing a
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1 Introduction
1.1 Motivation

The continuously increasing complexity of environments
and the extension of the range of operation put great
demands on the cockpit crew and aircraft performance.
As a consequence, more and more automated functions
were introduced in aircraft cockpits in the past and this
tendency is still ongoing. The result so far is that pro-
ductivity (effectiveness and safety) could be increased.
Investigations on modern aircraft cockpits show, how-
ever, that a further increase in the use of automation will
not necessarily result in increased productivity because
automation itself has become a highly complex element
within the already complex environment of the cockpit.
Meanwhile, in some cases automation has in fact be-
come the key factor for decreased safety (e.g. ““‘mode
confusion”) (Fig. 1).

Extensive research has been done to analyse this
situation and it was found that highly complex
conventional automation may act in unpredictable
ways, e.g. not consistent with the pilot’s mental
models, and may provide the flight crew members with
too little feedback (Wiener 1993; Sarter and Woods
1995; Billings 1991). In most cases, conventional
automation is used in more or less stand-alone
systems. There is no integrated approach. The cou-
pling of elements of automated functions and the
complexity of automation as such increase the load on
the human operator. A new integrated approach based
on cognitive automation overcomes these deficiencies
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Fig. 1 Productivity gain through different kinds of automation

by making use of cognition, working in cooperation
with the human operator and showing goal-consistent
and transparent behaviour.

1.2 Some comments on cognitive automation

Cognitive automation is an extension of conventional
automation (as reported in Walsdorf et al. 1999; Frey
et al. 2001) and follows the human knowledge-pro-
cessing scheme as discussed, for example, by Ras-
mussen (1983). As shown in Fig. 2, cognitive
automation implements the whole process of building
an internal comprehensive representation of the
relevant parts of its external world (left column in
Fig. 2). This can be considered the principal basis
upon which all considerations and actions of the sys-
tem, especially for the crucial part of goal-driven
knowledge-based behaviour (top level row in Fig. 2),
are created.

Another important feature of systems based on cog-
nitive automation is the ability to cooperate with the
environment, especially with the human operator. Syn-
ergic benefit is gained by supporting the strengths of
both the human operator (instinct, abstraction, creativ-
ity, etc.) and the automatic system (objectivity, stress
resistance, parallel processing, complex calculations,
etc.). Cooperation based on cognitive automation means
implicitly and explicitly communicating with the crew in
order to continuously match the technical system’s
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knowledge about the situation against the flight mission
goals and the intents and actions of the crew. If neces-
sary or requested by the crew, actions are taken which
comply with the crew’s goals. Further details about the
concept of cognitive automation as well as the applica-
tion and evaluation of this concept can be found in the
literature (Walsdorf et al. 1999; Putzer and Onken 2001;
Frey et al. 2001).

Although the application of cognitive automation in
this article is aircraft guidance, the approach of cognitive
automation is equally appropriate in other domains with
technical processes controlled by human operators such
as road vehicle guidance, power plant control, or even
business management.

1.3 Scope of this article

The theoretical foundation of cognitive systems and
their application is a key aspect in the area of human-
machine interaction leading to assistant systems, tutor-
ing systems, or intelligent, cooperative agents. It is still a
great challenge, however, to design and implement these
systems. Usually, the system design leads to implemen-
tations with no or little reuse, for the sake of cost re-
duction, when the next generation of the same kind of
system is designed.

This article understands the design of cognitive sys-
tems as a software engineering process that is founded
on the concept of cognitive processing. The following
approach consists of two main steps.

1. As a conceptual basis a generic structure of the cog-
nitive process is generated. This is covered in Sect. 2,
The cognitive process.

2. A framework is implemented using the concept of the
cognitive process as its kernel. This is presented in
Sects. 3 and 4, Design principles and Architecture.

The subsequent Sect. 5, Implementation, discusses
the implementation of the framework along with a first
application, which is an autonomous, unmanned air
vehicle (UAV).

Fig. 2 Cognitive automation
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2 The cognitive process
2.1 Introduction

The cognitive process (CP) is a technical process which
mimics human information processing. This concept is
based on knowledge about human behaviour and known
design philosophies for cognitive systems. It is not de-
signed to verify or to comply in detail with the theories
about physiological processes and features of the human
brain. It is, rather, motivated by the need to model be-
haviour that is similar to the main stream of behavioural
characteristics of humans. In essence, this should lead to a
behaviour of the artificial process that results from a
profound understanding of the human operator’s inten-
tions and needs, and, in turn, the system’s behaviour
should be well understood by a human operator.

The central component of the CP is the ““body”, the
oval part in Fig. 3, which hosts a large amount of data.
These data represent the knowledge of the system that is
specific to the CP-subprocesses and to the application.
The inner oval (slightly darker) contains the a-priori
knowledge that is fed into the CP before any processing
starts. This a-priori knowledge is the source of the be-
haviour of the application. The outer oval (light grey)
contains the situational knowledge which is created
during runtime. This kind of knowledge is also called the
cognitive yield because it results from the operation of
the CP subprocesses.

Processing of the knowledge is done by the so-called
transformators, which are represented by dashed and
solid lined arrows around the body in Fig. 3. These
transformators can read from the whole body to retrieve
their necessary input but usually get their most impor-
tant input from the dashed area within the body, the
cognitive yield. Transformators write their results into
designated areas of the body at the arrowhead. The
functions of all transformators are designed according to
the recognition-act cycle (in Fig. 3, clockwise around the
body): interpretation, goal determination, planning, and
plan realization (Walsdorf et al. 1999; Jennings and

Fig. 3 The cognitive process
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Wooldridge 1998). Additionally, two specialized trans-
formators establish the interaction with the outside
world: via the input interface the data get into the body
and via the output interface external actuators and other
output devices can be controlled.

The execution of all transformators is assumed to be
in parallel and event-driven. As soon as a transformator
detects a significant change at its primary input
this change is evaluated using the available knowledge
and the output is adjusted. A direct consequence is
that there will be no unnecessary recalculation of the
plan, if changes in the situation stay within predicted
bounds.

2.2 Tranformators

For a better understanding of the functions and inter-
actions of all transformators within the cognitive process
a closer look at each of them is given.

Interpretation This transformator generates the com-
plete picture of the situation. As a simple example, one
can imagine taking sensory data from a radar device and
creating a structure within the area of “beliefs” that
reflects the knowledge (e.g. position, heading and speed,
behaviour) about other aircraft. Besides natural objects,
this transformator may also establish structures reflect-
ing relations. For example, a structure describing the
binary relation of distances between the own vehicle and
other objects could be established.

Goal determination Primarily using the beliefs as input,
this transformator determines which relevant goals
should actually be pursued. This is done by evaluating
the desires from the a-priori knowledge. For example, in
a military scenario, if there is an incoming missile, the
desire of surviving (e.g. by evading) is activated. Acti-
vated desires are called goals.

Planning Using the goals as triggering elements and
the a-priori knowledge about strategy models, this
transformator generates a plan of how to achieve these

interpretation

CP behavior

plan realization



goals. This plan may contain parallel tasks as well as
sequential ones. It may also contain alternative opera-
tions. However, the plan is hierarchically structured and
has a time span up to the end of the current mission.

Plan realization The primary input to this transfor-
mator is the plan. The tasks to be processed at each
point in time are selected from the hierarchical structure
of the plan, associated with the appropriate instruction
model, and converted into simple instructions that
constitute the output of the CP.

2.3 The body

If necessary and if modelled by the a-priori knowledge,
the behaviour of these transformators covers all three
levels of (human) behaviour according to Fig. 2. It is
solely based on a-priori knowledge specific to each
transformator. Without this knowledge the transfor-
mators will do nothing. The basic idea about the pur-
pose of the body is that simply by adding knowledge all
transformators know how to process this knowledge in
combination with newly added knowledge with the
previous knowledge.

The organization of the knowledge within the body
follows the object-oriented paradigm: it has a uniform
structure in terms of models (= objects). Each model can
be instantiated. Instances have data members describing
their state. The model also comes with template func-
tions that describe the behaviour of all instances. This
concerns the whole life cycle of instances including cre-
ation, behaviour during life time, and removal. Tying up
all micro-behaviours of all model instances forms the
macro-behaviour of the CP.

2.4 Application of the CP

It can be stated that the concept of the CP will be ade-
quate for a wide range of cognitive system applications.
It is independent of domains and characteristics of the
application. Thus, the CP serves as an unchanged core
element in arbitrary applications such as tutorial systems
and assistant systems or even autonomous systems
within any domain such as aeronautical applications,
driving, and managing power plants. The domain and
the kind of application shows up solely in the a-priory
knowledge that is put into the CP. Before doing so, the
CP concept has to be transformed into a design, archi-
tecture, and implementation of an operational frame-
work, which we call COSA. These steps are described in
the following sections.

3 Design principals

Now that there is a common concept for cognitive sys-
tems available in the form of the cognitive process, this
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concept has to be implemented into an operational
framework. This framework has to provide:

— A new software engineering concept (based on the
cognitive model represented by the CP)

— An architecture separating cognitive functions from
the application on the basis of implementing the
system’s behavioural traits exclusively from a-priori
knowledge

— Separating knowledge modelling from behaviour
generation by introducing the concept of the front-
end for knowledge modelling

Besides presenting the concept of the CP, the
framework design and implementation is the main
topic of this article. This kind of unified framework is
most suitable to make cognitive system design common

property.

3.1 User requirements

In most cases of current developments special designs
are used to accomplish certain isolated functions of
cognitive system applications. With COSA we try to
design a system that uses results from several sources
and combines them to get an improved, holistic, and
unified architecture for cognitive systems in general.
This section will give an overview on the design and the
design goals from a higher-level perspective leaving de-
tailed aspects to be explained in later sections.

The first step towards this framework was the anal-
ysis of prior designs of cognitive systems like CAMA
(Walsdorf and Onken 1998; Schulte and Stiitz 1998) and
other state-of-the-art systems. Further user design re-
quirements were derived from three different groups of
users: system developers, knowledge engineers, and
system end-users.

— System developers need flexibility to add functional-
ity or external components like displays, database
interfaces, or image analysis core functions. For this
task they need good documentation, simple inter-
faces for internal and external subsystems, and
good modularity and support to easily extend and
maintain the system. These design goals influenced
the architecture and implementation as described in
Sect. 4.

— Knowledge engineers design the a-priori knowledge to
implement the application system behaviour. They
need an interface to any potential modelling language
to choose the one that is best suited for their partic-
ular application domain. Further on, they need a
design methodology to model the knowledge and a
structured concept to partition the knowledge. This is
supported by the front-end, which is described in
Sect. 4.4.

— System end-users of the resulting cognitive application
put some more general requirements on the system.
These are described in the following paragraphs along
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with other features derived from our own experience
with artificial cognition.

3.2 Features of the framework

The COSA framework is designed to ensure a unified
architecture of cognitive systems. Thus, it can serve as a
basis for a wide range of applications in cognitive
engineering. In its actual implementation it is based on
the CP, which is described in Sect. 2. The CP as the core
element of the system makes all its properties available
for the resulting framework.

The CP approach follows the human-centred design
by making the behaviour of the resulting system sim-
ilar to human information processing. This ensures
system behaviour that is best comprehensible to human
operators.

The core element of COSA, which is the CP, is de-
signed to carry out high-level knowledge processing. It is
not designed to implement number-crunching algo-
rithms or high frequency control loops. As it will turn
out, this is not a restriction for an application because
there are flexible interfaces to external modules (COSA
components) that can cope with such functions.

Certification is not yet addressed in the first imple-
mentation of COSA. It can be stated, though, that COSA
supports approaches to strengthen system integrity.

4 Architecture

4.1 Overview

4.1.1 Subsystems

The COSA framework is a component architecture. It is
built on a distribution layer of CORBA, which is an
industry standard for distributed systems (Puder and

Fig. 4 Block diagram of
COSA’scomponent architecture
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Roémer 1999). CORBA ensures clear external and
internal interfaces and decoupling of functional com-
ponents.

Components are grouped into subsystems of the ar-
chitecture. These subsystems are marked at the left side
in Fig. 4 and are described as follows.

— The kernel encapsulates the knowledge processing
engine by which the CP is implemented. This group
does not contain any knowledge specific for any ap-
plication domain. This part of the architecture only
“knows” how to convert knowledge into behaviour.
It is the organizational element in terms of the con-
troller that integrates all distributed components of
the framework to form one integrated system. At
runtime the kernel manages all registered COSA
components and compilers via special interfaces (see
arrows starting at the ““manager” of the “controller”
component in Fig. 4).

— The application consists of components of a special
kind, the so-called “COSA components”. These are
the only components that contain domain-specific
knowledge. Under control of the kernel during start-
up this knowledge is translated by compilers into a-
priori knowledge which complies with a format that
can be processed by the CP. In addition to knowl-
edge, COSA components may contain servers for
calculations (external to the CP) or interfaces to other
systems. These could be data base interfaces, HMI-
interfaces, image processing algorithms, or closed-
loop feedback control.

— The front-end covers all tools for knowledge
modelling and debugging. Thus, it serves as the front-
end for the knowledge engineer for application de-
velopment and debugging. Furthermore the front-end
provides a compiler to convert the designed knowl-
edge to run on top of the cognitive process.

With these subsystems an important feature of the
COSA framework is described: the separation of appli-
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cation and architecture. The reusable architecture saves
time during the development of cognitive systems, be-
cause basic architectural problems are already solved.
Further on, it provides behaviour generation on the
basis of explicit knowledge (environment models, de-
sires, etc.) leading to great flexibility for the application
development and the reusability of components.

4.1.2 Abstraction levels of knowledge

Another view of the block diagram of COSA in Fig. 4
(vertical triple line) identifies hierarchical levels of
knowledge abstractions.

— The top level and most abstract layer is given by the
knowledge designed by the knowledge engineer in a
high-level language by means of the front-end. This
knowledge is incorporated into COSA components
with no change. The set of knowledge fragments from
all COSA components of an application is exactly the
domain specific knowledge of that application.

— The next level is the knowledge translation by com-
pilers. The result of the compilation is a-priori
knowledge in a format that can be processed within
the CP. This translation is “behaviour preserving”,
i.e. the behaviour that evolves from original and
translated knowledge has to be the same.

— By providing the interfaces of the CP as described in
Sect. 1.3, the CP library is the link to the next level of
abstraction. Here, the a-priori knowledge on the basis
of the CP library is converted into behaviour by the
processor. The level of abstraction and the processing
speed is determined by the choice of the processor.
For the current implementation, SOAR, a production
system (Sect. 4.2.2), is chosen. For other require-
ments with less abstraction but more complex CP li-
brary implementations and possibly more speed,
other processors like the JAVA virtual machines can
be used.

This overview gives important aspects of the archi-
tecture on an abstract level. More details on the archi-
tecture and functionality of all components within their
groups are given in the next sections.

4.2 Kernel

This subsystem has two major responsibilities.

1. Manage all other components of the framework —
this is done by the controller with the help of its
managers and adapters.

2. Implement the CP — this is done by the SOAR pro-
cessor and the CP library.

In the following section a detailed look is taken at
these components of the “kernel” subsystem: controller,
processor, and CP library.
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4.2.1 Controller

The controller can be regarded as the central manager in
the COSA architecture. At start-up all components like
compilers provided by front-ends and COSA compo-
nents register with the controller. After the start-up
process the controller takes control over all components,
searches for the knowledge of COSA components,
translates it with the appropriate compiler, and loads the
result into the processor. During this starting phase
(offline phase) dependencies of the components are
checked and resolved.

After the starting phase the control is transferred to
the processor which processes all loaded knowledge to
produce behaviour (runtime or online phase).

4.2.2 Processor

As the central element of the “kernel” a component is
needed that can process knowledge to yield behaviour.
SOAR (Newell 1990; Laird et al. 1987), which is devel-
oped and maintained by the University of Michigan, is a
good candidate because it meets all requirements. The
main reasons for selecting SOAR as the processor are
the following: it is easy to learn, the developing com-
munity is very active and reacts quickly to queries, and,
last but not least, SOAR comes with portable source
code and can be easily integrated into C/ C+ + envi-
ronments. Additionally, SOAR provides interfaces to
integrate basic features that are not supported in its pure
implementation.

SOAR stores its “knowledge” about the situation in
its working memory, which has a uniform and symbolic
structure similar to conceptual graphs. The “behaviour”
is uniformly stored in rules; thus, SOAR is a kind of
production system but with a very special multi-stage
processing loop so that even advanced features like
learning are supported.

Like other production systems, SOAR offers a very
fine-grained interface: the rules. With this feature, ex-
tending existing knowledge models is as easy as writing
new rules and loading them into SOAR (even at run-
time). In SOAR, all loaded productions can fire in
parallel so this supports the idea of cognitive automa-
tion: apply all knowledge at any situation.

It turns out that maintenance can be done as easy as
extensions: the debug code is a set of rules that can be
loaded into SOAR at any time. This code can trace
values, set breakpoints, or just print out portions of the
working memory. This is supported by a symbolic rep-
resentation of the working memory that is understand-
able by human beings.

Like many other architectures that build on produc-
tion systems, SOAR has deficiencies in implementing
number crunching algorithms (e.g. frequency analysis,
closed-loop feedback control) or image processing. But
this is not the job of the core processor within COSA.
Instead, the processor is used to implement higher de-
cision levels while the above-mentioned functionality is
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implemented in extensions that are external to the CP
residing in COSA components.

Further on, some key features on the knowledge level
are added to SOAR by loading a set of basic produc-
tions called the CP library, thereby giving it, for exam-
ple, the means to organize knowledge in components
and to implement the CP, which should be the kernel of
COSA.

4.2.3 CP library

The higher the abstraction of programming languages,
the more functionality can be covered with a single ex-
pression. Thus, we do not use C+ + but rather the more
abstract SOAR language to simplify the implementation
of the CP as it is described in Sect. 1.3.

This step of building the abstract interface level of the
CP is the function of the CP library. This library is
combined with the a-priori knowledge and both are
executed by the SOAR processor. Three main features of
the CP library lead to the required functionality.

1. Timers/triggers handle simultaneous events and syn-
chronization throughout the whole system. They are
needed internally to the CP library and are not used
in the actual application.

2. The OO approach introduces object-oriented design
philosophies to SOAR. With this feature, SOAR
supports “models” (= classes) as they are described
in Sect. 1.3. Models can be instantiated, which is a
similar process to instantiating a class in C+ +. In-
stances contain data describing their individual state.
Models also contain the behaviour for all instances
throughout the whole lifecycle: creation, behaviour
during life time, and removal.

3. Component management enables the kernel to keep
track of activated components and determine de-
pendencies and priorities. This is done in cooperation
with the controller component of the “‘kernel”.

As the CP library is implemented as a set of SOAR
productions in separate files, these can be loaded into
any running SOAR processor to yield a CP scheme.
Again, it is emphasized that the CP as a basic element
for cognitive applications does not include any domain-
specific knowledge.

4.3 Distribution layer

COSA’s distribution layer is based on CORBA (Puder
and Romer 1999), an industry standard for distributed
systems that connects distributed software objects. It
serves as middleware to connect the controller component
to other components containing knowledge, I/O inter-
faces, or providing compilers. These components can be
distributed over a network and may differ in program-
ming language, operating system, and computer
platform.

To use the SOAR processor within the CORBA en-
vironment, the interfaces of the processor have to be
mapped to the middleware layer. The main feature of
COSA’s middleware layer are the following.

— The client-server-structure puts the controller into a
central position. Components of the application reg-
ister with the controller on start-up so that they can
be used to retrieve a-priori knowledge or to access
other interface functions.

— The knowledge mapping is the link between the dif-
ferent knowledge representations in SOAR and in the
transport layer CORBA. It defines the representation
CORBA uses to transport any piece of knowledge via
the network from the processor to other objects and
vice versa. The mapping is done by implementing a
graph structure for CORBA.

— The encapsulation of callbacks connects I/O functions
and internal events of the knowledge processor to
published member functions of distributed objects.
This is done by dispatching calls to registered member
functions of objects.

With these features COSA can dispatch tasks to
processing units external to the kernel, which are servers
as a part of COSA components (Fig. 4). COSA com-
ponents and with them all servers can be distributed
objects connected via a computer network. This enables
the flexibility to integrate servers, black boxes, and ex-
ternal systems to do number crunching, implement high
frequency control loops, interface data base systems, or
connect any other subsystem to the application.

4.4 Front-end

The main purpose of the front-end is to decouple different
representations of the knowledge needed for knowledge
modelling and knowledge processing. This allows the
knowledge engineer to use the modelling tool or envi-
ronment best suited to his work, without the necessity to
know or learn the format in which the processor is pro-
grammed. This way object-oriented or procedural ap-
proaches for any standard of knowledge modelling can be
supported or even mixed to yield a joint behaviour.

4.4.1 Theory behind front-ends

The idea of the concept of a front-end is based on a
direct consequence of behaviourism: it does not matter
which syntax or mechanism is used to describe the
knowledge as long as the evolving behaviour is the same.

Thus the description of an intended behaviour by
means of a specific knowledge representation or format
should be separated from the process of generating the
behaviour from the modelled knowledge. This is exactly
the purpose of the front-end. The behaviour generation
is delegated to the COSA kernel while the various front-
ends provide the modelling facilities.



This separation is used to reach a high abstraction for
the knowledge modelling process. Modelling takes place
in terms of ““‘mental concepts’ such as beliefs or goals as
they are defined by the CP. This can be seen as a further
step in the evolution of software engineering methods
(Fig. 5; compare Balzert 2000). This increase of ab-
straction enables human beings to understand und cover
an increasing complexity of applications as is necessary
for cognitive systems.

4.4.2 How to define a front-end

A front-end as it is invented for the COSA framework is
defined by the following five aspects: concept, language,
compiler, method, and tools.

— The concept represents the basic idea of how a cog-
nitive system should produce its behaviour. For ex-
ample, the CP can be used as the concept.

— A language is needed to express the knowledge that is
to be modelled in a formal syntax. Text-based rep-
resentations as well as graphical notations are possi-
ble. Examples will be given in Sect. 4.4.3.

— The compiler translates the language with its
underlying concept into the knowledge format of
the processor such that it can be executed by the
kernel. As mentioned before, the compiler is one of
the most crucial elements of a front-end: the com-
piler not only has to convert knowledge formats but
also underlying concepts. A fragment of knowledge
and its compiled version both have to represent the
same knowledge in terms of producing the same
behaviour.

— For knowledge modelling a method is needed. This
method defines a guideline for the knowledge engi-
neer on how to create an application using the given
concept and language of the front-end.

— Tools are optional elements of the front-end. They
support the knowledge modelling process. The mini-
mal tool is a text editor to produce a textual repre-
sentation.

In more sophisticated systems it might be advanta-
geous to provide several front-ends at the same time so
the knowledge engineer can use the front-end and with it
the design method which is best suited to his design
problem. At runtime, the controller in COSA’s “kernel”

Fig. 5 Evolution of software
design methods over 6
generations of paradigms
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searches all registered front-ends for the appropriate
compiler to translate the knowledge. All compilers
produce code fragments that are integrated in the pro-
cessor to yield the system’s behaviour.

At the current state of the project, besides using na-
tive SOAR representations, there are two other front-
ends. One is called the cognitive process language (CPL),
which is based on SOAR and extends SOAR with ele-
ments of the object-oriented paradigm. An example
discussing and using the CPL front-end is presented in
the next section (Sect. 4.4.3). The other front-end is
based on the standard of the CommonKADS Markup
Language (CML; Schreiber et al. 1999). It is still at an
experimental stage.

4.4.3 Example using CPL

To be more concrete on the knowledge modelling aspect,
a short example is presented using the language, method,
and tools of the CPL front-end. The example will be a
rough sketch of the behaviour of an autonomous un-
manned air vehicle (UAV) that decides to evade an
aircraft classified to be dangerously close. Most of the
example can be found in the screenshot of the graphical
tool “visualCPL” in Fig. 6, which was used to design the
example. The tool “visual CPL” is part of the CPL front-
end.

The CPL method is based on the ideas of ‘“‘agent-
oriented software engineering” (AOSE; Wooldridge
1997) and adjusted to the concepts of the CP. The goal
of the method is the design of the a-priori knowledge
from which the behaviour of the resulting system is
generated by the kernel. The method starts by defining
the static model within four steps.

1. The main scope is to model goal-oriented behaviour.
Thus, the first step defines the goals that the system
tries to achieve. For the given example the goal is to
evade from a dangerously close aircraft. This leads to
the description of the “‘evade-goal”.

2. Considering the next transformator ‘‘planning”
(Fig. 1), the ability to achieve the “‘evade-goal” has to
be implemented as a parameterized procedure com-
posed of elementary actions. This results in the a-
priori knowledge (strategy models) modelling how
the UAV safely evades the aircraft. This knowledge is
represented by the “class evade-plan” in Fig. 6.

mental concept
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Fig. 6 visualCPL — a graphical tool of the CPL front-end

3. The transformator ““plan-realization” gets its a-priori
knowledge (instruction models) by analysing the
strategy models and implementing how all
elementary actions are to be executed. This knowl-
edge is implemented in the package of UAV control.
To keep the example simple this is not displayed in
Fig. 6.

4. As the last step towards the static model the envi-
ronment models that form the belief of the system are
built. Environment models build the UAV’s infor-
mation about the environment needed to support (1)
the decision on goals modelled in step one, (2) the
planning modelled in step two, or (3) the execution of
instructions modelled in step three.

Within our example there is a class representing any
(not further classified) aircraft (class “‘aircraft”) and a
derived class to represent the own vehicle, a UAV (class
“uvav-vehicle’). Furthermore there is an abstract class
representing a danger (class “‘endanger’’), which arises
by a separation violation of the own vehicle and any
other vehicle. In this simple example “separation viola-
tion” is the definition for “dangerous”. Technically, the
class “endanger” does not model a physical element of
the environment but represents a binary relation.

These four steps result in the static model consisting of
classes as described along with their specific attributes. A
final step in the CPL method completes the model by
analysing the behaviour of all classes resulting in the
dynamic model: For each class the behaviour and its
“ongoing interactions” with other classes are modelled.

Each class is to be considered in detail and the be-
haviour (triggered by a specific situation) of creation and
removal is to be defined. For example, the ““vav-vehicle”
is created as soon as the interface to the hardware of the
UAV is attached to the kernel. Another example is the
class ““aircraft” which creates an instance within the be-
liefs as soon as radar sensors detect the aircraft. This
instance is removed upon disappearance of the radar blip.

The “ongoing interaction” for the class “‘endanger”
includes distance measurements between the instance of
“uav-vehicle” and any other instance of ‘“‘aircraft”. In
the simplest case, an “evade-goal” is instantiated if the
distance falls below a certain threshold, e.g. 15 nautical
miles. A more sophisticated behaviour could take the
speeds and directions of the vehicles into account as well
as their military classification of friend or foe. This can
simply be implemented by changing the constructors of
the class “‘endanger”.

Within visual CPL this step of building the dynamical
model is supported by syntax-highlighting editors taking
the text representation of CPL code (lower right in
Fig. 6). Graphical representations may follow in the
future. All graphical representations used in visualCPL
rely on the standard of the unified modelling language
(UML; D’Souza and Wills 1998).

5 Implementation

5.1 The COSA framework

The operating system used for our implementation is
IRIX, a UNIX version from SGI. As the programming



environment the IRIX native tools are used along with
the latest versions of the packages listed below. These
are distributed with source code and are portable to
Windows and to many UNIX derivatives.

SOAR as the implementation of the unified theory of
cognition (Newell 1990)

MICO which is a free and very good implementation of
the CORBA standard (Puder and Rémer 1999).

QT library is used for the (graphical) user interface
(Dalheimer 2002)

STL, the Standard Template Library, provides basic
types and containers. It is part of the IRIX native
C+ + environment but is also distributed freely for
other platforms (Musser et al. 1996).

The documentation for most parts is done with
DOXYGEN (Heesch 2001), which generates the docu-
mentation from the C and C + + structures by using code
comments of a special format. Design tools are also used
for some aspects of the implementation, such as Rational
Rose (Quantrani 1999) and the already mentioned CPL
tool ““visualCPL”. Both are based on the unified model-
ling language UML (D’Souza and Wills 1998).

5.2 Actual application

A first and relatively simple application is implemented
on the basis of COSA. It is called COSY™t" an
autonomous ‘“‘cognitive system for the flight-domain™.
It models an autonomous UAV during a military
reconnaissance mission. The test bed used is a flight
simulator with a simulated dynamic environment.

The focus of this application is to verify core features
of COSA’s architecture to some extent. In the context
of this article, emphasizing the realization of the CP, the
design excludes the human-UAV interaction and
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pertinent human factor issues. Rather, the focus lies
with the autonomous cognitive behaviour of the UAV
itself that evolves from the knowledge processed by the
CP to yield goal-based behaviour complying with the
actual situation.

5.2.1 The simulated environment

To better understand the environment of COSY™eht
along with the interfaces used, Fig. 7 shows all com-
munication paths internal and external to the UAV.

An external data link for messages to and from the
human operator to receive a mission order or up-
dates. The operator communicates with the UAV in
the same way as she would communicate with a hu-
man pilot sitting in an aircraft’s cockpit (except for a
formal communication protocol to ease the UAV
implementation).

Internal connections to sensors (including TCAS
sensors) to get information about the situation and, in
turn, to build an internal representation.

Internal connections to the radio unit for communi-
cation with the operator or other entities in the en-
vironment.

Internal connection to the flight control system to
control the UAV.

Internal connection to data bases.

5.2.2 The scenario

The behaviour of the UAYV is solely based on a-priori
knowledge as it is proposed by the concepts of the CP.
This knowledge enables the UAV to execute procedural
tasks such as the execution of checklists. Further on, the
UAV is able to act according to its goals and to cope
with unexpected situations.
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The actual scenario as shown in Fig. 8 contains the
following elements.

— The mission begins at a military airfield where the
UAYV communicates with the operator to receive the
mission order and to report its state.

— After takeoff the UAV follows the flight path which is
generated autonomously. The flight plan includes all
mission waypoints (if possible) and other waypoints
to control the flight path. It also includes flight seg-
ments to avoid SAM-1, a coverage zone of a surface-
to-air missile station known at takeoff time.

— Suddenly, unexpected traffic is reported by the simu-
lated on board traffic collision avoidance system
(TCAS). The UAV autonomously classifies the other
aircraft, calculates an evasion route and follows this
new route.

— Passing the waypoint overflyl the UAV achieves the
first mission goal.

— With SAM-2 an unexpected new SAM station is re-
ported by the operator. Depending on its mission
goals the UAV autonomously reacts on this event by
planning the new route route B or by continuing on
route A. Except for the communication at the airfield,
the notification of SAM-2 is the only interaction be-
tween the UAV and its operator. For the future it is
planned to receive the new SAM station via a com-
munication link to the command and control centre
(CCC in Fig. 7) or by using on-board sensors and
reconnaissance capabilities.

— At reconnaissance2 and in case of route A, likewise on
reconnaissancel, a picture is taken by the on-board
camera.

— Via the flight path, the UAV returns to its base air-
field, lands, and transmits its mission report to the
operator.

For this rather simple, but illustrative, scenario the
event of the appearing SAM-2 is one of the situations

airfield

(start+end of mission)
UAvV
O MIO waypoint

@ planned waypoint

Sroute A

SAM-2

(appearing)
reconnaissance2 & ‘econnaissance1
(make photo) (make photo)

Fig. 8 Scenario and mission of the UAV COSY Might

where the UAV demonstrates its goal-based behaviour:
route A (dotted lines in Fig. 8) is taken if it is more
important to accomplish the predominant mission goal
of getting the picture than to warrant safety. In the other
case “‘route B” (dashed line in Fig. 8) is taken if safety is
the more important goal. These goals, including context-
dependent weights, are explicitly modelled as part of the
a-priori knowledge, based on the COSA front-end. They
exclusively drive the COSY™&" behaviour. This is hardly
found in current applications.

6 Results and prospects

It has been demonstrated in the literature that conven-
tional automation and similar systems in complex en-
vironments reveal significant deficiencies. To overcome
these deficiencies the concept of the cognitive process
(CP) was developed. This concept takes into account the
research results gained by projects on cognitive systems.
The CP is used as the basis for the design of the
COSA framework, which is a uniform architecture for
cognitive systems. COSA follows certain paradigms:

— A new software engineering concept based on the CP

— Knowledge reuse based on object orientation by en-
capsulation of knowledge in higher abstraction enti-
ties (objects)

— Context-dependent behaviour generated solely on the
basis of knowledge

— Separation between architecture for cognitive mech-
anisms and application (similar to human cognition)

— Separation of knowledge modelling and behaviour
generation by a front-end

Meeting the requirements of the three user groups
system developers, knowledge engineers, and system
end-users (see Sect. 3), COSA became a highly flexible
and usable framework with an implementation based on
free libraries. The implementation of the CP as the
kernel for the uniform architecture for cognitive systems
such as a SOAR library fits especially well.

The evaluation of COSA includes an application that
models an autonomous unmanned air vehicle (UAV)
called COSY™ " The UAV communicates and interacts
with its simulated environment to achieve its goals. Be-
sides safety goals, one of its other goals is to fulfil a given
military reconnaissance mission.

Results from the research up to now can be sum-
marized as follows.

— The COSA framework eases the creation of cognitive
systems, since basic architectural problems are re-
solved by it.

— The CP as the core concept to model and produce
behaviour so far has proven to be a suitable ap-
proach.

— The CPL front-end on the basis of the COSA
framework can reduce the time for development of



cognitive systems. This is accomplished by its high
abstraction for knowledge modelling introducing
“mental concepts’ as building blocks. This approach
eases knowledge reuse and makes it easier to under-
stand complex knowledge models.

— With the application COSY™e" the usability of the
COSA framework and the CPL front-end was shown.

— In terms of cognitive system modelling COSY™&M js
based on a-priori knowledge. This and nothing else
determines the system’s behaviour as a reaction on
the situational context.

— As it is proposed by the CPL method, the behaviour
shown by COSY™e" is driven by explicit goals. This
is rarely found in current applications.

For the near future, improvements of COSA are
planned in many details of implementation, especially
concerning the CP library. Although the computing
performance of the system was not a design goal of high
priority, the system at its actual implementation is ca-
pable of running in simulated real-time environments.
There is still potential for some improvements, however,
especially within the interface between MICO and
SOAR. A research-related goal is the improvement of
the language front-end and the modelling paradigm of
mental concepts. Concerning the CPL tools the exten-
sion of the graphical design tool visual CPL and the in-
troduction of symbolic debugging facilities are planned.
Future work will also concentrate on the completion of
COSY™eht and applications of other domains.
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