
Abstract. Edge effects pervade natural systems, and the processes that
determine spatial heterogeneity (e.g. physical, geochemical, biological,
ecological factors) occur on diverse spatial scales. Hence, tests for association
between spatial patterns should be unbiased by edge effects and be based on
null spatial models that incorporate the spatial heterogeneity characteristic
of real-world systems. This paper develops probabilistic pattern association
tests that are appropriate when edge effects are present, polygon size is
heterogeneous, and the number of polygons varies from one classification to
another. The tests are based on the amount of overlap between polygons in
each of two partitions. Unweighted and area-weighted versions of the
statistics are developed and verified using scenarios representing both
polygon overlap and avoidance at different spatial scales and for different
distributions of polygon sizes. These statistics were applied to Soda Butte
Creek, Wyoming, to determine whether stream microhabitats, such as riffles,
pools and glides, can be identified remotely using high spatial resolution
hyperspectral imagery. These new ‘‘spatially explicit’’ techniques provide
information and insights that cannot be obtained from the spectral
information alone.
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1 Introduction

A recent workshop on high spatial resolution hyperspectral (HSRH) imagery
in exposure assessment (see Jacquez et al. in this issue) identified the
development and application of ‘‘spatially explicit’’ methods as a critical
research need. Spatially explicit methods make use of both spatial and
spectral information. Consider the spatially-referenced data model {xi, yi,
ai1,…,aik}. Here xi, yi is the coordinate of location (e.g. pixel) i, and ai1,…,aik
are observations on k variables (e.g. spectral bands) at that location. While
purely spectral methods explore multivariate covariance in the spectral
dimension (ai1,…,aik), spatially explicit techniques quantify how this covari-
ance changes through geographic space. Because spatial relationships mediate
most if not all physical, geochemical, biological and ecological processes, it
seems reasonable to suggest that spatially explicit techniques might reveal
relationships that are not apparent in the spectral dimension alone.
While spectral analysis methods for HSRH imagery are numerous and

well-developed (see for example Aspinall et al. in this issue), spatially explicit
methods for HSRH image analysis are relatively few. Although spatial
analysis has a rich and robust repertoire of techniques (e.g. in the traditions
of spatial autocorrelation analysis, autoregressive modeling, geostatistics and
so on), these methods were not developed for HSRH imagery. The extension
of these techniques to hyperspectral image analysis is considered by others in
this special issue (see for example the works by Griffith, Goovaerts and
Rogerson). In this paper we consider the analysis of HSRH imagery as a
problem in pattern recognition and comparison. The first step is to identify
patterns on an image; the second step is to relate the observed patterns to
patterns in other data sets. Scientific questions that may be considered in this
framework include ‘‘are landscape features associated with bedrock geolo-
gy?’’ ‘‘Are vegetation patches associated with edaphic characteristics’’, ‘‘Are
land-use patterns associated with forest types’’ and so on.
We build on the field-object paradigm that is now commonly used as a

foundation for data structures and algorithms in geocomputation (Egenhofer
et al. 1999, Mark et al. 1999). We expect that field-object transformations
will prove useful for data reduction on HSRH imagery, by identifying
relevant collections of ‘‘signals’’ (i.e. objects) on these large, multivariate
raster images (i.e. fields). The meaningful association of extracted features
(such as patches) to real-world phenomena has direct implications for our
ability to analyze and extract geospatial knowledge from HSRH imagery. In
this paper we develop statistical tests for assessing the correspondence
between features extracted from HSRH images and other spatial objects.
Existing approaches to this problem include boundary overlap statistics
(Jacquez 1995, Fortin et al. 1996) that determine whether boundaries for two
or more variables coincide, or overlap, to a significant extent (for applications
see Jacquez 1995, Fortin et al. 1996, Fortin 1997, Hall and Maruca 2001).
These statistics were designed to be used with difference boundaries, which
are geographic zones of rapid spatial change in the underlying variable(s)
(Jacquez et al. 2000). Difference boundaries are distinguished from area
(polygonal) boundaries, in that (1) difference boundaries indicate local
changes while area boundaries reflect larger-scale spatial pattern, and (2)
difference boundaries do not enclose or represent an area. The primary
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limitation to these difference boundary distance-based statistics is that, in
relying on boundaries as local, discrete objects, they are not useful for
analyzing the overlap of one set of polygonal boundaries with another,
especially when each of the two sets represents an exhaustive partition of the
geographic study space. How would one measure the ‘distance’ between two
polygons that intersect? Further, in many cases we are more interested in
determining whether the areas themselves overlap, and not necessarily
whether the enclosing polygon lines overlap. An area-based approach would
be more effective at quantifying the ‘match’ between two sets of polygons.
There is a substantial body of prior work on the modeling of spatial and

spatio-temporal relationships among polygons (for access to this literature
see Bonham-Carter 1994 and the introduction to Sadahiro and Umemura,
2000). Sadahiro and colleagues (Sadahiro 2000, Sadahiro and Umermura
2000) developed two techniques; one for assessing polygon overlap within an
exploratory change detection context, and another for the space-time
analysis of polygon distributions. To our knowledge, none of the existing
techniques are developed within a probabilistic framework, and thus do not
lend themselves to inferential statistics for assessing association between two
spatial patterns. Here we are concerned with the development of techniques
for the probabilistic assessment of polygon overlap. This approach supports
hypothesis testing and statistical inference and evaluates whether an
observed amount of overlap is ‘‘unusual’’ relative to a null or neutral spatial
model representing a biologically reasonable null hypothesis.
Consider the two sets of polygons in Fig. 1A–B. One set of polygons is

regular, and the other set is irregular. Our intention was to develop a method
that distinguishes instance (A), where the two sets of polygon areas coincide,
from instance (B), where they do not.

2 Methods

2.1 Area overlap statistics

We begin with two sets of polygons, I and J, each comprised of NI and NJ
polygons and obtained as an exhaustive partitioning of the same

Fig. 1. Examples of hypothetical, simplified partitions that overlap (A) and don’t overlap (B).

Each pair of partitions (A and B) contains one set of irregularly shaped polygons (solid outline)

and one set of rectangular polygons (dashed outline). Area overlap analysis uses appropriate null

spatial models to distinguish (A) from (B)
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geographic space. The idea is to see how well the two sets overlap each
other with respect to the areas delineated by the polygons. For polygon i in
set I and polygon j in set J, we calculate the following quantity, called the
relative area overlap:

aij ¼
a i\jð Þ
a i[jð Þ

ð1Þ

where a(i˙j) is the area of intersection and a(i¨j) is the area of union for
polygons i and j. Relative area overlap for non-intersecting polygons is zero,
and increasing values represent better overlap, with a maximum value of 1
for perfectly overlapping polygons (where a(i˙j) = a(i¨j)). For example, the
relative area overlap for the polygon pair in Fig. 2A is 0.05, while aij for the
pair in Fig. 2B is 0.52.
For each polygon i in I we can then find the polygon in J that i overlaps

best with, by finding the maximum value of aij over all polygons in J (called
the maximum relative area overlap):

Ai ¼ maxðai�Þ ð2Þ
We then define an area overlap statistic for set I as the average maximum
relative area overlap:

AI ¼

PNI

i¼1
max Ai�ð Þ

NI
ð3Þ

Similarly, for set J:

AJ ¼

PNJ

j¼1
max A�j

� �

NJ
ð4Þ

Further, we can calculate a simultaneous area overlap statistic as:

AIJ ¼

PNI

i¼1
max Ai�ð Þ þ

PNJ

j¼1
max A�j

� �

NI þ NJ
ð5Þ

Fig. 2. Polygon pair arrangements showing (A) low area overlap and (B) high area overlap. For

any polygon pair, relative area overlap is defined as the ratio of the area of intersection, a(i˙j)
(darker areas), to the area of union, a(i¨j) (all shaded areas)
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The statistic AI is a measure of how well the polygons in I overlap, or ‘match
up with’, the polygons in J. Likewise, AJ is a measure of how well the
polygons in J overlap with those in I. AIJ is a general (or bi-directional)
measure of overlap between the two sets of polygons.
We expect these statistics to be most useful for cases where the two

partitions contain roughly the same number of polygons (that is, the
partitioning was conducted on similar spatial scales), and the variance in
polygon size is relatively low. However, in the real world, the researcher
may not have control over the scale of the partitioning, which could result
in two partitions with very different numbers of polygons. Further, a given
partition may very reasonably contain polygons of drastically different
sizes. In particular, edge effects may be present so that polygon size may
decrease near the margins of landscape boundaries and other features. In
these cases, we propose calculating the average maximum relative overlap
(e.g. AI) as a weighted average, where the weighting factor is the area of the
focus polygon (ai for polygon i in set I; aj for polygon j in set J). Focus
polygons are selected in one of two frameworks, a global analysis and a
local analysis. When calculating a global overlap statistic one considers
each polygon in the segmentation (data layer) by turn. Note that the order
in which these are considered has no impact on the value of the test
statistic. One also can evaluate the overlap statistic within specific portions
of the study area. This is a local overlap statistic in which the focus
polygons are those that comprise the specific portion of the study area
under consideration. Again, the order in which this subset of local polygons
is considered makes no difference. In this scenario, the statistics would be
calculated as follows:

AI ¼

PNI

i¼1
aimax Ai�ð Þ½ 	

PNI

i¼1
ai

ð6Þ

AJ ¼

PNJ

j¼1
ajmax A�j

� �� �

PNJ

j¼1
aj

ð7Þ

AIJ ¼

PNI

i¼1
aimax Ai�ð Þ½ 	 þ

PNJ

j¼1
ajmax A�j

� �� �

PNI

i¼1
ai þ

PNJ

j¼1
aj

ð8Þ

In this paper we explore the performance of both the weighted and
unweighted statistics. Although we expect that the weighted statistics will
produce more reliable results in most situations, calculating polygon areas
is time-consuming and greatly increases the expense of the Monte Carlo
process. For cases where the unweighted and weighted statistics produce
similar results, the unweighted statistics may be used to decrease compu-
tation time.
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2.2 Randomization procedure

Evaluation of the area overlap statistics occurs through Monte Carlo
randomization procedures corresponding to a specific null hypothesis. We
assume that the number of polygons may differ across partitions ðNI 6¼ NJ Þ
and that the number of polygons (NI , NJ) in each partition is given. Hence
the randomization procedures replicate these characteristics of the data.
For all of our analyses, we used a null spatial model that found an
alternative, randomly generated partition for one of the two polygon sets
(here, set I); the other partition (J) was assumed to be fixed. This
alternative partition for I should possess the same number of polygons as
the original (NI). To accomplish this, we randomly located NI seed points
throughout the geographic study space, and then constructed Voronoi
(Thiessen) polygons from the resulting point set. The set of Voronoi
polygons served as the alternative partition. The alternative partition was
then compared with the second original partition and area overlap statistics
were calculated; this process was repeated 500 times for each analysis,
resulting in a distribution for each statistic under the null hypothesis.
Because larger values of the area overlap statistics represent better overlap,
upper p-values were compared with a 0.05 level of significance (a) to
determine whether or not the polygon sets overlapped, and lower p-values
were similarly compared to determine whether or not the polygon sets
displayed avoidance.
Other null hypotheses could be used to assess area overlap statistics; for

example, both sets could be randomized each Monte Carlo iteration.
Randomizing one set and not the other is an appropriate null hypothesis for
cases where J (the fixed set) represents a known process and/or constant
phenomenon, and for when the alternative model involves J somehow giving
rise to I. For example, see Hall and Maruca (2001), where the alternative
model involves vegetation patterns (which are relatively fixed through one
breeding season) giving rise to spatial patterns in songbird territories. We call
this a conditional randomization. If the alternative model does not include a
directional relationship, a null model that randomizes both sets is appro-
priate, and is called an unconditional randomization. We chose to randomize
only one set with our simulated data in order to parallel the Soda Butte
analysis (see below). Further, alternative partitions could be found using
algorithms other than Voronoi polygon construction on randomly placed
seed points; for example, region-growing or adaptive polygon shuffling
techniques could be used. The Voronoi algorithm was found to be the most
efficient of those we considered.

2.3 Performance with simulated data

Before applying the area overlap statistics to real-world data, we verified them
by analyzing 5 simulated scenarios, all but the last of which included two sets of
12 polygons each. As a first step we wished to verify that (1) in an analysis of
two sets of perfectly overlapping polygons, the statistics show significant area
overlap, and (2) in an analysis of maximally offset polygons, the statistics show
significant overlap avoidance. For these situations, we used the two polygon
sets in Fig. 3. We conducted three additional analyses with simulated data; in
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each, the partitions overlap well but not perfectly (Figs. 4 and 5). These three
scenarios represent slightly more realistic data sets, which roughly correspond
to levels of area overlap that any set of well-designed area overlap statistics
should detect as significant. In the first pair of partitions, the polygons are
approximately the same size (Fig. 4A), and in the second pair, the polygon
sizes vary (Fig. 4B). In the third pair, the polygons comprise partitions

Fig. 3. Simulated scenarios 1 (A) and 2 (B), each comprised of 12 polygons, used in preliminary

tests of area overlap statistics. A Sets I and J overlap perfectly. B Polygon outlines for sets I (gray

outline) and J (black outline) are offset from each other

Fig. 4. Simulated scenarios 3 (A) and 4 (B), each comprised of 12 polygons, used in preliminary

tests of area overlap statistics. Each pair of polygon sets I (gray outline) and J (black outline)

overlap well but not perfectly. A Polygons are of similar sizes. B Polygons are of different sizes
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delineated on different spatial scales (Fig. 5), with one set containing 12
polygons and the second containing 34. Each polygon in the first set of 12
matches perfectly with the union of either 2 or 3 polygons in the second set.

2.4 Performance in an application: Soda Butte Creek

We then used the statistics on high-resolution hyperspectral imagery of the
Round Prairie area of Soda Butte Creek in Yellowstone National Park,
Wyoming (Fig. 1 in Jacquez et al. 2002 in this special issue). Soda Butte
Creek is impacted by heavy metals from past mining activities and a related
superfund site (Marcus et al. 2001). Current research focuses on relation-
ships between heavy metal concentrations in stream sediments and stream
morphological units, which are also called in-stream habitats (Ladd et al.
1998, Marcus et al. 1996). Mapping the stream morphological units is a
tedious process that requires field workers to investigate the entire stream
reach and subjectively categorize stream areas as pools, riffles, glides, etc.
The accuracy of resulting morphological unit maps is short-lived, in that a
single storm event can substantially alter stream morphology. This research
would therefore be greatly aided by an automated method for mapping
stream morphological units from digital imagery, although limited success
has been achieved by such efforts thus far (Wright et al. 2000). In this
application, we use area overlap analysis to assess the feasibility of using
spatially explicit classification (also called spatially constrained clustering;
e.g. Legendre 1987, Legendre and Fortin 1989, Fortin and Drapeau 1995)
with high-resolution hyperspectral images to find stream morphological
units along a short reach of Soda Butte Creek.
We preprocessed the 1-m resolution image for this analysis by first

reducing its nonspatial dimensionality. From 128 possible spectral bands,

Fig. 5. Simulated scenario 5, used in preliminary tests of area overlap statistics. Polygon sets I

(gray outline, 34 polygons) and J (black outline, 12 polygons) represent related partitions on

different spatial scales
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we selected 8 that spanned the spectral range and represented character-
istics of the stream important in mapping morphological units. The selected
wavelengths (555, 615, 678, 753, 1069, 1230, 1575, and 2143 nm) were
sensitive to water surface turbulence and/or water depth. Alternative
dimensionality reduction techniques include Principal Components Analy-
sis, but selection of specific bands is reasonable given our prior knowledge
of their relevance to known fluvial features. The images were then masked
to include only in-stream areas. BoundarySeer, software for geographic
boundary analysis, (TerraSeer 2001, www.terraseer.com) was used to
perform the spatially explicit classification, which combined an agglomer-
ative, hierarchical method with a redistribution method (k-means). The
result is a partition that minimizes within-unit and maximizes between-unit
variability within constraints imposed by the desired spatial scale of the
mapped stream units. The partition was compared with a digitized map of
morphological units delineated by a field mapping crew. During evaluation
of the area overlap statistics, the field-mapped polygons were fixed while
the automated units were randomized (i.e., we conditioned randomization
on the field crew classification), for two reasons. First, the question is
whether spatially explicit classification can find units that match the field-
mapped units (not vice-versa); and second, the field-mapped units did not
exhaustively partition the space (see Fig. 6), and we lacked partitioning
algorithms that reproduced the idiosyncrasies arising from the in-field
digitizing process.

3 Results

Table 1 shows the results of area overlap analyses involving the five
simulated scenarios. In general, the statistics behaved as expected and were

Fig. 6. Stream morphological units for a section of Soda Butte Creek, Wyoming. Stream flow is

from top left to bottom right. Polygon set I (gray outline) represents putative morphological

units obtained from spatially explicit classification of high resolution (1 m) imagery. Polygon set

J (black outline) represents morphological unit delineations as determined by a field crew
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able to discriminate between the absence and presence of different amounts
of overlap. All three scenarios in which the two polygon sets clearly appeared
to overlap (scenarios 1, 3, and 4) showed significant overlap unidirectionally
(AI and AJ) and bidirectionally (AIJ; pupper £ 0.002 for each), whether using
unweighted or area-weighted averages. In scenario 5, where the two
partitions are related but on different spatial scales, the extent of area
overlap may be difficult to predict subjectively. Compared with our null
spatial model, the unweighted and area-weighted overlap statistics calculated
for scenario 5 were significant (pupper £ 0.002 for AI, AJ, and AIJ). Although
polygons in the 34-polygon set are, on average, much smaller than those in
the 12-polygon set, their relative arrangements are indicative of a strong
relationship between the two partitions. The scenario in which the two
polygon sets were maximally offset (scenario 2) showed significant avoid-
ance; that is, the polygon sets overlapped much less than expected by chance,
whether the statistics were unweighted (plower ¼ 0.034 for AI, plower ¼ 0.010
for AJ, and plower ¼ 0.024 for AIJ) or weighted by area (plower ¼ 0.008 for AI,
plower ¼ 0.008 for AJ, and plower ¼ 0.006 for AIJ).
In scenarios 1, 2, and 3, where polygons were similar in area, values for

area-weighted overlap statistics were not meaningfully different from the
unweighted statistics, as expected. However, values for unweighted and area-
weighted statistics were different for the two polygon sets in scenario 4, where
polygon areas varied within each set, and for those in scenario 5, where
polygon areas varied within set I and between the two sets. Recall that
overlap is measured by the ratio of area of intersection to area of union, and
hence is a relative measure scaled to the range 0–1. Higher values for area-
weighted statistics are expected whenever larger polygons overlap more
closely than smaller polygons. This phenomenon can readily be seen in the
map for scenario 4 (Fig. 4B), where all three statistics displayed higher values
when area-weighting was used. In scenario 5, the area-weighted value for AI
was higher than the unweighted value. Because all polygons in set I are
completely contained within a polygon in set J, and because all polygons in
set J have the same area, the area of union between a polygon in I and its
best match in J is always the same and equal to the area of the J polygon;
however, the area of intersection is equal to the area of the I polygon, and so
the measured overlap will be greater for larger polygons in set I.
In order to best partition Soda Butte Creek using the 8 selected spectral

bands, we first used spatially explicit classification to find a series of
partitions, each differing from the others in the number of classes (i.e.
polygons) established. We then measured the extent to which each partition
‘fit’ the data by calculating a goodness-of-fit index (Hall and Maruca 2001),
based on the within-class and between-class sum of squares errors. The
partition with 30 classes presented the best trade-off between a good fit
(accuracy) and a reasonably small number of classes (simplicity), and was
therefore selected as the final partition. The nine (9) digitized polygons
representing morphological units mapped by the field crew are shown with
the 30-polygon automated partition in Fig. 6.
Table 2 shows the results of area overlap analysis of Soda Butte

morphological units using unweighted and area-weighted statistics. For
both weighted and area-weighted statistics the averages are calculated over
all polygons in the segmentation and the order in which these polygons are
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selected makes no difference on the value of the statistic. Using unweighted
averages for the overlap statistics, AJ was found to be significant
(pupper £ 0.002), while AI and AIJ were not. The polygons representing
morphological units defined by the field crew (set J) appear to overlap well
with the units defined by the spatially explicit classification algorithm (set
I), but not the other way around. Specifically, each field mapped unit
overlapped with its best match from the set of original classified units
better than when the classified units were randomly located within the
study area. The relatively low and statistically insignificant value of AI may
be attributed to the fact that, due to edge effects and slight differences in
the study area boundaries between the two sets, 7 (of 30) classified units
were small and located on the periphery, and therefore did not overlap any
field crew morphological unit (i.e. Ai ¼ max(ai•) ¼ 0 for each). This
example demonstrates how area-weighted averages of area overlap can
provide more meaningful information about the total overlap between the
two polygon sets. Indeed, when area-weighted averages were used, all three
overlap statistics were found to be highly significant (pupper £ 0.002 for AI,
AJ, and AIJ). The stream units with the larger areas in the automated
partition overlap very well with the units in the field crew partition, and
vice versa.

4 Discussion

The real world is highly complex. Patterns result from space-time processes
that operate at different spatial and temporal scales, in overlapping domains,
and with varying strength and intensity. These patterns are characterized by
anisotropy, non-linearity, non-stationarity, non-ergodicity, and hysteresis.
As a result spatial heterogeneity is often large near edges where landscape
features intergrade. Edges themselves may be sinuous, crenellate or even
fractal, and landscape constituents, such as patches, may change in size with
proximity to edges. When assessing the correspondence between patterns
defined on real-world systems, we require methods that are founded on
assumptions that are consistent with these characteristics. In this paper we
have attempted to develop and evaluate such a technique.
In this preliminary analysis, the area overlap statistics correctly identified

overlapping sets of polygons in all simulated scenarios where the polygon
sets were known a priori to overlap, and they indicated avoidance for the
polygon sets that were offset from each other. The behavior of these statistics

Table 2. Results of area overlap analyses of Soda Butte Creek morphological units (Fig. 6).

U = statistics unweighted;W = statistics weighted by area. Each P-value calculated from a null

distribution comprised of N = 500 randomizations. P-values in bold are significant at a = 0.05.

Significant upper p-values represent overlap, while significant lower p-values represent

avoidance

Wts. AI
Value

AI
pupper

AI
plower

AJ
Value

AJ
pupper

AJ
plower

AIJ
Value

AIJ
pupper

AIJ
plower

U 0.137 0.874 0.128 0.382 £0.002 ‡0.998 0.193 0.310 0.692

W 0.369 £0.002 ‡0.998 0.412 £0.002 ‡0.998 0.390 £0.002 ‡0.998
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is certainly promising and warrants further testing to evaluate statistical
power, quantify sensitivity to a range of spatial scales and topologies, and to
gauge the applicability of this analytic method to real-world questions.
Future work should focus on testing the statistics with simulated data
generated using process-based models, and on evaluating the sensitivity of
the statistics to changes in spatial scale.
The successful implementation of any spatial statistic evaluated via Monte

Carlo randomizations depends on the selection of an appropriate null spatial
model; therefore, additional analyses involving a range of null models are
planned. In general the randomization algorithm must correspond to a
reasonable null or neutral physical/biological/ecological model. Hence
different randomization procedures may be applicable in different situations,
depending on the question being explored and the assumptions applicable
under the null model. Alternative null models thus might preserve distribu-
tions of polygon area, of polygon shape, number of polygons, and the
presence or absence of edge effects. All of these are tractable with the context
of our tests.
Alternative null spatial models exist. One alternative to our Voronoi-

polygon null model is to devise algorithmically efficient methods for
randomizing the original data and regenerating partitions, perhaps using
spatially explicit classification or some similar partitioning scheme. Yet, such
methods are so computationally intensive as to render them currently
infeasible. A second alternative null model would employ random cluster
growth under constraints designed to preserve certain characteristics of the
system. Because area and shape play so crucial a role in the calculation of the
area overlap statistics, an ideal null model would preserve the distribution of
unit areas, as well as the general range of unit shapes.
In the analysis of Soda Butte Creek morphological units, the area overlap

statistics indicate that there is at least some agreement between stream units
defined somewhat subjectively by field crews and stream units defined from
high resolution multispectral imagery using spatially explicit classification.
Because field crews define morphological units using some of the same
stream features to which the spectral reflectances are sensitive, such as
water depth and water surface turbulence, statistical agreement between the
two maps supports the utility of area overlap analysis. However, if we are
to use automated stream units in place of ground-mapped units in other
research, we must understand and be willing to accept the differences
between partitions that result from using these two very different methods.
Perhaps the largest source of discrepancies is that, in defining morpholog-
ical units, field crews use some criteria that are not necessarily reflected in
the spectral data, such as prior knowledge of slope, stream depth, and
sediment characteristics; conversely, spectral data may include information
that is not necessarily available to the field crews, such as reflectance in the
non-visible wavelengths. These differences might be partially overcome by
using more or different spectral bands, or by using the first few components
of a principal components analysis of the entire spectrum, or by developing
classification algorithms that explicitly incorporate adjunct or prior
information. But it should be recognized that the differences are highly
informative because they can lead to insights regarding the sampling
process as well as the classification paradigm being used by humans.
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Differences between the classifications can inform how we think about
natural variation and the processes embedded in natural systems. Slight
differences in the spatial scale of defined units may also lead to disparate
partitions; for example, when field crews detect variation on the scale of
1–2 m2, they will likely consider these areas to be variable regions of
larger morphological units rather than as separate units themselves. In
general, the field crews are not likely to define very small morphological
units, because the human eye and our cognitive systems are sensitive to
larger-scale patterns, while units defined by spatially explicit classification
are limited in size only by image resolution. In fact, in our example
nearly half (13 of 30) the stream units defined using spatially explicit
classification were 2 m2 or less in area. Further, even when unit-defining
criteria and spatial scale are comparable in the two methods, map
differences may still exist, especially when variation in spectral reflectances
does not match human perceptions of natural variability in the stream
system.
Are the automated units actually morphological units? Is it important to

label them as such? If so, another aid would be to perform spatially explicit
supervised classification using spectral signatures for stream units (which do
not yet exist). Ultimately, the feasibility of using spatially explicit classifi-
cation of digital imagery to define stream units rests on the utility of such
units in the context of the biological or physical processes under investiga-
tion. In their work, Marcus, Ladd, and colleagues (e.g. Marcus et al. 1996,
Ladd et al. 1998, Marcus et al. 2001) are interested in understanding the
processes that lead to the transport, fate and deposition of heavy metals in
streams. Their approach has been to demonstrate the segregation of heavy
metals in stream bed sediments according to stream morphological units;
however, their ability to detect this relationship relies on the existence of
processes whereby metals are differentially deposited and/or retained
according to certain stream characteristics (water depth, flow, velocity,
etc.) that are used in our definition of stream morphological units (pool,
glide, riffle, etc.). It is possible that units defined using spatially explicit
classification of digital imagery, though different from human-defined
morphological units, may be at least as well-suited to the study of heavy
metals in stream bed sediments.
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