
Abstract. A simple preliminary model of gentrification is presented. The
model is based on an irregular cellular automaton architecture drawing on
the concept of proximal space, which is well suited to the spatial externalities
present in housing markets at the local scale. The rent gap hypothesis on
which the model’s cell transition rules are based is discussed. The model’s
transition rules are described in detail. Practical difficulties in configuring and
initializing the model are described and its typical behavior reported.
Prospects for further development of the model are discussed. The current
model structure, while inadequate, is well suited to further elaboration and
the incorporation of other interesting and relevant effects.

Key words: gentrification, spatial models, micro-simulation, cellular auto-
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1 Introduction

This paper reports on progress toward the development of a preliminary,
theoretically-founded model of gentrification. Gentrification has been a
major theme in urban geography for at least three decades, its significance
recently confirmed (in the academy at any rate) by the appearance of well-
received books from two of the more prominent names in the literature (Ley
1996, Smith 1996). Nevertheless, the phenomenon remains largely untouched
by model- or simulation-based approaches. Perhaps it is the wider political,
social and cultural, aspects of gentrification that have immunized it
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against the efforts of the more methodologically inclined in geography. Of
course, the explanation for such lack of interest may be more prosaic
– simply that the level of detail required to model gentrification processes has
been beyond anything that could readily be implemented. This is beginning
to change, a fact attested to by recent contributions from Portugali et al.
(1997) and Bernard (1999), and also by earlier large-scale simulations from
Kain and Apgar (1985).
It must be emphasized from the outset that the model presented in this

paper is preliminary and exploratory in nature, and is intended primarily as a
starting point for exploration of the gentrification process using contempo-
rary modeling techniques and ideas. The model described is certainly not a
‘finished’ article. Its major aim is to establish a viable architecture that can, in
time, be developed into a more complete simulation. In this context it is
important for the reader to concentrate on the description of the overall
model structure presented in Sect. 3, rather than on the specifics of the
transition rules presented in Sect. 4. While the transition rules are certainly
important, at the present stage of development it is more important to
establish that within this architectural framework, a set of transition rules
can be implemented, which lead to interesting outcomes, and thus to
demonstrate the promise of the present approach.
In the next section parts of the urban geography literature on gentrification

relevant to the approach adopted in this paper are discussed, particularly
Smith’s rent gap hypothesis (Smith 1979). In Sect. 3 issues raised by this
discussion are identified and the overall model structure is described. A
detailed description of the ‘rules’ that govern the model’s dynamics is
presented in Sect. 4. Running the model is decribed in Sect. 5, in terms of
both the data required to initialize the model, and in terms of typical output.
Avenues opened up for further exploration by this framework are considered
in concluding remarks in Sect. 6.

2 Gentrification and the rent gap hypothesis

Since the term’s first appearance (Glass 1964) gentrification has occupied an
important position in the urban geography literature (Hamnett 1991, Smith
1996; Redfern 1997; Lees 2000; provide extensive bibliographies). In
particular, the introduction of the rent gap hypothesis (Smith 1979) was
controversial, leading to bad-tempered exchanges between proponents of
various approaches (Ley 1987; Smith 1987a, 1992; Bourassa 1990; Badcock
1990; Hamnett 1991, 1992; Clark 1992). More recently the dust has settled,
and a more pluralistic discussion has ensued (Rose 1984; Bondi 1991, 1999;
Warde 1991; Bridge 1994; Shaw 2000; Robson and Butler 2001). A recent
paper by Lees (2000) exemplifies this trend. This article could not possibly
examine thoroughly all of these debates. Instead, I focus on the rent gap
hypothesis as a relatively simple conceptual model whose spatial aspects can
be explored in a dynamic model.
The essentials of the rent gap hypothesis are easily explained. The thrust of

Smith’s (1979) paper is that whereas previous work had emphasized
‘demand-side’ explanations of gentrification, ‘‘[a] broader theory [. . .] must
take the role of producers as well as consumers into account.’’ Furthermore
‘‘when this is done, it appears that the needs of production – in particular the
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need to earn a profit – are a more decisive initiative behind gentrification
than consumer preference.’’ (Smith 1979, page 540) In short:

‘‘Consumer sovereignty explanations took for granted the availability of
areas ripe for gentrification when this was precisely what had to be
explained.’’ (Smith 1979, pages 540–541)

Smith’s explanation of the genesis of ‘gentrifiable’ areas lies in the
dynamics of residential property values. The price of a residential site is made
up of two components: house value and capitalized ground rent. House value
is the value of the raw materials and labor used in construction, minus
subsequent depreciation due to wear and tear, and plus any improvements.
Capitalized ground rent is the ‘‘actual quantity of ground rent that is
appropriated by the landowner, given the present land use’’ (Smith 1979,
page 543).
Since rent is a flow and not an amount, this value is the expected

discounted cash flow from rents associated with the site, assuming that the
rent remains at or around the current level. Potential ground rent is the rent
that might be realized, given the site location, under its ‘‘highest and best
use’’ (Smith 1979, page 543). Potential ground rent must also be regarded as
a discounted cash flow. Further, we must think of the house as providing a
flow of services (shelter, heat, light, amenity), to clarify the rent concept in
the owner-occupier case. The fact that the sale price of a residential site is
equal to the house value plus the capitalized ground rent means that an
owner-occupier stands to benefit from any improvements that raise the
capitalized ground rent of the property, since these will be recouped when the
property is eventually sold.
Smith relates these concepts to the life cycle of residential properties in

inner urban neighborhoods, illustrated in Fig. 1. When a building is first
constructed, it is well suited to its site, and in good condition, so that the
owner can maximize the rental income. Capitalized ground rent matches
potential ground rent and the rent gap is zero. Over time it is likely that house
value will change. This depends on the extent to which regular maintenance
tasks are carried out, and also whether ‘upgrades’ in the form of additions,

Fig. 1. The rent gap hypothesis. Changes in rents and values in an inner city neighborhood, with

the rent gap shown as a shaded region (based on: Smith 1979)
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re-plumbing, re-wiring and so forth, are performed to keep the property up
to date. Smith argues for a Marxian theory of value, where the value of a
property is dependent on the amount of raw materials and labor power in the
initial construction, combined with subsequent injections of raw materials
and labor power. The mechanism by which property value conceived in this
way falls is technological progress in the construction industry, which means
that new houses provide the same amenity, for a lower input of raw materials
and labor power.
Notwithstanding the complexities of any theory of value, more rapid

depreciation inevitably occurs in some neighborhoods, because more affluent
households take up the better opportunities offered by modern housing stock
in the suburbs. Such neighborhoods are likely to see a move toward higher
rates of tenancy. It is a rational economic response for landlords to under-
maintain their properties in these circumstances. Such landlord action
further reduces the value of the stock, prompts the out-migration of more
affluent households, and sees the neighborhood’s decline accelerate further.
Other institutional practices may further accelerate disinvestment. Financial
institutions may be reluctant to provide capital for owners in a neighborhood
at this stage in the cycle. Whether deliberate redlining policies are pursued or
not, the effect is further decline, which may prompt landlords to subdivide
properties to increase returns, since few other options are open to them. The
final stage of this process is abandonment by landlords who can no longer
profitably fill buildings. In the United States, this stage has seen catastrophic
destruction of urban fabric, sometimes by deliberate arson aimed at
recovering at least some of the property value from insurance (Tabb 1982).
Smith argues that the passage of a neighborhood through this life cycle is

manifest as a substantial rent gap between potential and capitalized ground
rents. The rent gap represents an investment opportunity for would-be
‘gentrifiers’, thus setting the stage for gentrification. Since any gentrifier,
whether owner-occupier or property developer, requires finance capital to
proceed, gentrification can thus be conceived as ‘‘a back to the city
movement by capital, not people’’ – to borrow the subtitle of Smith’s paper.
Smith claims that the rent gap is ‘‘the essential centerpiece to any theory of

gentrification’’ (Smith 1987b, page 165). While his contribution is undeniably
important, efforts to verify the rent gap hypothesis empirically have met with
mixed success. Studies by Badcock (1989) and Clark (1987) broadly support
Smith’s hypothesis. The most recent study by Yung and King (1998)
provides more equivocal support. An investigation by David Ley (1986)
suggested that other factors were more relevant, although this work has been
heavily criticized (Smith 1987a; Clark 1988; Bourassa 1993). A major
difficulty for all such research is that concepts in Smith’s theory are not
directly available in any public records, since they are only indirectly related
to observable quantities – such as sale prices or property taxes.

3 Developing a spatial model of gentrification

Few theories – if any – in the social sciences enjoy unequivocal empirical
support, and many would argue that this is to be expected, given the complex
and open nature of social phenomena (Sayer 1992). The rent gap hypothesis
is an important contribution to the geography literature, whatever its
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limitations. In the present paper, it is a point of departure for the
development of a model that examines underdeveloped spatial aspects of
the hypothesis, highlighted by Hammel (1999). Hammel argues, agreeing
with Badcock (1990), that, in practice, land valuations are based on sales of
comparable parcels nearby. Thus potential ground rent is a neighborhood
scale phenomenon, rather than an intrinsic characteristic of individual
parcels. Capitalized ground rent, on the other hand is strongly dependent on
individual building characteristics at the parcel scale. This refinement of the
rent gap concept is embedded in the present model in the relationship
between ‘local’ (parcel scale) and ‘global’ (neighborhood scale) model
parameters (see Sect. 4.2 below).
This argument may also be related to criticism of Smith’s theory (Bourassa

1993), that it is fine to explain how the opportunity for reinvestment occurs,
but the rent gap fails to explain why reinvestment becomes profitable: what is
it that changes perceptions of a declining neighborhood so that reinvestment
becomes viable? After all, neighborhoods where gentrification occurs have
not suddenly been relocated nearer to the downtown – they have always
been there! The origin of perceived changes in value is critical. The rent gap
hypothesis, by concentrating on a property’s value as ‘intrinsic’ and related
to the physical state of a property, notwithstanding the relational character
of rent, fails to identify why it suddenly becomes apparent to potential
gentrifiers or finance companies that a profitable rent gap exists. The answer
is, of course, a spatial one and lies in the realtors’ mantra: ‘location, location,
location’. The present model develops this perspective, by adopting a
relational or proximal view of space where nearby locations are a key feature
of each location’s site, and thus the basis for decisions about its future
development.

3.1 Proximal space and graph-based cellular automata

An invaluable distinction between the notions of site and situation is made by
Helen Couclelis. She identifies site with simple geographical location,
whereas situation includes the proximal properties of the site – put simply
the other locations nearby (Couclelis 1991). The latter is a convenient way of
thinking about realtors’ ‘location, location, location’. The concept of
situation has been formalized in proximal space (Couclelis 1997) and an
accompanying Geo-Algebra (Takeyama and Couclelis 1997). This approach
also has roots in proposals for proximal databases to enable exploration of
spatial dependence (see Getis 1994). More recently, an alternative represen-
tation of proximal space has been suggested, the graph-based cellular
automaton (O’Sullivan 2001b), which is now described.
In a cellular automaton (CA) space is partitioned into a lattice of identical

locations, usually, but not necessarily, a grid of square cells. Each cell in the
lattice may be in one of a number of available discrete states – in the simplest
case ‘on’ or ‘off’, but in urban simulations a variety of states are possible:
undeveloped, residential at low and high densities, commercial, light and
heavy industrial, and so on. Model dynamics are encoded as a set of rules
governing cell state transitions. The model’s global state evolves in a series of
discrete time steps, when each cell’s neighbors in the lattice are examined and
each cell’s next state is determined in accordance with the rules. For example,
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a rule might say that a cell in the ‘on’ state with more than three neighbors
also in the ‘on’ state will switch to the ‘off’ state at the next time step. In an
urban simulation, this formulation is more complex, with rules such as ‘‘an
undeveloped cell with neighboring residential and retail cells will become low
density residential’’. Usually, rules have a stochastic element to escape the
determinism inherent in simple CA. The basic CA formulation with
modifications has been widely applied to urban geography (recently
examples include Clarke et al. 1997; Batty et al. 1999; Webster and Wu
1999a,b; Li and Yeh 2000; Ward et al. 2000; White and Engelen 2000).
In a graph-based cellular automaton, one aspect of the CA formalism is

changed: cells are no longer identical and located at evenly spaced sites
across a lattice. Instead, cells may represent any geographical entities of
interest. Furthermore, the neighborhood relations defining which cells affect
the development of which others are represented as an irregular lattice, that
is, as a graph or network. This approach immediately enables application of
the CA approach to simulation of urban settings at a much finer resolution
than hitherto, because cells may represent entities that are clearly related to
one another in complex spatial patterns, not adequately represented by any
regular lattice (O’Sullivan and Torrens 2001). How this works in practice is
shown in Fig. 2, where a fragment of the present model lattice is shown.
Each cell in the model represents a building or parcel. Edges connecting
adjacent cells are shown, and these define the cell neighborhoods considered
during application of the model rules. Thus the proximal properties of each
site in the model (its situation) are immediately accessible via its neighbor-
hood in the graph. This may be regarded as an attempt to operationalize the
importance of ‘location, location, location’.
Naturally, the question arises of what the graph edges between buildings

represent. The neighbors of a building in the model are those held to have an
effect on that location’s value. In light of the preceding discussion it is clear
that the graph structure therefore represents generally perceived relations
between buildings in the urban space, since these are precisely the relations

Fig. 2. A fragment of the model’s spatial structure. Buildings are represented as vertices in a

graph
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that will affect a property’s perceived value – its realtor’s location, or
property assessor’s value.
The graph edges in Fig. 2 are based on a Delaunay triangulation of

building centroids. This triangulation is the geometric dual of a proximal or
Voronoi polygon tesselation of the study area, where each building centroid
is associated with a region of space that is closer to it than to any other
building centroid in the space. The Delaunay triangulation is a convenient
basis for constructing the irregular spatial relations required by the model.
This concept of neighborhood finds support at a general level in the literature
(Gold 1992; Edwards 1993), and is also relatively simple to compute (Okabe
et al. 2000). It also appears in recent contributions proposing Voronoi-based
cellular automaton models (Semboloni 2000; Shi and Pang 2000). In fact, the
graph-based CA structure presented here may be considered a generalization
of the Voronoi-CA idea.
Clearly, the choice of any particular graph structure is open to question,

and is effectively a modeling assumption. Other approaches to the definition
of neighborhoods are possible, such as including as each building’s neighbors
all those within some specified distance, or the k nearest other buildings.
These are both well-established notions of neighborhood in quantitative
geography, and are commonly used in building spatial weights matrices for
use in autocorrelation studies or similar (see, for example, Anselin 1995).
Less obvious approaches, sensitive to the complex geometry of urban space
might be based on mutual visibility between buildings, or on shared street
addresses – where buildings on the same street, or segment of street are
considered neighbors. Some of these possibilities have been considered in
more detail elsewhere (O’Sullivan 2000).
Whatever method is used to construct cell neighborhoods or, equivalently,

the graph structure of the model, the important point is that it is now
impossible to think of assessing the merits of an individual building without
reference to the attributes of neighboring buildings. All change in the model
takes place at the level of cell neighborhoods, and therefore takes account of
the situational properties of a building.

4 A graph-based cellular automaton model of gentrification

4.1 Cell state variables

In the model, cells representing individual buildings may be in one of four
discrete states at any time step, as summarized in Table 1.
A property may be either owner-occupied or landlord-owned. An owner-

occupied location not currently for sale is in the NOT FOR SALE state.

Table 1. The four discrete states allowed at each location

State name Description

NOT FOR SALE Owner occupied

FOR SALE For sale irrespective of current tenure type

SEEKING TENANTS Owned by landlord and currently vacant

RENTED Owned by landlord and currently let
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Current owners who decide to leave the neighborhood determine a suitable
price for the property and its state changes to FOR SALE. A property FOR
SALE may be bought by new owner-occupiers, when its state reverts back to
NOT FOR SALE. Alternatively it is bought by a landlord, who starts to look
for a tenant, and the SEEKING TENANT state is entered. A property may
remain in this state for several time periods, when the landlord may decide to
resell, so reverting to the FOR SALE state. Alternatively, if a tenant is found,
the location enters the RENTED state. From the RENTED state, the location
may revert to either theFORSALE state if the landlord decides to sell, or to the
SEEKING TENANT state if the tenant decides to move out. The allowed
transitions between discrete model states are summarized in Fig. 3.
Underlying discrete cell state transitions are two numerical cell state

variables whose values in neighboring cells determine which discrete state
transitions occur. The state ai of a building vi at time t may be described in
terms of these variables according to

aiðtÞ ¼ hXiðtÞ;CiðtÞ; IiðtÞi ð1Þ
where XiðtÞ represents the discrete state discussed above, CiðtÞ is the property’s
current physical condition and IiðtÞ is the income of the current occupants. For
convenience,Ci and Ii are restricted to the range 0.0 to 1.0, and are continuously
variable within this range. With these and other variables, the ðtÞ notation
denoting model time is omitted where the sense is clear.
Some comments on the physical condition and income state variables are

appropriate. The condition Ci should be thought of as standardized for the
property’s other physical attributes such as floor space, and number of rooms,
and may be considered as an ‘intrinsic value per square meter’. The notion of
intrinsic value summarized by the property’s current physical condition is
representative of Smith’s Marxian concept of value, and any expenditure on
the property increases this quantity directly. Household income Ii is also on a
standardized per (adult) capita basis. These abstract representations of
physical condition and income mean that we try to treat a single ‘yuppie’ in a
studioflat as similar to an establishedprofessional familywith twochildren and
a dual income in a four bedroom house, since both would have high incomes

Fig. 3. Location discrete states and the allowed state transitions. The relationship of these states

to property tenure is also shown
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and, if the buildings were in similar condition, regardless of size, they would
also have similar physical condition values. This approach obviously glosses
over many of the details of the gentrification process, but as has been
emphasized, the present purpose is to develop a framework that can be
extended in time to cope with many of the details it currently lacks.
At this point, it is useful to look ahead to where the description of the

model transition rules is going, by reviewing Fig. 4, which summarizes in
schematic form the overall determination of model state transitions. Figure 4
draws attention to two temporary numerical state variables, associated with
two of the discrete states only: price and rent. When a location is entering the
FOR SALE state a sale price is set for the location. This may subsequently be
adjusted downwards if no buyer is immediately found. Similarly, when a
location enters the SEEKING TENANT state, a rent is set, although if
a tenant is not found the property may be put up FOR SALE. In effect, a
property’s sale price or monthly rent—its ‘value’ in the market—is a ‘virtual’
phenomenon, only actualized at the point of sale and dependent on the buyer
or prospective tenant’s assessment of the property’s location and prospects.
This is thus related to the property’s physical condition, but not in any
simple way, since neighboring properties also affect value.
The overall state at an individual location is thus rather complex. Taken

together, four discrete states, NOT FOR SALE, FOR SALE, SEEKING
TENANT and RENTED, two permanent numerical variables, physical
condition and household income, and two temporary numerical variables,
price and rent, are used.

4.2 Local and global model parameters

Before describing the model transition rules in detail, we introduce various
model parameters. These are derived either locally at each cell location based
on a cell and its neighbors’ states, or globally for the whole model. The local
and global parameters are summarized in Tables 2 and 3. As will become
clear, values of many of these parameters can only be sensibly interpreted
with a temporal scale for the model. Effectively, each time step represents a
month of actual time.
It is these parameters in combination with an individual cell’s state variable

values and stochastic variation that determine changes in cell states, as
described in detail in the next section and schematically illustrated in Fig. 4.
Two local parameters are determined for each location at each time step, as
follows.

Local ‘rent gap’ is defined as

GðCÞ
i ðtÞ ¼ CN ðtÞ � CiðtÞ if CN ðtÞ � CiðtÞ > 0

0 otherwise

�
ð2Þ

that is, the difference between the mean value of the condition variable in a
building’s neighborhood and the value of the condition variable for that
building, with the added proviso that only positive values are considered. If a
building is in better condition than the local mean, then the rent gap is zero.
The rent gap is an important determinant of whether or not owner-occupiers
obtain finance to upgrade their properties.
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Local income gap. GI is similarly defined as Ii � IN and is also only allowed to
adopt positive values. Thus

GðIÞ
i ðtÞ ¼ IiðtÞ � IN ðtÞ if IiðtÞ � IN ðtÞ > 0

0 otherwise

�
ð3Þ

In addition, the model relies on a number of global variables applicable to
the whole model at each time step. Most of these are user-set parameters
whose values remain constant through the duration of a single run of the
model. However, one parameter—the neighborhood status—is updated at
each time step, so that it varies as the model runs. Global parameters are
summarized in Table 3 and are as follows:

Neighborhood status. S is the current standing of the whole urban
neighborhood represented in the model and varies from time step to time
step as the model runs. The value of S is in the range 0–1, and is an important
determinant of the incomes of prospective new buyers or tenants for
properties which are FOR SALE or SEEKING TENANTS. This parameter
directly addresses Hammel’s (1999) idea that neighborhood scale is the most
important determinant of the potential value of a site.

Status variability. Sd is a factor affecting variability in the neighborhood
status. Most variation in S is due to changes in income and condition in the
model, a small random variabiation is also included and this parameter
controls the size of this effect, according to Eq. (19).

Abandonment factor. pA is a fixed parameter whose value is effectively the
probability at any particular time step that an owner-occupier household will
choose to move out. The quoted typical value 0.0125 is equivalent to an
annualized probability of moving out of about 0.14.

Tenant mobility. pTM is a fixed parameter, whose value is equivalent to the
probability that a tenant household will move out in a particular time step.
Normally, pTM should be set to a higher value than pA reflecting the greater

Table 2. The model’s two local parameters

Parameter Description Range

GðCÞ
i ‘Rent gap’ 0.0–1.0

GðIÞ
i Income gap 0.0–1.0

Table 3. The model’s six global parameters

Parameter Description Range Typical value

S Neighborhood (i.e. whole

model) status

0.0–1.0 0.5

Sd Status variability 0.0–0.1 0.025

pA ‘Abandonment’ factor 0.0–0.1 0.0125

pTM Tenant probability to move 0.0–0.5 0.0561

rD Depreciation rate 0.0–01 0.0028

nV Tolerable vacant months 1–6 3.0
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transience of population in rented accommodation. The typical value 0.0561
is equivalent to an annual probability of moving of 0.5.

Depreciation rate. rD is the loss in value applied to the physical condition
variable of every location every time step, and reflecting the simple fact of
physical wear and tear on property. A typical value of rD is 0.0028 so that a
period of 360 months—30 years—would see the collapse of a property in
perfect physical condition (Ci ¼ 1:0), to complete decay (Ci ¼ 0:0). This
could only occur in the absence of other effects, particularly the provision of
home improvement loans, and if a property is never in the rental sector,
which speeds up the depreciation process.

Tolerable vacant months. nV is the number of months (model time steps) that
a landlord will allow a location to remain vacant, that is in the SEEKING
TENANTS state. After failing to let a property over this number of months a
landlord sells the property, so that its state changes to FOR SALE.

4.3 Stochastic effects

One implementation detail deserves mention, before a detailed description of
the model rules. A number of pseudo-random numbers are generated while
running the model, and play an important role in household decisions to
move out or stay in a neighborhood, in the determination of changes in
household incomes, in the determination of potential buyer and tenant
incomes, and in determining the size of home improvement loans. Two
aspects are critical here:

Model repeatability. It is important that random number draws are carried
out as far as possible to ensure the repeatability of model behavior.
Therefore all five numbers that might be required at each model location are
generated every time step, regardless of whether or not they will be used. This
ensures that given the same pseudo-random number generator seed value at
the start of a model run, an identical sequence of values is drawn at each
location in each run of the model, thus allowing direct comparison of model
runs with otherwise different parameter settings.

Random numbers in the model are bounded. Many random number draws in
the model are taken from the normal distribution, which might produce
extreme values. To avoid the associated problems, bounded normal distribu-
tions are used simply by making repeated draws from the normal distribution
until a value inside the required bounds is obtained. This mechanism means
that the desired central tendency characteristic of the normal distribution is
retained. A side effect is that the repeatability discussed in the previous
paragraph is compromised—although only between model runs that are
beginning to diverge widely anyway.

4.4 Putting it all together—transition rules

As in a standard CA model, the state of a vertex or location at the next time
step is dependent on the current states of cells in its neighborhood in the
lattice:
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aiðt þ 1Þ ¼ f ðfajðtÞ : vj 2 NðviÞgÞ ð4Þ
where a is the cell state, vi and vj are arbitrary cells in the lattice and NðviÞ
represents the neighborhood of the vertex vi in the graph. Given that a is
actually represented by a complex combination of discrete and numeric
variables, it is easier to understand, develop, and describe the graph-CA
process rules in terms of decisions made by individuals represented in the
model dependent on the current discrete state at each model location. The
diagram in Fig. 4 is helpful in following the description below.

NOT FOR SALE. Each month owner-occupier households whose property
is NOT FOR SALE consider moving out, and do so with probability

pAð1:5� S þ GðIÞÞ ð5Þ
Thus, low neighborhood status, or high household income relative to
neighboring properties is more likely to lead to a household moving out. If
the household decides to move out then the discrete location state changes to
FOR SALE and the sale price is set to

Price ¼ 0:5ðCi þ IN Þ ð6Þ
or the mean of the property’s condition and average neighboring income
values. Thus sale price is dependent on the property situation, not simply on
the property characteristics itself.

FOR SALE. Each month that a property is FOR SALE, whether or not it is
sold is determined by comparing its price to that of a randomly generated
potential buyer’s income. The potential buyer’s income is drawn from a
normal distribution

Buyer income ¼ N l ¼ 0:5 S þ Priceð Þ; r ¼ 0:1ð Þ ð7Þ
bounded by repeated draws to the range

0:25 S þ Priceð Þ;min 1; 0:75 S þ Priceð Þð Þ½ � ð8Þ
This potential buyer of the property is assessed by comparing their income to
the property sale price. If the buyer’s income is greater than the sale price
then a buyer is considered to have been found.
If the buyer’s income is also higher than the mean income of neighboring

properties, then the buyer is considered to be a new owner-occupier, the
discrete state is set to NOT FOR SALE, and the income variable Ii is set to
the buyer’s income. The new owners also consider the possibility of
upgrading. If the local rent gap is greater than zero

GðCÞ
i > 0 ð9Þ

and the household income is greater than the property’s condition value

Ii > Ci ð10Þ
then the household is considered to have been successful in obtaining a home
improvement loan. The value of the loan provided is randomly drawn from a
normal distribution. This loan size is added to the location’s current physical
condition variable,

C0
iðtÞ ¼ CðtÞ þNðl ¼ S � CiðtÞ; r ¼ 0:1Þ ð11Þ

Toward micro-scale spatial modeling of gentrification 263



where C0
iðtÞ denotes a new, intermediate value of the physical condition

variable, which may still change subject to depreciation effects (see equation
18 below). The normally distributed loan size is bounded by repeated draws
to the range ½0:0; 0:5�, and the resulting value of C0

i may not exceed 1. Loan
size is therefore dependent on how far below the neighborhood status a
property’s current physical condition is.
If a buyer’s income is less than the local mean income, then the buyer is

considered to be a landlord, the discrete state is set to SEEKING TENANTS
and Ii is set to 0. This means that incoming new owner-occupiers will have
relatively high incomes, whereas the income of incoming tenants remains to
be determined by the rental market. The rent for the property is set to

Rent ¼ 0:5 Ci þmin INð Þð Þ ð12Þ
where IN is the set of incomes of neighboring properties. Note that the
minimum neighboring income could be 0, if neighboring properties are in the
SEEKING TENANTS state and have so far failed to find tenants.
If no buyer is found, because the potential buyer’s income is less than the

property sale price, then the property remains in the FOR SALE state, but its
price is adjusted downward to

Reduced price ¼ 0:5 Priceþ Buyer incomeð Þ ð13Þ
so that other things being equal, it is more likely a buyer will be found in the
next time step.

SEEKING TENANTS. First, additional depreciation due to the property
being in the rental sector is simulated by subtracting rD from the physical
condition variable.
Then, similarly to the FOR SALE case, a potential tenant income is

determined by random draw from a normal distribution

Tenant income ¼ N l ¼ 0:5 S þRentð Þ; r ¼ 0:1ð Þ ð14Þ
bounded by repeated draws to the range

0:25 S þRentð Þ;min 1; 0:75 S þRentð Þð Þ½ � ð15Þ
Determination of whether or not a new tenant has been found proceeds in a
similar manner to the FOR SALE case. If the potential tenant’s income is
higher than the rent, then the discrete state is set to RENTED and the
income variable Ii is set to the new tenant’s income.
If no tenant has been found, then a counter recording the number of

months that the property has been vacant is incremented. Additional
depreciation equal to the current value of this count multiplied by the
depreciation parameter rD is then applied. If the current number of vacant
months is greater than the tolerable vacant months parameter nV, then the
discrete cell state is set to FOR SALE and a sale price is set according to
equation (6) above, just as in the owner-occupier case.

RENTED. Regardless of other effects, the property’s physical condition
variable is reduced by additional depreciation rD due to its being in the rental
sector.
For a RENTED property, the landlord may decide to sell doing so with

probability

S �Rent ð16Þ
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so that landlords are more likely to try to sell when the neighborhood is high
status, or where they are only getting low rents. If the landord does decide to
sell, then the discrete state is set to FOR SALE and the sale price is set
according to equation (6) as before. While the landlord is attempting to sell
the current tenants are considered to remain in occupation, so that
household income is unchanged.
If the landlord does not choose to sell, then the current tenants may decide

to move out, which occurs with probability

pTM þ GðIÞ
i ð17Þ

so that higher income tenants are most likely to leave. If the tenants decide to
move out then the discrete state is set to SEEKING TENANTS, and a rent is
set according to Eq. (12) as before.

Depreciation and changes in neighborhood status
As indicated in Fig. 4 depreciation occurs regardless of any other changes
that may have happened. Each time step the property physical condition
variable is adjusted by subtracting the depreciation parameter value rD:

Ciðt þ 1Þ ¼ C0
iðtÞ � rD ð18Þ

Additional depreciation applied to rented properties as discussed above
reflects lower levels of maintenance carried out by landlords relative to
owner-occupiers.
Note that as is conventional in synchronous CA, all the changes described

above are considered to occur simultaneously. Thus all the above rules
operate on every location and its neighbors’ states at time t to determine the
next state at time ðt þ 1Þ. Once the determination has been made for all
locations, all location states are changed to the newly determined state
simultaneously.
Finally, every time step, the global neighborhood status parameter S is

adjusted by adding the mean value of all changes in the physical condition
and income variables determined at all locations in the model, together with
a random factor:

Sðt þ 1Þ ¼ SðtÞ þ 1
n

Pn
i¼1 Ciðt þ 1Þ � CiðtÞ½ � þ

Pn
i¼1 Iiðt þ 1Þ � IiðtÞ½ �

� �
þNðl ¼ 0; r ¼ SdÞ ð19Þ

Since the status parameter is important in determining the likely incomes of
new buyers and tenants, this is an important positive feedback mechanism in
the model. Generally rising incomes and improving physical conditions will
tend to draw higher income buyers and tenants. Conversely, falling incomes
and deteriorating stock will draw lower income buyers and tenants.

5 Running the model

The model described has been built and run for a part of Hoxton in inner East
London in the United Kingdom (UK). Hoxton is an area that has seen rapid
gentrification in recent years, and has garnered a good deal of media attention
in the process (see Jennings 2000, for example). Due to the abstract nature of
themodel, this choicewasmademore for convenience rather than fromadesire
to simulate the dynamics of change in this particular neighborhood.
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5.1 Data sources

5.1.1 Spatial data. In the UK, the Ordnance Survey’s Landline digital data
sets are the best primary source for spatial data at the resolution required for
this simulation. Unfortunately, these data are primarily intended to support
the production of map line work so that building footprints and plot
boundaries are stored as collections of line segments rather than as polygons.
Each line is associated with a feature code so that it is possible to select all
lines relating to buildings and plots. Even so, it remains non-trivial to further
process these data to represent buildings or plots as polygon objects in a
geographical information system (GIS). Many blocks in the urban fragment
are not subdivided, even where it is clear on the ground that the block is not a
single address.
As a result, considerable amendment and editing of the raw Landline data

was undertaken to arrive at a set of polygons that is a reasonable
representation of the study area morphology. It is not possible to proceed
far with building an ‘accurate’ representation of the urban fabric before
facing the issue of multi-occupancy buildings, and the relations internal to
them. This leads immediately to the complexities of three-dimensional
representation of built forms, which raises the issue of representing
redevelopment in three-dimensional detail, as for example, when a developer
breaks a former factory up into small units, or when a new owner-occupier
knocks former flats or apartments into a single family dwelling. These issues
are well beyond the scope of the present work, and for this rather abstract
model such complexities have been ignored in favor of a representative two-
dimensional view. Having built a two-dimensional map of the study area
with buildings identified as 514 distinct polygons, the Delaunay triangulation
structure shown in Fig. 2 was constructed as discussed in Sect. 3.1.

5.1.2 Property and income data. Clearly, initializing even a small model with
realistic empirical data on property condition and occupant incomes would
be a major undertaking. The physical condition variable is particularly
problematic—recalling the difficulties many have had testing the rent gap
hypothesis. In fact, any state variable based on property values, however
conceived faces difficulties. As has been remarked, the monetary value of a
property is a virtual phenomenon, only actualized when it changes hands at a
price set by the market. Even when market turnover is high it is rare for more
than (say) 10% of the properties in an area to change hands in one year so
that complete data on the current sale price of properties is unavailable. Any
estimation of missing values requires a method for normalizing prices for
variations in the characteristics of properties that did change hands. Only
limited information about the numbers of rooms and their sizes, or the
physical state of buildings is generally available. In any case the relationship
between sale price and value is a contingent one, as has been discussed.
Since one of the aims of abstracting to a simple physical condition variable

was to reduce data requirements, these complexities have been avoided by
synthesizing values from a proxy variable. Property condition figures were
obtained by ‘drilling down’ into the UK Department of the Environment
Transport and the Regions (DETR) Index of Town Centredness (ITC)
surface data set (Thurstain-Goodwin and Unwin 2000). This is a composite
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data set developed on the basis of detailed, confidential UK government data
sets intended for use in defining town centers for statistical monitoring
purposes. The ITC takes into account parameters such as the amount of
employment and turnover at different locations in urban areas. By ‘drilling
down’ into a surface is meant assigning to each building the value on the
surface that attains at the building centroid. For the model study area, values
of the ITC are in the range 8.6–25.8. These numbers were rescaled to a more
appropriate range for the present purpose, giving condition variable values in
the range 0.258–0.774.
Using census data, per capita household income at an aggregate level is easier

to determine (Dorling 1999, comments on particular difficulties in the UK).
However, considerable work is required to disaggregate data to produce
realistic data for simulation purposes (Clarke and Holm 1987). Assigning the
individual synthetic households produced by disaggregation to particular
street addresses is also difficult. Although some have suggested that the more
detailed information provided by marketing surveys may represent a way out
of this difficulty (Openshaw and Turton 1998), others are more wary (Longley
andHarris 1999) and there seem to be important ethical issues to be considered
in developing individualized datasets at the household level.
Again, a pragmatic approach has been adopted, given the abstract nature

of the present model. Income values were simply set equal to the physical
condition values summed with a normally distributed random offset
(l ¼ 0:0, r ¼ 0:025). This means that the model start from a situation
where value and income are approximately matched, and has the desirable
side-effect that no large disparities between income and property value are
likely to strongly influence initial development of the model dynamics.
Additionally, given the smooth spatial variation in the physical condition
variable, no strong local ‘gaps’ are likely.
The resulting overall physical condition distribution in the study area is

shown in Fig. 5. Incomes closely match the mapped distribution, and the

Fig. 5. The distribution of initial values used in the model
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initial system configuration is also shown as a scatter plot of income against
physical condition to demonstrate the point.

5.2 Results

It is not intended to present extensive details of results for different runs of
the model. Instead, a single typical run is presented, to demonstrate that
model dynamics are potentially interesting. This is followed by a discussion
of model behavior and consideration of the potential of the present approach
in the concluding section.
As has been discussed, the model was initialized to the state shown in

Fig. 5. With the parameter settings recorded in the ‘Typical value’ column of
Table 3 the model was run for 720 time steps, equivalent to a real time period
of 60 years. The time series shown in Fig. 6 record the overall dynamics.
As can be seen, over this 60 year period, there is a period of decline in the

neighborhood extending over about 20 years from the 15th to the 35th years
after the model starts running. Decline occurs in two phases, the initial
period running from about year 15 to year 22, and seeing increased numbers
of rented properties and larger numbers of properties for sale for extended
periods. After this initial decline there is partial recovery in the neighbor-
hood’s fortunes, although the next few years are very different in character
from the early phase of stable owner-occupation, with larger numbers of
properties for sale than previously, indicating larger turnover of households.
Notably, during this period, although there is some recovery in the mean
household income, the mean physical condition of properties falls contin-
uously.
From the 30th to the 35th years the neighborhood is very unstable with

large numbers of rental properties, large numbers of sales, and continuing
decline in mean household income and in the physical condition of
properties. At the end of this period, properties start to return to owner
occupation and the fall in both incomes and the condition of buildings is
halted. These effects combine to see the neighborhood’s status sharply rise,
and mean household incomes subsequently rise sharply. Within a matter of
only 3 years virtually all properties are back in owner-occupation. Over a
period of 5 years neighborhood status increases from its minimum to its
maximum value, and a further 20 year period of stable owner-occupation has
started. By the end of the 60 year period there are signs that decline may be
setting in again.
Clearly, even these summary data are relatively complex. Furthermore,

observation of repeated runs of the model shows that there is no readily
discernible pattern to the duration of cycles, although they do tend to be
shorter with more aggressive settings of the depreciation factor rD (see Eq. 18)
and of status variability Sd (see Eq. 19). The partial recovery seen in this
example is not observed in every case. Furthermore, from the given initial
conditions, with various settings of the random number generator seed values,
time series that see an immediate decline in neighborhood fortunes are
observed, as well as time series where the neighborhood status initially rises –
as in the illustrated case – but remains stable for longer than in this example.
What is clear is the important role of the global neighborhood status

parameter to the model dynamics. Without this positive feedback mecha-
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nism, a high or low income neighborhood tends to stay that way. At high
levels of household income properties are maintained in good condition, and
similarly rich buyers are quickly found for properties that go on sale. This
situation is disrupted when neighborhood status starts to fall, because
incoming households tend to have lower incomes (see the sections above on
the FOR SALE and SEEKING TENANTS states). Similarly, without the
status variable, at low income levels many properties move into the rental
sector where they are undermaintained, incomes remain low and the physical
condition of properties declines and remains low. Richer incoming house-
holds also tend not to stay long under these circumstances. For any sustained
recovery from this state to occur the neighborhood status must be increasing,
‘pulling up’ the incomes of newly arrived households, and creating the cycle
of improvements that further increases both incomes and property values. It
is important to note that the random component of neighborhood status
changes (see Eq. 19) is therefore critical to the dynamics.

6 Conclusions

This paper has outlined a theoretical and conceptual basis on which a detailed
model of the residential and property market dynamics underlying gentrifi-
cation might be built. The behavior of the resulting model has been described
in outline. It seems clear that the model structure outlined is rich enough to
merit further investigation, although many difficult challenges remain.
As has been emphasized, the behavior of the neighborhood status

parameter is critical to the global behavior of this model. The question of
its interpretation is therefore an important one. Although changes in the
parameter value are calculated internal to the model, it is apparent that it
would be much better to treat this parameter as exogenous to the model,
because it reflects the standing of the neighborhood represented relative to
other neighborhoods. A much more satisfactory implementation would
embed the neighborhood presented here in a larger model of the urban
system. The neighborhood status parameter would then be adjusted
contingent on varying perceptions of the relative merit of other neighbor-
hoods in the wider urban system in a manner consistent with scale-based
developments of rent gap theory (Hammel 1999). A further level of
embedding the urban system in a network of competing cities might also
be envisaged. The graph-CA model architecture is readily extendible, so that
each level of a scale-based hierarchy could be implemented in a similar way
(O’Sullivan 2001b). Somewhat similar nested hierarchies of models have
been discussed by White and Engelen (1997).
Other parameters raise fewer broad questions about the overall architec-

ture of the model. However, it is interesting to note that an earlier version of
the same model (O’Sullivan 2000) attempted to operate using a ‘purer’
cellular automaton with only two state variables – income and value – at
each location. However, it proved difficult within such a limited framework
to produce the cyclical behavior of the present model. Also, the distinct
maintenance and depreciation behaviors of owner-occupiers and landlords in
the present model could not be represented in that framework. It is
interesting to speculate that any model of a human system represented at this
scale must inevitably explicitly represent aspects of the social system. This is
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very different from how many more conventional urban CA models
developed on grids are conceptualized, where state transitions are based on
probablistic rules for different landuse changes. In such cases, human agency
is in danger of becoming a ‘ghost in the machine’, rather than the primary
driver of urban change—whether the agents involved are individual
householders or more diffuse corporate actors, such as mortgage lenders.
This observation is consistent with much that has been written about
gentrification itself.
This also suggests that an explicitly agent-based model may be a more

appropriate starting point than any cellular framework (Portugali et al.
1997; Benenson 1998). Indeed, in their most recent work Portugali (2000)
and his colleagues at Tel Aviv University adopt an agent-based approach, in
a similarly graph or network-structured representation of the built environ-
ment. For agent models in a network structured space it may even be
appropriate for different agents to use different criteria for determining the
cell neighborhoods that they consider in making different decisions, and
hence to operate in a variety of network spaces. In the present model, for
example, landlords might respond to events in larger cell neighborhoods than
owner-occupiers. This would represent a significant increase in the complex-
ity of the model. In any case, as discussed in Sect. 3.1, other graph structures
may be more defensible than the Delaunay triangulation, which effectively
assumes spatial uniformity. Given that the graph structure is likely to affect
the overall dynamics (O’Sullivan 2001a) decisions on this aspect are critical
to any model of this or similar arhitecture.
Finally, this work has deliberately and self-consciously attempted to make

use of geographical theory of gentrification rather than economic theory.
Although this choice has led to some difficulties, particularly in the definition
of key state variables, I feel that it has been justified. First, it has
demonstrated that current modeling techniques are capable of formally
representing quantitative and qualitative aspects of a complex phenomenon
such as gentrification. This holds out the promise of future productive
encounters between human geographical theory and contemporary modeling
techniques. Second, it suggests that the opportunity now exists to harness the
riches of theory to the task of developing urban simulation models for
decision support that move beyond the narrow world-view of economics.
Certainly, it seems clear that any successful model of gentrification must find
ways to represent the rich complexity of the phenomenon. This paper has
described the beginnings of a framework that may help to make that
formidable task possible.
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