
Abstract. Placing spatial econometrics and more generally spatial statistics
in the context of an extensible data analysis environment such as R exposes
similarities and differences between traditions of analysis. This can be
fruitful, and is explored here in relation to prediction and other methods
usually applied to fitted models in R. Objects in R may be assigned a class
attribute, including fitted model objects. Such fitted model objects may be
provided with methods allowing them to be displayed, compared, and used
for prediction, and it is of interest to see whether fitted spatial models can be
treated in the same way.
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1 Introduction

Developments in the R implementation of the S data analysis language are
providing new and effective tools needed for writing functions for spatial
analysis. The release of an R package for constructing andmanipulating spatial
weights, and for testing for global and local dependence during 2001 has been
followed by work on functions for spatial econometrics (package spdep1). The
paper gives an introduction to some of the issues faced in writing this package
in R, to the use of classes and object attributes, and to class-based method
dispatch. In particular, attention will be paid to the question of how prediction
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should be understood in relation to the most commonly employed spatial
econometrics simultaneous autoregressive models. Prediction is of importance
because fitted models may reasonably be expected to be used to provide
predictions of the response variable using new data – both attribute and
position – that may not have been available when the model was fitted.
Class-based features are important because they encapsulate information

about the data in a generic way, also when the data is for example a model
formula, an object describing spatial neighbourhood relationships, or the
results of fitting a model to data. This permits the flexible handling of
subsetting, missing data, dummy variables, and other issues, based on
existing classes that are extended to handle spatial econometrics functions.
For the analyst, it is convenient if generic access functions can be applied to
spatial analysis classes, such as making a summary or plotting a spatial
neighbours structure. The same applies to the use of model formulae,
describing the model to be estimated, for a range of estimating functions. In
this setting, a spatial linear model should build on the classes of the
arguments of the underlying linear model. There should be no difference in
the syntax of shared arguments between the aspatial linear model, spatial
econometrics models, or geographically weighted regression models,
although of course function-specific arguments should be introduced.
It is also of interest to compare spatial econometric formulations with

other related model structures, such as those for mixed effects models, and to
explore other alternative approaches. These may include extensions to
repeated measurements, to spatial time series, and to generalised linear
models, although here the spatial case is often currently unresolved.
However, the underlying classes are important in that their implementation
may make the flexible extension of spatial analysis tools more or less difficult,
and consequently that they should admit the quick prototyping of exper-
imental new modelling techniques rather than hinder it.
It is clear that different disciplines and data analysis communities do not

approach the writing of code, or the use of command line interfaces, in the
same ways, and have varying expectations regarding the concerns of users. It
is however arguable that language environments such as S, and its
implementations R and S-PLUS, are instrumental in reducing barriers
between users, who are not supposed to meddle with the software, but
who can be expected to know about their data and methods, and developers.
When these qualities of the S language environment for data analysis are
coupled to free access to source code, opportunities for mutual peer-review
and exchange between and among users and developers arise that are
otherwise very difficult to create.
The development of the paper is, after sketching the position of the R

project and the spdep package, first to review some open problems in
spatial econometrics. Next, the experience of the class/method mechanisms
in S and R is drawn on, including a discussion of the use of classes in spdep
at present. This leads to an extended discussion of how prediction might be
approached in spatial econometrics, since predict() is a method typically
implemented for classes of fitted models. This is exemplified using the
revised Harrison and Rubinfeld Boston house price data set, which is also
distributed with spdep.

406 R. Bivand



1.1 The R project

As summarised in brief in Bivand and Gebhardt (2000), R is a language and
environment for statistical computing and graphics, and is similar to S. The S
language is described and documented in Becker et al. (1988), Chambers
and Hastie (1992), and more recently in Chambers (1998). There are
differences between implementations of S: S-PLUS – which is a well-
supported commercial product with many enhancements – manages both
memory and data object storage in different ways from R. The chief syntactic
differences are described in Ihaka and Gentleman (1996). Perhaps the most
comprehensive introduction to the use of current versions of S-PLUS and R is
Venables and Ripley (2002); a simpler alternative for R is Dalgaard (2002).
R is available as source, and as binaries for Unix/Linux, Windows, and

Macintosh platforms2. Contributed code is distributed from mirrored
archives following control for adherence to accepted standards for coding,
documentation and licensing. The contributed packages are distributed as
source, and for some platforms – including Windows – as binaries, which can
in addition be updated on-line using the update.packages() function
within R. As usual in Free Software projects, there is no guarantee that the
code does what it is intended to do, but since it is open to inspection and
modification, the analyst is able to make desired changes and fixes, and if so
moved, to contribute them back to the community, preferably through the
package maintainer.

1.2 The spdep package

The current version of the spdep package is a collection of functions to create
spatial weights matrix objects from polygon contiguities, from point patterns
by distance and tessellations, for summarising these objects, and for
permitting their use in spatial data analysis3; a collection of tests for spatial
autocorrelation, including global Moran’s I, Geary’s C, Hubert/Mantel
general cross product statistic, and local Moran’s I and Getis/Ord G,
saddlepoint approximations for global and local Moran’s I; and functions
for estimating spatial simultaneous autoregressive (SAR) models. It contains
contributions including code and/or assistance in creating code and access to
legacy data sets from quite a number of spatial data analysts; full details are
in the licence file installed with the package. It is indeed central to the
dynamics of free software/open source software projects such as R and its
contributed packages, that communities are brought into being and fostered,
leading where appropriate to collaborative development, and indeed to the
replacement of code or class structures found by users in the community to
be unsatisfactory or limiting.

2 Both R itself and contributed packages may be downloaded from

http://cran.r-project.org.

3 the treatment of spatial weights matrices has been discussed in greater length in Bivand

and Portnov (forthcoming).
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2 Spatial models and spatial statistics

It often seems to be the case that spatial statistical analysis, including spatial
econometrics, finds it challenging to give insight into general relationships
guiding a data generation process. It is quite obvious that inference to general
relationships from cross-section spatial data using aspatial techniques raises
the question of whether the positions of the observations in relation to each
other should not have been included in the model specification. We now have
quite a range of tests for examining these kinds of potential mis-specifications.
We can also offer tools for exploring and fitting local and global spatialmodels,
so that perhaps better supported inferences may be drawn for the data set in
question, under certain assumptions.
These assumptions are not in general easy or convenient to handle, and

constitute a major part of the motivation for further work on inference for
spatial data generation processes. As Ripley (1988, p. 2) suggests and Anselin
(1988, p.9) confirms, they remove hope that spatial data are a simple
extension of time series to a further dimension (or dimensions). The
assumptions of concern here include (Ripley 1988) those affecting the edges
of our chosen or imposed study region, how to perform asymptotic
calculations and how this doubt impacts the use of likelihood inference,
how to handle inter-observational dependencies at multiple scales (both
short-range and long-range), stationarity, and discretisation and support.
Ripley (1988, p. 8) concludes: ‘‘(T)he above catalogue of problems may give
rather a bleak impression, but this would be incorrect. It is intended rather to
show why spatial problems are different and challenging’’.
Although many of these challenges are intractable in the point-process part

of spatial statistics, more has been done to address them here. In particular, it
has been recognised for some time that if we have a simple null hypothesis to
simulate the spatial process model, we can generate exchangeable samples
permitting us to test howwell themodel fits the data. AsRipley (1992) notes, an
early example of this approach for the non-point-process case is the use of
MonteCarlo simulation byCliff andOrd (1973, p. 50–2). Substantial advances
have also been taking place in geostatistics (Cressie 1993, Diggle et al. 1998). In
addition, the implications of large volumes of data from remote sensing and
geographical information systems, including data with differing support, have
been recognised in a recent review by Gotway and Young (2002).
One of the characteristics of treatments of the statistical modelling of

spatial data – especially lattice data – is that changes in techniques occur
slowly, despite radical changes in data acquisition and computing speed.
Haining’s discussion of the research agenda twenty years ago (1981, pp.
88–89), focusing on spatial homogeneity and stationarity, is taken up again
by him ten years later (1990, pp. 40–50), and remains relevant. Apart from
the actual difficulty of the problems, it may be argued that exploring feasible
solutions has been hindered by poor access to toolboxes combining both the
specificity needed for handling spatial dependence between observations and
general numerical and statistical functions. The coming first of SpaceStat
(Anselin 1995), then James LeSage’s Econometrics Toolbox for MATLAB4,
have created important opportunities, which the R spdep package attempts to

4 http://www.spatial-econometrics.com/
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follow up and build upon. In addition, code by Griffith (1989) for
MINITAB, and by Griffith and Layne (1999) for SAS and SPSS has been
made available. Finally, the spatial statistics module for S-PLUS provides
additional and supplementary analytical techniques in a somewhat different
form (Kaluzny et al. 1996).
To concentrate attention on the problem at hand, it may help to express

the relationship between data and model in a number of parallel ways:

data ¼
model
fit

smooth

8
<

:

9
=

;
þ

error
residuals
rough

8
<

:

9
=

;

where our general grasp of the spatial data generation process on the data is
incorporated in the first term on the right hand side, while the second term
comprises the difference between this understanding and the observed data
for our possibly unique region of study (Haining 1990, p. 29, and p. 51; cf.
Hartwig and Dearing 1979, p. 10; Cox and Jones 1981, p. 140).
The model term may be made up of say fixed and random effects, of global

and local smooths, of aspatial and spatial component models, of trend
surface and variogram model components, or of locally or geographically
weighted parts. The distribution of the error term is assumed to be known,
and should be such that as much as possible of the predictable regularity is
taken up in the model.
In general, the model term should give a parsimonious description of the

process or processes driving the data, and techniques used to choose
between alternative models should take this requirement into account. It is
also not necessarily the case that the model should be fitted using all of the
data to hand; indeed many model forms may be compared by partitioning
the available data into training and testing subsets. This position in fact
reaches back to fundamental questions regarding the application of
statistical estimation methods to spatial data, especially when the goals
of such application may include inference, generalisation to a wider domain
than the data used for calibration (Olsson 1970, Gould 1970). In particular,
Olsson’s comment that: ‘‘If the ultimate purpose is prediction, then it also
follows that specification of the functional relationships is more urgent than
specification of the geometric properties of a spatial phenomenon’’ (1968,
p. 131) continues to point up the question of what is being inferred to in
spatial statistical analyses, also known as the geographical inference
problem.

3 Classes and methods in modelling using R

Three main programming paradigms underly S: object-oriented program-
ming, functional languages, and interfaces (Chambers and Hastie 1992, pp.
455–480). Classes and methods were introduced to S at the time of this 1992
‘‘White’’ book, and were not part of the 1988 ‘‘Blue’’ book (Becker et al.
1988) defining the fundamentals of the language. This step was, for practical
reasons, incremental, and was intended to assist in the further development
of modelling functions. For this reason, language objects may, but do not
have to, have a class attribute – all objects may have attributes with name
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strings, and class is simply one such string with specific consequences for the
way that functions in the system handle objects.
This established form of class and method use in S and hence R is the one

which will be covered here. It should however be noted that a new class/
method formalism has been introduced to S in the 1998 ‘‘Green’’ book
(Chambers 1998), and is being introduced to R, as well as underlying S-PLUS
6.x. Programming using both styles of classes and methods is described in
detail in Venables and Ripley (2000, pp. 75–121). From the point of view of
the user, however, the differences are either few or beneficial, and now
require that each object shall have a class, and that each object of a given
class shall have the same structure, requirements which were not present
before.
The class/method formalisms in S have been adopted in the spirit of

object-oriented programming, that evaluation should be data-driven.
Functions for generic tasks, such as print(), plot(), summary(), or
logLik(), are constructed as stubs that pass their own arguments through
to the UseMethod() function. In the following code snippets, > is the R
command line prompt – entering the name of a function causes its body to
be printed:

> print

function ðx; :::Þ
UseMethod ð"print"Þ
Within UseMethod(), the first argument object is examined to see if it has

an attribute named ‘‘class’’. If it does, and a function named, say,
print.‘‘class’’ () exists, the arguments are passed to this function. If it has
no class attribute, or if no generic function qualified with the class name is
found, the object is passed to, say, print.default(). If we have estimated a
spatial error model for the Columbus data set, and wish to display the log
likelihood value of the object, we might do the following:

> COL:err < �errorsarlmðCRIME e INCþ HOVAL; data ¼ COL:OLD;

þnb2listwðCOL:nbÞÞ
> classðCOL:errÞ
½1� "sarlm"
> ll:COL:err <�logLikðCOL:errÞ
> classðll:COL:errÞ
½1� "logLik"
> ll:COL:err

‘log Lik:’ � 183:3805 ðdf ¼ 4Þ
The model object COL.err has class sarlm, so the function used by method

dispatch from logLik() is logLik.sarlm(), yielding a resulting object with
class logLik. If an object with class logLik, is to be printed, UseMethod()
will look for print.logLik(). As can be seen, this function expects the
logLik object to be a scalar value, with an attribute named ‘‘df’’, the value
of which is also printed.
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>print:logLik

function ðx; digits¼getOptionð"digits"Þ;:::Þ
f

catð"logLik:’ "; formatðcðxÞ; digits¼digitsÞ; "ðdf¼";

formatðattrðx; "df"ÞÞ; "Þnn"; sep¼""Þ
invisibleðxÞ

g
This brief example shows both the convenience of the class/method

mechanism, and the reason for moving to the new style, since in the old style
there are no barriers to prevent the class attribute of an object being changed
or removed, nor are there any structures to ensure that class objects have the
same properties. It could be argued that software code, and by extension the
formalisms employed in writing software, such as class/method formalisms in
object oriented programming described briefly above, are not of importance
for advancing spatial data analysis.
A response to this position is that, for computable applications, abstrac-

tions and conjectures are enriched by being implemented in structured code,
especially where the code is available, documented, and open to peer review,
as in R and other community supported software projects and repositories.
Further, formalisms such as class/method mechanisms also provide useful
standards through which the assumptions and customs underlying comput-
ing practises may be exposed and compared. Finally, class/method mech-
anisms, in particular care in constructing classes, are associated with concern
for data modelling as also understood for example in geographical
information systems. In this case, it is important that classes support data
types, structures, and metadata components adequately and in a robust way.
At present the key classes in spdep are written in the old style, and are

‘‘nb’’, ‘‘listw’’, ‘‘sarlm’’, and the generic class ‘‘htest’’ for hypothesis tests.
The first is for lists of neighbours, the second for sparse neighbour weights
lists, and the third for the object returned from the fitting of SAR
(simultaneous autoregressive) linear models of three types: lag, mixed, and
error (corresponding to LeSage’s sar(), sar() including spatially lagged
independent variables, and sem() functions; there is no equivalent to his sac()
function). The ‘‘htest’’ class is used to report the results of hypothesis tests,
not least because print.htest() already existed, and conveniently standar-
dised the displaying of test results.
The ‘‘sarlm’’ class is still under development, not least because writing

methods leads to changes in components that need to be in the object itself,
or can conveniently be computed at a later stage by functions such as
summary.sarlm(), logLik.sarlm(), residuals.sarlm(), and so on.
Migration to new-style classes will occur when the requirements have been
refined following further exploration – old-style classes can be augmented
without breaking existing code more easily than can new-style classes.
The function that has prompted the most thought is however

predict.sarlm() – essentially all the fitted model classes in S (and R
and its contributed packages) have methods for prediction, including
prediction from new data. It is to this problem we will turn to show that
class/method formalisms are more than a programming convenience, but
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also establish baselines for what analysts should expect from model fitting
software.

4 Issues in prediction in spatial econometrics

Prediction may be subdivided into several similar kinds of tasks: calculating
the fitted values when the values of the response variable observation are
known and are those used in fitting the model, the same scenario, but when
the predictions are not for observations used to fit the model, and finally
predictions for observations for which the value of the response variable is
unknown. Here we choose to measure the difference between the predicted
and observed values of the response variable using the root mean square
error of prediction. In the aspatial linear model, predictions are a function of
the fitted coefficients and their standard errors and confidence intervals may
be obtained using the fitted residual standard error. Extensions to the linear
model can be furnished with prediction mechanisms in generally similar
ways, although expressing standard errors and confidence intervals may
become more difficult.
Work on filling in missing values (Bennett et al. 1984, Haining et al. 1989,

Griffith et al. 1989) has not been followed up in the spatial econometrics
literature, and was focused on the case when the position of an observation
was known, but where one or more attribute values was missing (see also
Martin 1990). This differs from prediction using new data where there is no
contiguity between the positions of the data used to fit the model and the new
data, where both the positions of the observations are new, and only
explanatory variable values are available for making the prediction. Where
contiguity between the data sets’ positions is present, predicting missing
values can be accommodated in the present approach; the main thrust of this
literature has been to explore the consequences for parameter estimation of
the absence of some data values. Given the provision noted by Martin (1984,
p. 1278) that data should be missing at random, it is not clear how to proceed
when the new data adjoin the data used for fitting, for instance in one
direction.

4.1 ‘Trend’, ‘signal’ and ‘noise’

Prediction for spatial data may be seen as the core of geostatistics; most
applications of kriging aim to interpolate from known data points to other
points within or adjacent to the study area, or to other support. Interpolation
of this kind also underlies the use of modern statistical techniques, such as
local regression or generalised additive models among many others. As
pointed out above, it is usual for prediction functions to accompany each
new variety of fitted model object in S, not least because the comparison of
prediction errors for in-sample and out-of-sample data give insight into how
well models perform. Some model fitting techniques can be found to perform
very well in relation to in-sample data, but do very poorly on out-of-sample
data, that is, they are ‘over-fitted’. While they may exhaust the training data,
they will be very restricted to that particular region of data-space, and may
perform worse than other, less ‘over-fitted’ models, on unseen test data.
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The three terms: ‘trend’, ‘signal’ and ‘noise’, are taken from Haining (1990,
p. 258), and the S-PLUS spatial statistics module (Kaluzny et al. 1996,
pp. 154–156), in which Haining’s comment is followed up. In Haining (1990),
the underlying linear model was a trend surface model, so that it was logical
to partition the data into ‘trend’ and ‘noise’:

y
|{z}
data

¼ Xb
|{z}
trend

þ e|{z}
noise

where E½e� ¼ 0 and E½eeT � ¼ r2I. If we generalise this model to the error
autoregressive form, we get:

y ¼ Xbþ u

with E½u� ¼ 0 and E½uuT � ¼ V. If we write V ¼ r2LLT , and L�1 ¼ ðI� kWÞ,
we can rewrite the relationship:

ðI� kWÞy ¼ ðI� kWÞXbþ e

y
|{z}
data

¼ Xb
|{z}
trend

þ kWðy� XbÞ
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

signal

þ e|{z}
noise

To predict y, we could pre-multiply by ðI� kWÞ�1:
y ¼ Xbþ ðI� kWÞ�1e

which can yield the trend component, but for which the signal and noise
components are combined. Cliff and Ord (1981, p. 152, cf. pp. 146–147) give
u ¼ rðI� kWÞ�1e as the simultaneous autoregressive generator from e
independent identically distributed random deviates, yielding u � Nð0;VÞ. If
normality is assumed for e, then u is multivariate normal. Here, predictions
from error autoregressions are restricted to the trend component.
Kaluzny et al. (1996, pp. 158–160) use Haining’s results (1990, p. 116) to

suggest that a simulation of the unobservable autocorrelated error term may
be used to attempt to predict the signal, but this necessarily depends on the
assumption of normality. In the SAR case, they suggest computing
V ¼ r2½ðI� kWÞT ðI� kWÞ��1, next computing L as the lower triangular
matrix of the Cholesky decomposition of V, and finally simulating u by
u ¼ Le, where e is a random deviate as above.
A further alternative based on work by Martin (1984, see also modifica-

tions by Haining et al. 1989, Griffith et al. 1989, and comment by Martin
1990) is to base the approximation of the unobservable autocorrelated signal
on the projection of the residuals of the fitted process through a covariance
matrix expressing the spatial dependence of the positions used to fit the
model and the positions of the new data (using the spatial parameter from
the fitted model). If the data used for fitting the model and the new data are
not contiguous in position, this term is zero.
This alternative may be compared to the case of for time series with

autocorrelated errors, since the estimate of the autoregressive coefficient is
needed to make an estimate of the one-period forecast error (Stewart and
Wallis 1981, pp. 239–241; Johnson and DiNardo 1997, pp. 192–193).
Johnson and DiNardo term this the feasible forecast, and note that there
is no closed form expression for the forecast variance in this case. Suppose
we have yt ¼ xT

t bþ ut, where ut ¼ kut�1 þ et. The same model can be
written:
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yt � kyt�1 ¼ xT
t b� kxT

t�1bþ et

Assuming k known, b can be estimated, and substituting and rearranging, we
can make a forecast of ytþ1 by:

ŷytþ1 ¼ xT
tþ1b̂b|fflffl{zfflffl}
trend

þ kðyt � xT
t b̂bÞ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
signal

for which the forecast variance is also available; the terms ‘trend’ and ‘signal’
here describe the non-autoregressive and the autoregressive components of
the forecast by analogy with Haining’s description. When we only have an
estimate of k, the feasible forecast becomes:

ŷytþ1 ¼ xT
tþ1b̂bþ k̂kðyt � xT

t b̂bÞ
that is the sum of products of the new xtþ1 values and the b̂b fitted using
observations 1; . . . ; t, plus k̂k times the residual at time t, representing the
temporal dependency of the series, the forecast error for the one-step-ahead
forecast.
Since t and t þ 1 are contiguous, it is possible to use the residual value from

the fitted model in prediction in the time series case. In the simultaneous
autoregressive spatial error model, when the new data positions coincide
with, or are contiguous to, the positions of data used for fitting, it may be
possible to calculate a signal component on the basis of the residuals of the
fitted model and a rectangular matrix expressing the correlation structure of
the original and new data positions – this approach has however not been
attempted here, although Martin (1984, p. 1279) provides a solution. To
accommodate this, modifications to the current spatial weights list class in
spdep are required, but have not yet been implemented. Consequently, for the
simultaneous autoregressive error model, the prediction currently imple-
mented in predict.sarlm() for the newdata case is the trend, and the signal
is set to zero.
Haining’s approach may be extended to the spatial lag model, in which

dependence is not present in the error term, but rather in the dependent
variable. Here we have:

~yy
|{z}

¼ X~bb
|{z}
trend

þ ~qqWy
|ffl{zffl}
signal

þ e|{z}
noise

Rewriting, we have:

ðI� qWÞy ¼ Xbþ e

Once again, to predict y, we could pre-multiply by ðI� qWÞ�1:
y ¼ ðI� qWÞ�1Xbþ ðI� qWÞ�1e

The second term on the right hand side is equivalent to that in the error
autoregressive case, and combines signal and noise components, while the
first term combines trend and signal components.
As a first approximation, the predict.sarlm() function assumes that the

trend can be expressed by Xb̂b, and part of the signal by q̂qWðI� q̂qWÞ�1Xb̂b.
The rationale is that if:

ðI� q̂qWÞy ¼ Xb̂b
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ŷy ¼ ðI� q̂qWÞ�1Xb̂b

then the signal may be approximated by:

q̂qWŷy ¼ q̂qWðI� q̂qWÞ�1Xb̂b

While this yields an estimate of part of the signal component, it is not
complete, for new data missing the part combined with the noise component.
This is clearly less than adequate, and more work is required here, as with the
completely missing signal component for the error model.
Finally, it has been assumed that the weights matrix used for fitting the

model is furnished with attributes detailing its construction: whether it is row
standardised, and which type of underlying binary or general neighbourhood
representation has been used (contiguity, distance, triangulation, k-nearest
neighbours, etc.). Consequently, in predicting from new data, it is expected
that the new attribute data will be accompanied by a suitable spatial weights
list. This is not used in the error model predictions, but is used for the lag
model, in the approximation to the part of the signal component described
above.
Even if prediction for new data is as yet less well grounded, the partition of

spatial model fitted values into trend and signal allows us to use alternative
diagnostic plots. Examples of such plots for the data set discussed in Sect. 4.2
below are shown in Fig. 1. Tracts lying in towns in Boston city are
distinguished in the plot, since their patterns seem to indicate different
behaviour both in relation to the aspatial trend, and the spatial autoregres-
sive error signal. It may be remarked that the fit of the spatial error model
(AIC = �508:85) is better than that of the spatial lag model
(AIC = �498:02), than the aspatial linear model (AIC = �283:96), but
worse than the mixed spatial lag model (AIC = �545:23). The full results
may be obtained by executing example(boston) after loading spdep into R,
in which the sphere of influence row standardised weighting scheme is also
presented.

4.2 Boston housing values case

The data set chosen here is that described by Gilley and Pace (1996), a
revision of the Harrison and Rubinfeld Boston hedonic house price data,
relating median house values to a range of environmental and social
variables over 506 tracts. It is chosen because it is easily available, it has been
used in a range of spatial econometric studies, including particularly
LeSage’s online materials on spatial econometrics5. The original data set is
also featured as one of a corpus of machine learning datasets6, and as such is
well suited to applications such as the present. Most use of this dataset in
machine learning research also seems to ignore the spatial nature of the data.
Here, two prediction settings will be used.
In the first, the data are divided into northern and southern parts at UTM

zone 19 northing 4,675,000 m (dividing the tracts into two almost equal

5 http://www.rri.wvu.edu/WebBook/LeSage/etoolbox/index.html

6 ftp://ftp.ics.uci.edu/pub/machine-learning-databases
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groups, with the dividing line running through the Boston city tracts). The
data frame is subsetted by a logical variable expressing whether the centre
point of the tract is north or south of the dividing line. The spatial weights
used are constructed using the sphere of influence approach based on a
triangulation of the UTM zone 19 projected tract centres, subsetted using the
same north/south logical variable. An ordinary least squares model was fitted
to each of the parts of the city, and predictions were made with the data used
for fitting the models, and then using the model fitted on the southern data
with the northern data, and vice-versa. The same procedure was repeated for
the spatial lag model, the spatial error model, and the spatial mixed model
(the spatial lag model augmented with the spatial lags of the explanatory
variables – also known as the Common Factor model).
Although it can be seen from Fig. 2 that the spatial models are better fitted

to the data, especially in the south, the cross-predictions are no better than,
and often worse than those for the aspatial linear model (lm). The linear
model gives the best prediction of the southern median house prices using the
fitted coefficient values from the northern data. At least part of the reason for
this is that the fits of the models, both aspatial and spatial coefficient values,
differed between the two parts of the metropolitan area, suggesting that
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Fig. 1. Boston tract log median house price data: plots of spatial autoregressive error model fit

components and residuals for all 506 tracts; tracts in towns in Boston plotted with �
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spatial regimes and/or non-stationarity are present. This could be held to
justify the abandonment of methods not accommodating this lack of stability
in parameter estimates across the chosen data set, for example by comparing
the fit of a geographically weighted regression with the baseline model. This
will however not be pursued here, although some indication is given of the
specific behaviour of Boston city tracts is given in Fig. 1.
In the second approach, 100 samples of 250 in-sample tracts were chosen,

leaving 256 tracts out-of-sample. The samples were replicated in order to get
a feeling for the variations in predictions which could result. Here, the spatial
weights matrices were prepared for each data set as row standardised
schemes for the six nearest neighbours of each tract centre (UTM zone 19).
In addition, use was made of the gam() function in package mgcv to fit a
generalised additive model (see Kelsall and Diggle (1998) for a similar use of
GAM). In this specification, the model fitted was:

y ¼ Xbþ sðlon; latÞ þ e

where sðlon; latÞ is a smoothing function using a penalised thin plate
regression spline basis in 12 dimensions to incorporate spatial dependence.
Alternative modern statistical fitting techniques could have been used, and
here the joint smoothing of longitude and latitude was chosen after
inspecting the results of smoothing each of them and their interaction
separately. Although such fitting techniques are not typically used in spatial
econometric analyses, it may be of interest to compare prediction results
across such analysis-community boundaries. It can be noted that GAM
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predictions in the first setting, with the data set divided into Northern and
Southern parts, were very poor when predicting for new data.
Figure 3 reinforces the results of testing model predictions after dividing

Boston into two parts. The linear model (lm) has the least satisfactory fit
within the sample from which the model was fitted, but performs as well or
better than all the spatial econometrics models when predicting for other
data than those used to fit the model. The mixed spatial lag model (the
Common Factor model) does best in predicting on the training set – the data
it was fitted with, but worst on the test – excluded – data. This may be taken
as an indication of over-fitting, capturing too much of the specificity of the
spatial dependencies of the training data set. The performance of
the generalised additive model is better than that of the linear model both
on the training and the test data sets, despite the ‘black-box’ nature of the
specification of the spatial pattern in this case as penalised thin plate
regression spline.

5 Concluding remarks

Among the opportunities and challenges posed by trying to implement
spatial econometric techniques in R in the spdep package have been issues
raised by the object-oriented data-driven approach implicit in classes and
methods. So far, old style classes and methods have been used for spatial
neighbour objects, spatial weights objects, and for spatial simultaneous
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autoregressive model objects. Many of the methods usually accompanying
fitted model objects are simple to write, but predict.sarlm() revealed areas
of spatial econometrics which perhaps have received little attention hitherto.
The current implementation does however need to be augmented to handle
situations in which the dependencies between the locations of observations
from which the model to be used for prediction was fitted, and the locations
of new data observations, can be represented as a correlation structure of
some kind, thus better capturing the signal component.
It does seem that Haining’s partitioning of the fitted values of spatial

models is of interest in itself, as indicated by the diagnostic plots in Fig. 1. It
may well be that such diagnostic plots, perhaps dynamically linked to maps,
will help us in establishing which further misspecification problems are
present in our spatial models, shifting focus from criticising the misspeci-
fication of aspatial models to trying to construct spatial models with better
properties. Haining’s proposals for more general regression diagnostics for
models in which spatial dependence is present do not seem to have as yet met
with the acceptance they deserve (1990, 1994). Prediction for new data and
new spatial weights matrices is a challenge for legacy spatial econometric
models, raising the question of what spatial predictions should look like. Can
for example spatial econometrics models be recast as mixed effects models,
since as Pinheiro and Bates (2000) show, spatial correlation structures can
‘‘plugged’’ into such models?
A further consequence of examining fitted model classes and methods, in

particular with regard to prediction, is to question whether we need to fit
models on very large data sets. Can we not rather fit and refine them on
smaller data sets and predict or interpolate to larger data sets? Housing
values are not infrequently the subject of analysis, and would perhaps be an
attractive target for prediction. An advantage of fitting on moderate sized
data sets, maybe training sets from larger data collections, is that the use of
sparse matrix techniques in some circumstances would become unnecessary.
Standard errors of prediction remain open.
It also seems that a relaxation of single data set fitting of spatial

econometrics models may also help to lower barriers between geostatistics
and legacy spatial econometrics models when using distance criteria for
representing dependence. It appears that some movement is already taking
place in this regard, given the use of spatial covariance in Ord and Getis
(2001) in the development of the OiðdÞ local spatial autocorrelation statistic
allowing for global dependence. In addition, the Getis filtering approach
(Getis 1995, Getis and Griffith 2002) is distance based, and seems to admit
prediction to new data locations using the distance criteria and filtering
functions recorded in the fitted model. The Griffith eigenfunction decompo-
sition approach discussed in Getis and Griffith (2002), and described in detail
in Griffith (2000a, 2000b), does not, however, seem to open for prediction to
new locations not contiguous with the locations on which the estimated
model was fitted, because of its clear focus on the eigenvectors of the spatial
weights matrix of the training data set. In addition, the selection of the
eigenvectors to use for filtering may not transfer between geographical
settings.
Finally, focusing on prediction using spatial econometric models does

concentrate attention on assumptions about spatial homogeneity, including
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stationarity, support, multi-scale issues, and edge effects. Approaching
modern statistical techniques as it were from the other side, we find work on
geographically weighted regression (Brunsdon et al. 1996) and geographi-
cally weighted summary statistics (Brunsdon et al. 2002), in which many of
these assumptions are addressed directly. In this context, it would be
worthwhile to be able to test a geographically weighted regression fit against
say a spatial error model fit, for instance by implementing a model
comparison function like anova(gwr.fit, sarlm.fit). But it is the
flexibility of a language environment such as R, and the fruitfulness of class
and method formalisms, that give rise to such projects for future research
and implementation.
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