JG h Syst (2001) 3:325-346 Journal of —
Fosraph Syt 00D Geographical
Systans

© Springer-Verlag 2001

Deriving rules from activity diary data: A learning
algorithm and results of computer experiments

Theo A. Arentze', Frank Hofman?, Harry J.P. Timmermans'

! Urban Planning Group EIRASS, Eindhoven University of Technology, P.O.Box 513, 5600
MB, Eindhoven, The Netherlands (e-mail: eirass@bwk.tue.nl)

2 Ministry of Transport, Public Works and Water Management, P.O.Box 1031, 3000 BA,
Rotterdam, The Netherlands

Received: 31 January 2001 / Accepted: 13 September 2001

Abstract. Activity-based models consider travel as a derived demand from
the activities households need to conduct in space and time. Over the last 15
years, computational or rule-based models of activity scheduling have gained
increasing interest in time-geography and transportation research. This
paper argues that a lack of techniques for deriving rules from empirical data
hinders the further development of rule-based systems in this area. To
overcome this problem, this paper develops and tests an algorithm for
inductively deriving rules from activity-diary data. The decision table
formalism is used to exhaustively represent the theoretically possible decision
rules that individuals may use in sequencing a given set of activities. Actual
activity patterns of individuals are supplied to the system as examples. In an
incremental learning process, the system progressively improves on the
selection of rules used for reproducing the examples. Computer experiments
based on simulated data are performed to fine-tune rule selection and rule
value update functions. The results suggest that the system is effective and
fairly robust for parameter settings. It is concluded, therefore, that the
proposed approach opens up possibilities to derive empirically tested rule-
based models of activity scheduling. Follow-up research will be concerned
with testing the system on empirical data.

Key words: Activity-based models, activity scheduling, rule-based systems,
decision tables, inductive machine learning, adaptive systems

1 Introduction

Activity-based models of trip generation and distribution have recently
regained considerable popularity. These models consider travel as derived
demand. In this view, travel is not an end in itself but a consequence of the
participation of households in activities which take place at spatially
dispersed locations (Cullen and Godson 1975). Hence, the aim of activity-
based travel demand models is to describe and predict activity patterns of

326 T.A. Arentze et al.

households as a function of the availability of facilities in space-time
environments which are necessary for performing certain activities. Many
different approaches have been suggested. An overview is given in Ettema
and Timmermans (1997), Kwan and Golledge (1997) and Bhat and
Koppelman (1999).

One of the earliest approaches is based on theoretical notions of space-time
geography developed by Hégerstrand (1970). Proposed models in this
tradition incorporate space-time constraints which define feasible activity
patterns given a list of programmed activities, available locations, opening
times of facilities and structure of the transportation system. Typically, a
combinatorial algorithm is used to generate feasible activity patterns. The
number and sometimes also the quality of feasible patterns are then used as
measures of the flexibility of the space-time environment. Proposed measures
have been applied to evaluate impacts of policies affecting the time-space
environment on activity patterns. One of the first models in this tradition is
Lenntorp’s PESASP model (Lenntorp 1976). A more recent example is the
CARLA model (Jones et al. 1983).

As these models do not attempt to model activity choice behaviour, utility-
based models have been proposed as an alternative approach. Most of these
models involve an extension of conventional (nested) logit models that have
been applied in transportation research since the mid seventies to predict
destination and mode choice behaviour based on trip or tour data. Thus, the
mathematical framework for these models has remained the same, but data
on trips and/or tours have been replaced by data on activity patterns. As
recent examples, Ben-Akiva and Bowman (1995) and Ettema et al. (1997)
proposed a nested-logit model structure in which the choice of trips is
embedded within the choice of complete activity patterns. Recker et al.
(19864, b) earlier proposed a utility-based model called STARCHILD which
incorporates more complex mechanisms for defining and reducing choice-
sets for partial choices.

Besides discrete choice models, discrete-continuous models of activity
generation and scheduling have been proposed within a utility-maximising
framework. These models treat time engaged in activities as a continuous
dependent variable while taking into account the discrete nature of choices to
engage in activities. Kitamura (1984) and Kitamura et al. (1996b) developed
a discrete-continuous model considering the engagement in, and time
allocation to, two types of discretionary activities and formulated the model
as a doubly-censored Tobit model.

Both the time-geographical and utility-based approaches have been
criticised, however, for their inability to account for cognitive constraints
in human decision making. Implicitly, the combinatorial algorithms assume
that individuals have complete knowledge of their environment and consider
all feasible activity patterns. On the other hand, utility-based models allow
bounded rationality in terms of a reduced choice set for each choice involved.
Still in the stage of making a choice, these models assume optimal behaviour
in assuming that individuals invariably compare choice alternatives on a set
of attributes and choose the one that maximises utility.

Computational process models have been introduced as an alternative
approach, as reviewed in Garling et al. (1994), Golledge et al. (1994) and
Kwan and Golledge (1997). These models attempt to model the underlying

Deriving rules from activity diary data 327

individual problem solving process. They assume that the process is
controlled by heuristic decision rules, which have evolved and are contin-
uously adapted through learning processes. Thus, a heuristic rule does not
necessarily produce optimal outcomes, but rather actions that have yielded
satisfactory outcomes under similar conditions in the past. Pendyala et al.
(1997) proposed a dynamic micro-simulator of household activities and
travel called AMOS. The system simulates the scheduling and adaptation of
schedules and resulting travel behaviour of individuals and households.
Kitamura and Fujii (1996b) proposed the PCATS model. This model adopts
Higelstrand’s time-space prism notion and simulates activity choices
sequentially while considering the prism constraints. Certain components
of AMOS and PCATS are very similar to another model, proposed by
Ettema et al. (1994), which also assumed a heuristic and sequential decision
making process. SMASH, as their system is called, is designed to simulate the
process of activity scheduling.

Although current computational process models intend to model cognitive
processes, their theoretical foundation in cognitive psychology is weak.
Production systems, first introduced by Newell and Simon (1972), have been
widely recognised as a natural formalism to model human problem solving
process. Production systems consist of a set of IF-THEN rules (called
productions), a short-term memory and a control mechanism. The control
mechanism matches items of short-term memory with conditions of rules in
long term memory and executes the action of the rule whose condition is met.
These notions were first applied in the area of activity scheduling by Hayes-
Roth and Hayes-Roth (1979). Girling et al. (1989) developed SCHEDULER
which is a rule-based system using some of the earlier concepts. In a later
study, Golledge et al. (1994) demonstrated how this system could be
interfaced with a geographic information system. Vause (1997) argued that a
rule-based system for activity scheduling should consist of specialised rules
for controlling the problem solving process (meta-rules), restricting individ-
ual’s choice sets and making decisions. Kwan (1997) developed GISICAS, a
system for supporting individual’s travel decisions based on a geographic
information system for representing the spatial-environment and heuristic
rules for activity scheduling and finding locations and routes for performing
the activities.

Although rule-based systems have attracted much attention, their use as
predictive models of activity scheduling has been limited, arguably, because a
statistical technique for deriving the rules from activity data is lacking
(Golledge et al. 1994). To date, rule-based models have typically been derived
deductively using common sense. In other application areas, qualitative
knowledge acquisition techniques developed in cognitive sciences (i.e., Al
and cognitive psychology), such as for example interviewing and think aloud
protocols, have been used. However, the qualitative techniques necessarily
rely on the case-study approach and lack a mechanism to optimise models in
terms of a quantitative goodness-of-fit measure. Albatross, an activity-
scheduling model developed by the authors in previous work, is the only
operational rule-based model derived from data (Arentze and Timmermans
2000, 2001). For each step in a pre-defined sequential decision process, a
decision tree induction method is used to construct a decision tree that best
fits activity diary data of a sample of individuals. Although this approach

328 T.A. Arentze et al.

overcomes the problems of deductive and qualitative methods, it relies on
optimising decision models at the level of individual choice facets and,
therefore, does not guarantee an optimal fit at the level of complete activity
schedules. In short, as Golledge et al. (1994) argued, appropriate statistical
techniques for estimating and calibrating computational process models of
activity scheduling, are yet to be defined.

The purpose of the present study, therefore, is to develop and test a
learning algorithm for inductively deriving rules from activity diary data.
The learning algorithm proposed here uses the decision table formalism to
exhaustively represent theoretically possible decision rules that individuals
may use. Activity diary data of a representative sample of individuals are
used to train the system. Through an incremental learning process the system
progressively improves on the selection of rules for predicting the activity
patterns. Hereby, a measure of distance between generated and observed
activity sequences is used to provide feedback.

The paper is structured as follows. First, Sect. 2 discusses the proposed
rule-based scheduling system. Then, Sect. 3 focuses on the learning algorithm
proposed for deriving decision rules from activity diary data. The numerical
properties of the algorithm are tested in a series of computer experiments
using simulated data. The section that follows discusses the results of these
experiments. Finally, the last section summarises the major conclusions and
discusses possible directions for further research.

2 The modelling approach

Scheduling the activities of a given individual for a given day requires a
number of interrelated decisions on several dimensions, such as the nature of
the activities (what?), the timing of the activities (when?), the location where
to perform the activities (where?), the transport mode used for travelling to
out-of-home activities (with which mode?) and accompanying person(s)
(with whom?). In the model that we propose, these decisions are made in a
sequential process. Furthermore, the model assumes that individuals use
decision heuristics in this step-wise process. In the present study, we consider
as an illustrative case the scheduling problem in a more narrow sense. This
problem involves determining the sequence in which the activities are going
to be conducted. We assume that such scheduling decisions take place in a
relatively early stage of the broader scheduling process, as a first step in
determining the timing of activities.

2.1 Model components

The scheduling problem (in a narrow sense) can be described as finding for a
given set of possible activities 4P the ordered set S < A which defines the
selection and sequence of activities that are actually scheduled to take place.
In the proposed system, the problem solving process is controlled by a built-
in algorithm. The algorithm is initialised with an empty set S and builds a
sequence by placing activities one-by-one from A into S, as follows:

Deriving rules from activity diary data 329

(1) Determine the priority of each activity a € AP to add to S;

(2) for each a € AP, from high to low priority;

(2.1) determine the set of feasible positions of « in the current set S;
(2.2) if there are no feasible positions, then evaluate the next activity;
(2.3) determine the priority of each feasible position of a in S;

(2.4) add a to S in the position with the highest priority;

(3) revise S by re-ordering activities.

The above algorithm is based on assumptions about how individuals solve
scheduling (i.e., sequencing) problems. Constraints and preferences related to
decision steps are represented by rules. With respect to the nature of the
proposed rules various assumptions are made.

First, individuals may use different scheduling strategies resulting in
different ways of ranking activities for insertion in the schedule (Step (1)).
For example, individuals may first add the primary activity (e.g., work or
school) for that day to the schedule and next determine the position of other
activities relative to this activity (e.g., a social visit before or after work/
school). Given the sequential character of the process, the chosen order in
which activities are scheduled may affect the final outcome and therefore is
an important decision element.

Second, assessing the feasibility of optional positions for a given activity
(Step (2.1)) is based on knowledge about constraints imposed by the physical
and institutional environment of the individual. Generally these include:

(1) institutional constraints, such as opening hours, influence the earliest and
latest possible times to implement a particular activity.

(2) household constraints, such as bringing children to school, dictate when
particular activities need to be performed and others cannot be
performed.

(3) spatial constraints also have an impact in the sense that either particular
activities cannot be performed at particular locations, or individuals have
incomplete or incorrect information about the opportunities that
particular locations may offer.

(4) time constraints limit the number of feasible activity patterns in the sense
that activities do require some minimum duration and both the total
amount of time and the amount of time for discretionary activities is
limited.

(5) spatial-temporal constraints are critical in the sense that the specific
interaction between an individual’s activity program, the individual’s
cognitive space, the institutional context and the transportation envi-
ronment may imply that an individual cannot be at a particular location
at the right time to conduct a particular activity.

Supposedly, individuals evaluate relevant constraints of these types to
determine the feasibility of each current schedule position for the activity
under concern.

Third, individuals may have preferences for certain position-activity
combinations (Step (2.3)).These may include (i) a preference for a specific
time of the day to conduct the activity (e.g., shopping in morning hours), (ii)
a preference for a specific sequence of conducting activities irrespective the
time of the day (e.g., out-of-home activities before in-home activities), (iii) a

330 T.A. Arentze et al.

preference for specific linkages between activities (e.g., shopping after work
on the route to home), etc.

The result of the above steps is a preliminary schedule. The last step (Step
(3)) considers re-scheduling decisions to optimise the schedule. Also, in later
stages of scheduling and even in the schedule implementation stage, the
schedule may be revised, e.g., to adapt the schedule to accumulated
information about available options or unforeseen events. Re-scheduling is
based on the same types of preference and constraint knowledge that also
underlies schedule construction.

Finally, the model assumes that the choice of heuristics for ranking of
activities and schedule positions is dependent on the specific learning history
of the individual. Decision rules are continuously evaluated and adapted
dependent on the success of generated schedules in attaining the individual’s
objectives. The rule-based model intends to account for possible heteroge-
neity in preferences by considering the household and individual as
potentially discriminating conditions for the success of rules. In other words,
individual and household attributes are included as potentially relevant
condition variables in the model.

2.2 Knowledge representation

Constraint rules and decision rules are treated distinctly in the proposed
system. Constraint rules are a-priori specified by the system designer and
form a fixed component of the system. This reflects the assumption that
constraint rules represent basic knowledge about environments which is
relatively stable over time and invariant across individuals. Space-time
constraints are particularly relevant for activity-travel choices. In the present
model, any set of constraints can be incorporated. Since the choice of
constraint rules does not affect the learning algorithm, we will not further
elaborate this part of the system here.

Decision rules, on the other hand, are represented in the form of decision
tables which are optimised on observed behaviour. This reflects the
assumption that decision rules represent the kind of problem solving
strategies and preferences that tend to vary across individuals and are subject
to adaptation over time.

The decision table (DT) is a well-established technique for structuring
decision problems, but has only recently also been used as a formalism for
representing knowledge in rule-based systems (e.g., Arentze et al. 1996;
Lucardie 1994; Vanthienen and Wets 1994). A DT assumes a set of potentially
relevant continuous or discrete condition variables, C; for i =1...n, and a
discrete action variable, 4, as given. The discrete values of the action variable
represents the alternative actions. Given the domains of condition variables
and action variables, the DT defines an exhaustive set of mutually exclusive
decision rules. The general format of a decision rule can be described as:

if CSU A CSzj, - CSnj then do Aj

where CS); represents the state of the i-th condition variable in the j-th rule
and A; the action alternative prescribed by the j-th rule. A condition state is
defined as a subset of the given domain CD; of the condition variable. Not
necessarily every condition variable is relevant in every rule. When a

Deriving rules from activity diary data 331

condition variable is irrelevant, the condition state is set to the condition
domain, CS; = CD,, implying that every possible condition value satisfies
the condition in that case. The exhaustiveness and exclusiveness properties
impose constraints on the definition of condition states. These properties
make sure that the model is complete and consistent in the sense that each
combination of possible condition values matches with exactly one rule of
the set (for a formal definition of these properties see Wets 1998).

Figures 1 and 2 illustrate the application of the DT in the proposed
scheduling system. The two DTs represent rules for assigning priorities to
activities for adding to the schedule (Fig. 1) and rules for evaluating
alternative schedule positions for each activity (Fig. 2). The two sections of
the DT represent the conditions (upper part) and the actions (lower part) of
the rules. In the present application, the action section represents alternative
scheduling strategies that individuals in the population under investigation
may use. The condition section represents the context variables that may
affect the choice of a strategy. Relevant context variables may include
characteristics of the individual, the activity program, the day of the week, etc.
In the example, the first condition variable represents a household type with
possible values type I and type II according to some classification. The second
variable represents time pressure on the schedule. The columns represent
conditional strategies. For example, if the time pressure on a schedule is high
individuals may display a preference for clustering out-of-home activities,
with the aim to create the conditions for trip chaining. In contrast, if the time

DTI1

Cl Household type 1 I

C2 Time pressure on schedule Low High Low High
Al In-home activities first X - - -
A2 Out-home activities first - X - -

A3 Mandatory activities first - - X -
A4 Non-mandatory activities first - - - X
AS From low to high flextime - - - -
A6 From high to low flextime - - - -

Fig. 1. Arbitrary decision table used for activity ranking in the simulations. X marks the rules
used for generating data

DT2

Cl Household type 1 I

C2 Time pressure on schedule Low High Low High
Al In-home activities first - - - X
A2 Out-home activities first - - X -
A3 Mandatory activities first - X - -
A4 Non-mandatory activities first X - - -
AS Link out-home activities - - - -
A6 Link in-home activities - - - -

Fig. 2. Arbitrary decision table used for activity-position ranking in the simulations. X marks the
rules used for generating data

332 T.A. Arentze et al.

pressure is low the availability of ample time for completing a given activity
may be the dominant criterion. At the same time, the strategies used may
differ, for example, between households with and without children. Thus,
each column in a DT represents a conditional scheduling strategy.

The advantage of the DT over unstructured rule sets is that DTs support a
systematic verification of the consistency and completeness of the model.
Consistency is verified by making sure that the condition states (columns) are
mutually exclusive. Completeness is checked by ensuring that condition states
cover the whole domain of a condition variable. Another motivation for using
the technique in the present context is that DTs facilitate the development of
algorithmic methods of inductive learning, as will be argued in the next section.

3 The learning algorithm
3.1 The problem

Our approach is based on the assumption that it is possible to identify for
each scheduling decision the exhaustive set of possible strategies (actions)
that individuals may use. Furthermore, we assume that it is possible to
specify a-priori for each decision the potentially relevant condition states
(columns). Informally, the search problem can be defined as identifying the
action for each DT and each column within DTs that maximises a given
measure of goodness-of-fit on a given set of observations.

To define this problem more formally, let Cy, be the observed value of
the i(#)-th condition variable of the ¢-th DT for the 4-th individual, A« a
binary variable indicating whether or not the k(7)-th action alternative in the
Jj(£)-th column of the #-th DT is to be selected, S, the observed schedule of the
h-th individual and RBS the rule-based system consisting of DTs ¢. RBS
generates a schedule for each individual and, thus, defines the relationship:

RBS(Ci(o)n> A s k() = S (1)

where S}, is the generated schedule.
Assuming further a measure of similarity, f(S’,S), between any two
schedules S" and S, the optimisation problem can be defined as:

maximise {(0i0} Xh: 7 (84 Sn)
o . 2
while ZAj(t),k(t) =1 Vt,](t) ()
k(1)
The constraint condition states that in every column at least one and not more
than one action is selected. In words, the problem is to find for each DT and

for each DT column the action among a pre-specified set of alternatives that
maximises aggregate similarity between generated and observed schedules.

3.2 Specification of the algorithm
The problem can be conceptualised as one of training a rule-based system based

on examples (i.e., observed schedules). This so-called supervised learning has
received much attention in machine learning and knowledge discovery

Deriving rules from activity diary data 333

literature. With regard to rule-based systems, this work has focused on a
particular subclass of problems, namely the classification of instances given a
set of discrete classes (for a review of the field, see Fayyad 1996). Proposed
systems induce a list of decision rules or a decision tree from supplied examples.
Decision tree induction systems are among the most widely studied and applied
systems. These systems construct a decision tree by recursively splitting a
sample on attributes until all cases within groups are instances of a single class
or no further improvements are possible. The splitting criterion used differs
between systems. For example, C4.5 (Quinlan 1993) and CART (Breiman et al.
1984), which are the most popular decision tree induction systems, use an
information gain and Gini measure as a splitting criterion respectively.

The multi-facet decision problem we are dealing with here cannot be reduced
to a series of single facet classification problems, because there is no
information about what the ‘true’ action at the individual decision step level
is. The only information available is a quantitative measure of the similarity
between an observed and generated schedule that is the result of multiple
decision tables applied in a sequence. Even though the present learning
problem is of the supervised type, the latter property implies that the model has
characteristics in common with unsupervised, re-inforcement learning systems.
Reinforcement learning is learning based on feedback on actions, in terms of a
varying amount of reward, while the system is interacting with the environ-
ment. Reinforcement learning is a relatively recent area of Al. For a review of
the field see Sutton and Barto (1998). Reinforcement learning systems that are
of interest here incorporate a rule-value function, a rule-selection function and
a feedback function. The first function incrementally updates the value of a rule
each time feedback is received and the second function determines the selection
of a rule in each new case based on the current value distribution. The learning
algorithm proposed in this section uses this framework and specifies an
appropriate incremental rule-value update function, a rule-selection function
and feedback function for the present problem.

To develop the system, we conceptualise action alternatives k(f) within
columns j(¢) of DTs ¢ as competing rules, namely rules having the same
condition, but different actions. An error parameter is attached to each rule.
This parameter indicates the past success of the rule in reproducing observed
cases. Each time a case is to be processed, the system selects a rule from each
competing rule set, as a probabilistic function of error values. Each time after
processing a case, the system updates error values of the selected rules based
on feedback in terms of the similarity measure. More formally, the algorithm
can be described as:

(1) supply the system with the first case /;

(2) select an action alternative in each column j(¢) of each DT ¢ based on a
probability function of error values;

(3) generate a schedule given the Cy, -data of the case;

(4) calculate the similarity measure with the observed schedule, e, =1 (S),
Sh);

(5) update the error value of each selected action alternative, given ey;

(6) repeat the procedure for the next case.

The data flows are schematically shown in Fig. 3. This algorithm describes
an incremental learning process in which feedback information is accumu-

334 T.A. Arentze et al.

Activity diary
data

Supply next
schedule, S,

Choose
specification of
rules, ASy;

Determine
similarity
measure, e,

Update error
values, ey,

Generate
schedule, S’

Fig. 3. Data flows in a schedule generation-feedback cycle of the learning system

lated in the error values of rules. The performance of the system will depend
on the specification of the rule-selection function used in Step (2), the
specification of the similarity measure in Step (4) and the method for
evaluating rule error values in Step (5). In the simulations below, different
specifications of the selection function (Step (2)) and methods for evaluating
error values (Step (5)) are tested. Although the specification of a similarity
measure also requires important operationalisation choices (see Joh et al.
2000, 2001; Wilson 1998), this component of the algorithm is kept constant
in the simulations below. An Euclidean distance method is used, i.e. counting
the number of mismatches between elements in corresponding positions in
the activity strings (schedules). When needed, the lengths of the strings are
made identical by adding ‘missing’ values to the end of the shortest string.
Formally:

min(/,m)
e(s,g) = Z 9; — |1 — m| (3)
=1
where
(0 ifsi=g
vi = { —1 otherwise (4)

and e(s, g) is the measure of similarity between strings s and g with elements
s;and g, and / and m are the length of s and g. As implied by this method, the
maximum error value is zero (a perfect match between the strings) and the
minimum value equals —n (a mismatch for all the elements of the two
strings), if the longest string contains 7 elements.

3.3 Calculating rule error values (Step (5))

Two methods for calculating error values are compared in the simulations
below. In the first method, the error value of a rule is expressed as the

Deriving rules from activity diary data 335

average error value across all the cases in which the rule delivered output.
For clarity of presentation, we will drop the subscript ¢ for the DT in the
equations below. Then, the ‘average-error’ method can be written as:

e.?k =

h

Z éfkgeg (5)
= h>0
ejk = >

Z 5jkg

g=1

where: ej?k is the error value of the k-th action alternative in the j-th column after
processing /i cases; dj, is a binary variable denoting whether the k-th action
alternative in the j-th column was selected to generate output in the g-th case
and e, is the measured error in reproducing the g-th case. In words, the values
are initially set to zero and are updated each time a case is processed. In
updating the value, the method assigns the full amount of error to each rule that
contributed to the outcome. Hence, the system (falsely) assumes that each rule
was fully responsible for the result. Because this assumption is not correct, the
absolute values have no meaning. At best, the values give an indication of
average rule performance across all the cases where the rule delivered output.

In the above ‘average-error’ method, the past performance of a rule keeps
exerting influence on the current rule value throughout training. Although
the effect of current performance on the running average becomes weaker
and weaker as training proceeds, the system exhibits a complete memory of
past cases. In the second method, the system still keeps record of past
performance, but the weight of past cases on current error values declines as

training proceeds. This ‘limited-memory’ method can be written as follows:
0
€ = 0
e}.’:ﬂe}kl—l—é- e h>0
Jk Jk Jkh€h

()

where 0 < f < 1 is a pre-specified constant and other elements are defined as
above. The equation has a recursive structure resulting in the following series:

0 _
ejk—

e}k = 6‘jk1€1

ejz-k = fojrier + djer

?;k = B*djer + Bjaer + djzes (7
e;!k = B Ser + frjmer + Bojzes + djaes

Thatis, each time a case is processed a new error term is added to the right-hand
side of the equation. The existing error terms reflect scores in previous cases
and, thus, constitute the memory of the system. If § < 1, the weight of past
cases in the current rule error value decreases reflecting an incomplete memory.

336 T.A. Arentze et al.

The strength of memory (i.e., the influence of history) depends on the chosen
value of 5. As the value approaches one, the strength of memory increases. Zero
and one values correspond to the special cases of no memory and unlimited
memory, respectively. Note that similar constructions have also been used in
studies concerned with modelling history in consumer choice behaviour.

Both the ‘average-error’ and ‘limited-memory’ methods are incremental.
The advantages of incremental learning are that the process is continuous,
accepts noisy data and error values remain bounded.

3.4 The rule-selection function (Step (2))

Each time a case is supplied, the system selects for each column within DTs
an action alternative based on comparing error values. The following
alternative selection functions are investigated: (i) equal probability; (ii)
linear probability; (iii) constant exponential probability and (iv) variable
exponential probability.

First, the equal probability function is included as a null-model against
which the performance of other functions can be evaluated. This function
simply involves a random selection of alternatives. In the other functions
((i1), (iii) and (iv)) the selection probability is a function of weights which are
derived from rule error values, as follows:

Wi = ———2 8)

where wy, is the weight of the k-th action alternative in the j-th column. This
equation applies only to non-zero distributions of ¢ across k. If one or more
of the values equals zero, the system assigns a zero-one weight distribution to
alternatives k. Since error values are equal to or smaller than zero, the above
equation results in weights which are equal to one for the worst alternative
and larger than one for the other alternatives. The /inear probability function

is defined as:
Pjk = e
T wik

k

where pj is the probability of selecting the k-th alternative in the j-th column.

The constant exponential probability function is defined as:

Wik

P
k

©)

(10)

where @ > 1 is a given constant. Finally, the variable exponential probability
function is defined as:

()
ij—m (11)

k

where 7 is the number of cases that has been processed and y > 1 is a given
scale factor.

Deriving rules from activity diary data 337

In the exponential functions 10 and 11, selection probability grows
exponentially (rather than linearly) with increasing rule weight. Hence,
compared to the linear function the exponential functions display a
stronger preference for least-error rule alternatives. In the first function
(Eq. 10), the base number p is a given constant, whereas in the second
function (Eq. 11) the base number increases with the amount of received
training (processed cases). Thus, in the latter function, the slope of the
function is relatively flat in the initial stage and becomes increasingly
steeper as training proceeds.

4 Simulation results
4.1 The case

The learning algorithm was tested based on the scheduling problem
described in Sect. 2. The simulation program that was used consists of two
modules: (i) a module for simulating attribute data in terms of household
and activity-program characteristics and (ii) a scheduling system. Training of
the system involves N times simulating the attribute data and observed
schedule of a case and measuring the distance between the observed and
generated schedule.

Attribute data for each case are generated by drawing randomly a value
for each attribute assuming uniform probability distributions and zero
correlations between attributes. The first attribute simulates differences in
preferences dependent on household type. Two arbitrary household types
were distinguished referred to as Type I and Type II. The activity program
consists of maximally 6 activities. The available time period for conducting
the activities was arbitrarily set to 20 units. An activity program was
constructed by sequentially adding an activity to an initially empty set and
randomly determining an attribute profile for the added activity. The profile
consisted of the following attributes:

— the activity is yes/no in-home;

— the activity is yes/no mandatory;

— the begin time of the activity (a natural number in the range [0, 19]);
— the flextime of the activity (0, 10 or 20 time units);

— the duration of the activity (1, 2, 4 or 8 time units).

The flextime category specifies the degree of flexibility in terms of an interval
around the specified begin time (0 units, =10 units, and +£20 units).
Activities were added to the program until the maximum of 6 was reached or
a next activity would not fit in the available time period of 20 units given the
durations of the activities. Thus, the activity program varies across cases with
respect to the number of activities, the nature of the activities and timing
characteristics. The time-pressure on the schedule was measured as the sum
of the durations of the activities (the median value appeared to be around 14
units).

The scheduling system corresponds to the system described in Sect. 2.
Recall that the system consists of (i) a scheduling algorithm, (ii) rules for
evaluating the feasibility of activity positions and (iii) decision rules (DTs)

338 T.A. Arentze et al.

for determining the priority of activities, evaluating schedule positions and
re-scheduling. With respect to the second component, the system incorpo-
rates only rules for evaluating temporal constraints, i.e. determining whether
an activity fits into a position given begin time, flex time and duration
characteristics of the activities. When a given activity does not fit in any one
of the available positions it was not included in the schedule.

The DTs used for ranking activities and ranking schedule positions are
shown in Figs. | and 2. In both decision tables, the condition section specifies
four condition states (contexts) as specific combinations of household type (1,
I1) and time pressure (Low: <14 units, High: >14 units). The strategies for
activity ranking as well as position ranking, listed in the action sections, are
arbitrarily chosen. For example, the fifth strategy of DT1 states that
activities are to be scheduled in the order of increasing degree of flextime and,
for example, the fifth strategy of DT2 describes a preference for clustering
out-of-home activities. The rules define deterministic rankings of activities
and schedule positions in each step. Ties are arbitrarily solved by selecting
the first activity in the supplied program with equal priority or the first
position in the schedule with equal preference. A ‘real’ scheduling system
would incorporate additional DTs specifying (conditional) additional
strategies for solving ties. This extension would make the system more
realistic, but would not change the structural features which are of concern
here. Finally, for the same reason also the last step, i.e. re-scheduling, was left
out of consideration.

Observed schedules were generated by applying the same scheduling
system with a pre-specified selection of action alternatives. The arbitrarily
chosen alternatives are marked with an X in the figures. Given these
specifications, learning involves discovering the true action alternatives for
each condition state of DT1 and DT2, i.e. finding the specification of the
action space that was used in these tables to generate the observations. Note
that the length of schedules may vary from case to case as a consequence of
the fact that an activity is skipped if no feasible position exists. To give an
indication: in a typical case, around 60% of the schedules contained 6
activities, 38% contained 5 activities and the remaining 2% contained 4
activities.

4.2 Results

Figures 4 and 5 graphically show training results for different specifications
of the rule-selection function, when the ‘average-error’ method (AE-
method) and the ‘limited-error’ method (LM-method) is used to update
error values of rules, respectively. The x-axis represents the number of
training cases processed and the y-axis the results of a validation test.
Validation involves processing an additional set of M = 50 observations
based on the least-error rules (action alternatives) within the columns of
DTI1 and DT2. Performance is expressed as the average error across the
supplied cases in terms of the similarity measure. A zero value indicates
that all observations were correctly predicted after training and a value of
—6 represents the theoretical minimum score (all positions incorrectly
predicted in all cases). Each time after processing 20 cases, training was
interrupted for a validation test and, again continued to process a next set

Deriving rules from activity diary data 339

20 100 180 260 340 420 500 580

1
B s
o
s equal
o "
3 5 /7 I\ linear
8 - JAY
Py expo-const.
g / expo-var.
E
2
K3 -3

-4

Number of training cases processed

Fig. 4. Performance of the ‘average-error’ rule-evaluation method under different rule-selection
functions (p = 20, y = 25)

20 100 180 260 340 420 500 580

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . 0 " .
= -1
E
&
% equal
E 2 / linear
E— \ \/\/\/\/\/ expo-const.
c expo-var.
g 3 /\A /W

B _/—_/ \Y4

4

Number of training cases processed

Fig. 5. Performance of the ‘limited-memory’ rule-evaluation method under different rule-
selection functions (u = 20, y = 25, f = 0.6)

of 20 cases and so on. Thus, the figures show the continuous evolution of
system performance during training. To obtain a clearer picture of trends,
the data shown are averages across 5 runs of this combined training and
validation procedure.

As a general finding, the system identified the ‘true’ rules in all runs and
under a wide range of parameter settings both for the AE and LM-method.
Figures 4 and 5 provide further details. First, with respect to the AE-method
(Fig. 4), the system converged to the optimum solution in each variant of the

340 T.A. Arentze et al.

selection function except in the equal probability variant (i.e., random
selection of rules). Speed of learning is considerably higher under the
exponential functions compared to the linear variant. The constant and
variable exponential functions approximately give the same results. In the
case of the equal probability function, the system does not reach the
optimum even if training is (considerably) prolonged. A closer look reveals
that the system is able to identify the ‘true’ rules of DT2, but fails to find the
‘true’ rules of DTI.

In the case of the LM-method (Fig. 5), the same tendencies emerge but
they are more pronounced. Here, the equal probability function does not
result in visible learning effects. Under this null-model, the system even fails
to identify the ‘true’ rules of DT2. The difference between the exponential
and linear probability functions in learning speed is larger than in the AE-
case. The constant and variable exponential functions perform more or less
the same, like in the AE-case. Under optimal function specification
conditions, the LM-method outperforms the AE-method in terms of learning
speed.

It follows from these results that, in this case, the exponential functions
outperform the linear alternative. Therefore, the (constant) exponential
function was used in further tests of the robustness of the system for
variations in parameter settings. Figure 6 shows the results when the base
number, u, is varied. As it turns out, the performance of the system is more
or less constant for a wide range of parameter values. Figure 7 shows the
result when the f-parameter in the LM-method is varied. Again, the system
exhibits relatively constant performance within a wide range of this
parameter. However, in the extreme case in which the parameter is zero
(no memory), learning does not occur. Although under ‘positive-memory’
conditions differences are relatively small, there seems to be an optimum
around f = 0.6.

20 100 180 260 340 420 500 580

O 1 J
_, L 7/\/§J’<’—J
5
3 —
5 -10
L / .
2 p=15
5 — =20
E p=25
£
a3 {

Number of training cases processed

Fig. 6. Impact of the u-parameter in the constant exponential selection function (‘average-error’
method)

Deriving rules from activity diary data 341

Finally, Figs. 8 and 9 give insight in the underlying process in terms of the
impact of training on least-error values within DT-columns in the AE and
the LM-method, respectively. As an example, the data shown in the figures
relate to DT1. Note that successful learning implies that least-error values
approach zero as training proceeds (asymptotically in the case of the AE-
method). In the AE-method the increase is more regular than in the LM-
method (f = 0.6). In both cases, the system typically zooms in on rules with
different speeds. This reflects the fact that the randomly generated training
cases tend to be unequally distributed across the columns (i.e., combinations
of household type and time pressure), particularly, in the earlier stages of the

20 100 180 260 340 420 500 580

O4—r—v v v

@

g -
_!? £=0.2
R 2 p=0.4
B B=0.6
E 3.8
"g — B:]
g 3.

number of training cases processed

Fig. 7. Impact of the f-parameter in the ‘limited-memory’ method (constant exponential
selection function, p = 20)

20 100 180 260 340 420 500 580 660 740 820 900 980

[T T T T S T T S S T S S S S S S T A S T T S R S S S S R S S RS A S R R

E
E 2T = column1
§ / column2
& / column3
e 31 column4
% |
-

-4

-5

Number of training cases processed

Fig. 8. Impact of training on least-error rule values per column of DTI in the ‘average-error’
method (constant exponential selection function, u = 10)

342 T.A. Arentze et al.

-2 A I
3] | /. === column1
column2
) column3
4T I a2 1T ¥ N IV 1 column4
5 . 3§ 1 sy v .y |

Number of training cases processed

Least-error value

Fig. 9. Impact of training on least-error rule values per column of DT1 in the ‘/imited-memory’
method (constant exponential selection function, x4 = 10)

training process. In other words, the amount of received training at any
moment in the process tends to differ across columns (competing rule-sets).

4.3 Interpretation of the results

The results suggest that, when properly specified, the system is capable of
identifying combinations of rules that underlic a set of observations. An
interpretation in terms of responsible mechanisms is important for gener-
alising these findings to real-world cases. The poor performance of the equal-
probability selection function reflects the existence of interactions between
rules. As it turns out, the success of DT2-rules in ranking activity positions
depends to some extent on the ranking of activities determined by the DT1-
rules. Hence, the true DT2-rules are hard to identify under random selection
conditions of DT1-rules and vice-versa. Linear and exponential rule-selection
functions solve this problem through gradually assigning more weight to
rules that prove to be successful. Initially, all rules are indifferent and,
consequently, have equal probability of being selected. The rules that have
independent positive effects on outcomes are the first to emerge. In
subsequent cycles, these rules obtain higher priority and they create the
conditions under which related rules can prove their value. In the next cycles,
these dependent rules will become influential and, in turn, these rules may
create the conditions for a third group of rules to emerge and so on.

In the present case, this process of progressively fixing strong rules always
converged to an optimum solution. Compared to the linear function, the
exponential functions are more sensitive to differences in error values and
resulted in faster convergence. Further differentiation in sensitiveness
through varying the slope parameter (u or y) of the exponential functions
had only small impacts on learning speed. The case is not fully representative
in the sense that real-world scheduling problems are characterised by more

Deriving rules from activity diary data 343

decision dimensions, stronger interactions between rules and noisier
feedback information. We may expect that in such more complicated cases
the slope parameter becomes critical not only for the speed of learning but
also for finding the optimum. Specifically, the u-parameter of the constant
exponential function has a theoretical optimum. With decreasing values the
system may fail to identify weaker, but ‘true’ rules, whereas with increasing
values the system may become too sensitive for non-systematic variance and
is likely to display a tendency of selecting suboptimal paths.

In this respect, exponential functions with variable base number (y)
potentially combine the advantages of weak and strong sensitiveness. In
these functions, the slope of the function becomes steeper as training
proceeds. Initially, the system is relatively insensitive to differences in error
values between alternative rules and, thus, reduces the risk of zooming in on
a local optimum. As feedback information is accumulating, the system
increasingly discriminates between alternatives and, thus, can optimally
benefit from fixing strong rules. Comparable search mechanisms have also
proven to be powerful in other combinatory-search systems (i.e., the
annealing principle in optimisation methods).

Finally, there is an interaction with the strength of the memory of the
system. In the ‘limited-memory’ method, memory strength can be varied
continuously through the f parameter. Under strong memory conditions,
the influence of past performance of rules on the probability of being
selected is high and system’s behaviour is more consistent. In the earlier
stages of training, true rules are strongly under-evaluated as the assigned
error values reflect performance under relative random rule-selection
conditions. Hence, strong memory probably slows down convergence but,
at the same time, improves the stability of the process. Again, in more
complicated search spaces optimising the memory level will become more
critical.

To conclude, the above mechanisms suggest that in more complicated
cases the optimal specification of parameters controlling sensitiveness and
memory strength of the system will vary from case to case dependent on
characteristics such as consistency of feedback information, length of rule
chains and strength of interactions between rules. Hence, the best strategy
seems to be to fine-tune the system to the specific case at hand based on
goodness-of-fit. The variable exponential selection function and the limited-
memory method seem to be most flexible in this regard.

5 Conclusions and discussion

This paper introduced a learning algorithm for empirically deriving rule-
based models of activity scheduling. For each scheduling facet decision, the
conditional strategies individuals may possibly use are exhaustively repre-
sented in the form of a decision table. In learning from example cases, the
system incrementally adjusts rule-error parameters determining probabilities
of selecting rules for processing a next case. Various specifications of the rule
selection and rule error update functions were investigated using simulated
data. Computer experiments suggest that under a sufficiently wide range of
parameter settings, the system is able to learn effectively how to reproduce
observed schedules.

344 T.A. Arentze et al.

We view that the proposed algorithm brings the problem of how to
empirically derive rule-based models of activity scheduling a step closer to a
solution. The learning-based approach has several advantages especially in
the context of activity-based modelling. First, the system is able to account
for heterogeneity in a population. By including socio-economic variables as
potential condition variables, the system optimises condition-action rules
within the socio-economic segments defined. Second, the system designer has
control over the generalisability and interpretability of the model. If action
alternatives are specified in terms of behavioural strategies, the system is
forced to explain cases in the same behavioural terms. The number of
parameters to be estimated equals the total number of columns across
decision tables. Both behavioural interpretability of rules and the relatively
small number of parameters reduce the risk of overfitting. Third, estimation
of the rule-based model tends to be relatively insensitive for outliers. Because
an individual case can cause at most a minor adjustment of rule values, the
system tends to converge on the set of rules that best fits the majority of
cases. Fourth, the incremental nature of the learning system provides a
method of preserving consistency of the model across multiple data
collections separated in time. A new data set can simply be supplied to a
trained system to improve the accuracy of predictions or, if preferences of
individuals have changed, to adapt the system to the changes in behaviour.
Speed of adaptation can be controlled by the user by means of the memory
parameter of the system. Finally, by defining the feedback function
alternatively in terms of a schedule utility function, the same system can
be used for simulating long-term adaptive behaviour of individuals in
response to changed environments. Specified in that way, the system would
describe the gradual process of transition to new scheduling strategies that
are better adapted to the changed environment.

Even though we may expect, for the reasons mentioned above, that the risk
of overfitting in this type of model is relatively small, a test is still needed to
obtain an indication of validity of the model in ‘real’ applications. This can be
done by training the model on a subset of cases and testing the validity of the
model on the remaining cases. In general, approaches for tackling the problem
of overfitting in supervised learning systems have received considerable
attention in neural network models (e.g., Fischer 2000). These approaches are
potentially relevant for the present type of model as well. Finally, cross-
validation methods are useful to reduce the loss of data for training.

As is true for supervised learning systems in general, the data needs of the
model are relatively big, but, as the case study illustrated, do not exceed the
size of activity diary data sets that are typically used for (estimating) activity-
based models. Having said this, the size of typical data sets do restrict the
number of condition states that can be distinguished. Obviously, the number
of conditions rapidly increases with the number of socio-economic and
context variables one wishes to consider for creating homogeneous groups of
observations. An important problem for future research, therefore, is to
extend the model to optimise the condition states simultaneously with the
conditional selection of rules. Possibly, this can be done by incorporating
heuristics for splitting columns of DTs, for example, that are available in
existing decision tree induction systems. Then, the system would incremen-
tally improve on the segmentation of the condition space and selection of

Deriving rules from activity diary data 345

rules and would not implement more condition states than required for
creating homogeneous groups.

Finally, the present study focused on the selection and sequencing of a
given set of possible activities. Subsequent decisions related to choices of a
location, mode and duration for each activity were left out of consideration.
This is not a limitation of the system. It is possible to extend the specification
of the system to cover the more encompassing scheduling problem simply by
adding a decision table and appropriate constraint rules for each activity
dimension and run the same learning algorithm on the extended set.
Although the search space becomes larger, there is no principle restriction
imposed by the learning algorithm on the number of decision steps in the
scheduling model. Only, the similarity measure needs to be extended to
measure the distance between a generated and observed pattern in multi-
dimensional space. Recently, multi-dimensional methods of measuring
similarity between activity patterns have become available so that this
extension can be readily implemented (Joh et al. 2000, 2002).

References

Arentze TA, Timmermans HJP (2000) Albatross: A Learning-Based Transportation Oriented
Simulation System. European Institute of Retailing and Service Studies, Eindhoven, The
Netherlands

Arentze TA, Timmermans HJP (2001) Albatross — A Learning-Based Transportation Oriented
Simulation System. Transportation Research B (forthcoming)

Arentze TA, Borgers AWJ, Timmermans HJP (1996) The integration of expertise knowledge in
decision support systems for facility location planning. Computers, Urban Environments and
Systems 19:227-247

Ben-Akiva ME, Bowman JL (1995) Activity-based disaggregate travel demand model system
with daily activity schedules. Workshop on Activity Based Approaches: Activity Scheduling and
the Analysis of Activity Patterns, Eindhoven, The Netherlands

Bhat C, Koppelman F (1999) Activity-based modeling of travel demand. In: Hall R (ed)
Handbook of Transportation Research, Kluwer Academic Publisher, New York, pp 35-61

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees.
Wadsworth, Belmont, CA

Cullen I, Godson V (1975) Urban Networks: The structure of activity patterns. Progress in
Planning 4:1-96

Ettema DF, Timmermans HJP (1997) Theories and models of activity patterns. In: Ettema DF,
Timmermans HIJP (eds) Activity-Based Approaches to Travel Analysis. Elsevier Science,
Oxford, pp 1-36

Ettema DF, Borgers AWJ, Timmermans HJP (1994) Using interactive computer experiments for
identifying scheduling heuristics. 7" International Conference of the Association for Travel
Behaviour Research, Santiago, Chile

Ettema D, Daly A, Jong de G, Kroes E (1997) Towards an applied activity based travel demand
model. 74 BTR-Conference, Austin, Texas

Fayyad UM, Shapiro GP, Smyth P, Uthurusamy R (1996) Advances in knowledge discovery and
data mining. MIT Press, London

Fischer M (2000) Methodological challenges in neural spatial interaction modelling: The issue of
model selection. In: Reggiani A (ed) Spatial Economic Science: New Frontiers in Theory and
Methodology. Springer, Berlin, pp 89-101

Girling T, Kwan M-P, Golledge RG (1994) Computational process modelling of travel activity
scheduling. Transportation Research B 25:355-364

Girling T, Brdnnds K, Garvill J, Golledge RG, Gopal S, Holm E, Lindberg E (1989) Household
activity scheduling. Transport policy, management and Technology towards 2001: Selected

346 T.A. Arentze et al.

Proceedings of the Fifth World Conference on Transport Research 4, Western Periodicals,
Ventura, pp 235-248

Golledge RG, Kwan M-P, Girling T (1994) Computational process model of household travel
decisions using a geographic information system. Papers in Regional Science 73:99-118

Higerstrand T (1970) What about People in Regional Science? Papers of the Regional Science
Association 23:7-23

Hayes-Roth B, Hayes-Roth F (1979) A Cognitive model of planning. Cognitive Science 3:275—
310

Joh C-H, Arentze TA, Timmermans HJP (2001) Multidimensional sequence alignment methods
for activity-travel pattern analysis: A comparison of dynamic programming and genetic
algorithms. Geographical Analysis 33:247-270.

Joh C-H, Arentze TA, Hofman F, Timmermans HJP (2002) Activity pattern similarity: A
multidimensional alignment method Transportation Research B, (forthcoming)

Jones PM, Dix MC, Clarke M1, Heggie 1G (1983) Understanding Travel Behaviour. Gower,
Aldershot

Kitamura R (1984) A Model of daily time allocation to discretionary out-of-home activities and
trips. Transportation Research 18B:255-266

Kitamura R, Fujii S (1996) Two computational process models of activity-travel behavior. Paper
Presented at the Informs San Diego Conference, San Diego

Kitamura R, Yamamoto T, Fujii S (1996) A discrete-continuous analysis of time allocation to
two types of discretionary activities which accounts for unobserved heterogeneity. In: Lesort J-
B (ed) Transportation and Traffic Theory. Elsevier, Oxford, pp 431453

Kwan M-P (1997) GISICAS: An Activity-based travel decision support system using a GIS-
interfaced computational process model. In: Ettema DF, Timmermans HIJP (eds) Activity-
Based Approaches to Travel Analysis, Elsevier Science, Oxford, pp 263-282

Kwan M-P, Golledge RG (1997) Computational process modelling of disaggregate travel
behaviour. In: Fischer MM, Getis A (eds) Recent Developments in Spatial Analysis: Spatial
Statistics, Behavioural Modelling and Computational Intelligence. Springer, Berlin Heidelberg
New York pp 236-252

Lenntorp B (1976) Paths in Space-Time Environment: A Time Geographic Study of Possibilities of
Individuals. Lund: The Royal University of Lund, Department of Geography. [= Lund Studies
in Geography, Series B, Human Geography, vol. no 44]

Lucardie GL (1994) Functional Object-Types as a Foundation of Complex Knowledge-Based
Systems. Ph.D.-Dissertation, Eindhoven University of Technology, Eindhoven, The Nether-
lands

Newell A, Simon HA (1972) Human Problem Solving. Prentice-Hall, Englewood Cliffs

Pendyala R, Kitamura R, Chen C, Pas E (1997) An activity-based micro-simulation analysis of
transportation control measures. Transport Policy 4:183-192

Recker WW, McNally MG, Root GS (1986a) A model of complex travel behaviour: Part 1:
Theoretical Development. Transportation Research 20A:307-318

Recker WW, McNally MG, Root GS (1986b) A model of complex travel behaviour: Part 2: An
Operational Model. Transportation Research 20A:319-330

Quinlan JR (1993) C4.5 Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo

Sutton RS, Barton AG (1998) Reinforcement Learning: An Introduction. MIT Press, London

Vanthienen J, Wets G (1994) From decision tables to expert system shells. Data and Knowledge
Engineering 13:265-282

Vause M (1997) A rule-based model of activity scheduling behaviour. In: Ettema DF,
Timmermans HJIP (eds) Activity-Based Approaches to Travel Analysis. Elsevier Science,
Oxford, pp 73-88

Wets G (1998) Decision Tables in Knowledge-Based Systems: Adding knowledge discovery and
fuzzy concepts to the decision table formalism. Ph.D.-dissertation, Eindhoven University of
Technology, Eindhoven, The Netherlands

Wilson WC (1998) Activity pattern analysis using sequence alignment methods. Environment and
Planning A 30:1017-1038

