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Abstract. In this paper we develop a spatial association statistic for ¯ow data
by generalizing the statistic of Getis-Ord, Gi (and Gi*). This local measure of
spatial association, Gij, is associated with each origin-destination pair. We
de®ne spatial weight matrices with di¨erent metrics in ¯ow space. These
spatial weight matrices focus on di¨erent aspects of local spatial association.
We also de®ne measures which control for generation or attraction non-
stationarity. The measures are implemented to examine the spatial association
of residuals from two di¨erent models. Using the permutation approach, sig-
ni®cance bounds are computed for each statistic. In contrast to the Gi statistic,
the normal approximation is often appropriate, but the statistics are still cor-
related. Small sample properties are also brie¯y discussed.
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1 Introduction

Recently there has been a growing interest in local indicators of spatial asso-
ciation. This is partly generated by the need and possibility to analyse the
large amount of spatial data that has become available. Anselin and Bao
(1997) argues that most of the global measures of spatial association were
developed when computer power was scarce and data sets were small. Global
measures of spatial association and spatial autocorrelation do not take ad-
vantage of the capabilities of GIS. The local indicators of spatial association,
on the other hand, is more informative in that they can be visualised in a GIS,
and pockets of nonstationarities (hot spots and spatial outliers) can be identi-

* An earlier version of this paper was presented at the European Regional Science Association
Conference in Rome, Italy, August 1997. Part of this research has been ®nanced by ®nancial
grants from the Swedish Transport and Communications Research Board and Center for Geo-
informatics, Royal Institute of Technology, Sweden.



®ed. One intuitive measure of local spatial association that has gained wide
spread acceptance is the Gi statistic, which was introduced by Getis and Ord
(1992). The Gi statistic identi®es neighbourhoods of zones with high or low
values. This measure of local spatial association was generalised in Ord and
Getis (1995) to allow for non-binary spatial weight matrices and non-positive
values. This generalisation allows the Gi statistic to be applied to residuals
from a model, which provides us with a tool for assessing the structure of the
error term and identifying nonstationarities. Although the Gi statistic is for-
mulated for data with scalar values, it can be generalised to vector data. The
Gij statistic suggested in this paper will be associated with each origin and
destination pair.

In ¯ow models, such as spatial interaction models of migration and tra½c,
spatial association and network association are important aspects. However,
the spatial structure of the error term in ¯ow models has not until recently
received much interest in the literature1. Black (1992) distinguishes between
network autocorrelation and spatial autocorrelation. Spatial autocorrelation
in his terminology concerns the in¯uence of variables in one location on vari-
ables in other (neighbourhood) locations. Network autocorrelation, on the
other hand, concerns the in¯uence on values associated with a link on other
links which are interconnected. Black (1992) examines global network auto-
correlation using Moran's I. The objective of this paper, on the other hand, is
to identify local network and spatial association with the use of the Gi statistic.

The Gij statistic proposed in this paper is applied to measure local spatial
association in residuals from ¯ow-models. In the context of the modelling
process, measures of this kind apply to the model evaluation. In model eval-
uation, tools for assessment of the structure of the error term are important.
For some estimators, underlying assumptions of the distribution may be vio-
lated and corrections may be necessary. The tools at hand for testing and
evaluating models in a spatial sense can be divided into two categories,
focused and general tests, see Besag and Newell (1991). General tests, e.g.
Moran's I and Geary's c, return a number (global statistic) similar to the
Durbin-Watson statistic in time series analysis. Hence, general tests give us
information whether spatial correlation is present or not. They give no answer
whether the correlation is more pronounced at certain locations. This is a
weakness, but in return general tests are robust in a statistical sense due to the
often large number of observations at hand. Once a general test statistic is
calculated, space is eliminated. The preservation of space in focused tests gives
a more descriptive character. A well known focused test statistic (or localised
statistic) is the Gi (and G �i ) statistic mentioned above. Localised statistics can
be mapped, and can reveal nonstationarity that global statistics fail to iden-
tify. Fotheringham (1994) argues that localised statistics are more informa-
tive, if they can reveal how relationships between di¨erent sets of variables
vary over space. Although the local Gi statistic can identify where there are
nonstationarities, it can not by itself reveal the nature of how relationships
between variables vary over space. We show that using di¨erent spatial weight
matrices we can gain information of the nature of nonstationarity.

1 Bolduc (1992) and Bolduc et al. (1995) are notable exceptions. In a model of mode choice, they
split the error component in three parts, one part related to origin zones, one related to destination
zones, and one part related to the link from origin to destination. Estimating this model gives
evidence of global autocorrelation.
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In this paper we analyse spatial association in ¯ow patterns, by applying
the Gij statistic to residual ¯ows from two models, one migration model and
one commuting model. The two models are quite di¨erent and demonstrate
the usefulness of the Gij statistic as a local measure of spatial association. The
theoretical property of normally distributed residuals from a properly esti-
mated OLS allows us to make comparisons between the conditional permu-
tations approach and normal approximations in the ®rst model. The second
model enables us to address small sample properties of the proposed statistic
and methods for establishing signi®cance bounds when the underlying distri-
bution is unknown.

The paper is organised as follows. In section two we de®ne the statistic in
its general form, and de®ne di¨erent measures to be used in the applications.
In section three the results of the ®rst application are reported. In this appli-
cation, the structure of the error term in an OLS migration model is assessed,
and more speci®cally local spatial nonstationarities are identi®ed. The condi-
tional permutations approach is employed for (pseudo-)signi®cance tests, and
its properties are discussed. In section four we employ the Gij statistic to
analyse residuals from a logit model of commuting patterns in a small scale
application. Distribution and correlation properties of the measures are dis-
cussed. In the concluding section we discuss the results.

2 De®nition of the Gij statistic

As a starting point we take the Gi statistic (Getis and Ord 1992), which is
simply taken as the ratio of sum of values in a neighbourhood around a
location (zone) to the sum of all values (in the whole sample), as follows

Gi �
P

j; j0i wij yjP
j; j0i yj

; �1�

where wij is the common binary spatial weight matrix. A G�i statistic can also
be de®ned, where the asterisk denotes that we also include the observation at
location i. Signi®cance bounds for Gi (and G �i ) can easily be established if the
underlying distribution is normal, and the result can be mapped for visual-
isation and analysis. A high and signi®cant value in a location indicates spa-
tial clustering of high values. A small and signi®cant value indicates clustering
of small values around the location. This is di¨erent than the interpretation of
many other statistical measures, e.g. Moran's I, where a high value indicates
spatial association of similar values, while a small (negative) value indicates
spatial clustering of dissimilar values.

In Ord and Getis (1995), (1) was generalized to allow for nonpositive ob-
servations as well as nonbinary spatial weights. In its general formulation,
given a spatial weight matrix W � �wij �, the statistic is de®ned as

Gi�W� �
P

j wij yj ÿWiy

sf�nÿ 1�S1 ÿW 2
i =�nÿ 2�g1=2

�2�
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where

y � 1

nÿ 1

X
j; j0i

yj; �3�

s2 � 1

nÿ 2

X
j; j 0 i

�yj ÿ y�2; �4�

Wi �
X

j

wij; �5�

S1 �
X

j; j 0 i

w2
ij ; �6�

and n equals the number of zones. This generalisation allows the statistic to be
applied to residuals from a model.

Although the Gi statistic was de®ned in the context of scalar observations
in each zone, it is easily generalised to ¯ow data. If we, in equation (2), let i
denote the ¯ow from i to j, j the ¯ow from k to l, and n the number of ¯ows,
equation (2) can be directly applied to ¯ow data. It is more informative to
explicitly de®ne the Gi statistic to be applied on ¯ow data. Let rij denote ¯ows
between each pair of zones. Then, given a spatial weight matrix W � �wij;kl �,
we de®ne2

Gij�W� �
P

k; l wij;klrkl ÿWij r

sf�tÿ 1�S1 ÿW 2
ij =�tÿ 2�g1=2

; �7�

where t equals the number of ¯ows,

r � 1

tÿ 1

X
kl; �k; l�0�i; j� rkl ;

s2 � 1

tÿ 2

X
kl; �k; l�0�i; j��rkl ÿ r�2;

Wij �
X

kl; �k; l�0�i; j� wij;kl ;

S1 �
X

kl; �k; l�0�i; j�
w2

ij;kl :

In our applications rij will represent residual ¯ows,

rij � Tij ÿ T̂ij; �8�

where Tij is the observed ¯ow between zone i and zone j and T̂ij is the esti-
mated ¯ow by some model.

2 Including the ¯ow from i to j de®nes the G �ij statistic in analogy with the G �i statistic.
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Since equation (7) still is the Gi statistic, the intuition of the measure is still
valid when applied to ¯ow data. Computing this statistic for a ¯ow associated
with an origin-destination pair �i; j� and establishing signi®cance bounds will
indicate that in a neighbourhood of this ¯ow (to be de®ned below) there is
spatial clustering of low or high ¯ows. What remains to be de®ned is only a
metric in ¯ow space, or more speci®cally, the spatial weight matrix in ¯ow
space. Let us consider the simple and often applied binary spatial weight ma-
trix. With scalar data, the meaning of a zone being the neighbour of another
zone is clear, but how do we de®ne neighbourhoods of ¯ows?

We will in this paper use two di¨erent kind of weight matrices. In the ter-
minology of Black (1992) they focus on di¨erent aspects of association,
viz. spatial association and network association. Spatial association, by this
de®nition, is association that falls back on the spatial weight matrix among
zones, in other words the con®guration of zones. We will use the following
two binary spatial weight matrices (illustrated in Fig. 1 A and B, respectively):

W d � �wij;kl � � 1 if i � k and wjl � 1

0 otherwise

�
�9�

W o � �wij;kl � � 1 if j � l and wik � 1

0 otherwise

�
�10�

where wij denotes elements of the traditional binary spatial weight matrix,
i.e. wij equals one if i and j are neighbours, and zero otherwise. Thus, in the
numerator of equation (7), with W d we sum over ¯ows from i to a neighbour-
hood of j, and with W o we sum over ¯ows from a neighbourhood of i to j.

Although a binary spatial weight matrix is often used in applications, it is
often seen only as a ®rst approximation, and more general forms of weight
matrices should be considered. It is often, however, di½cult to single out one
particular weight matrix from a number of candidates. Following Bolduc
(1992) and Bolduc et al. (1995) we have also employed a more general form,
with parameterised spatial weights,

W y � �wij;kl � � �dil � djk�ÿy; �11�
where dij denotes the distance between zone i and j.

Network association, on the other hand, is de®ned from the con®guration
of (abstract) links. Black (1992) de®nes a binary spatial weight matrix where

$ %

& '

i=k

j

l

j=l

i

k

i j=l kj i=k l

Fig. 1. Illustration of weight matrices
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two links are considered to be neighbours (weight equals one) if they are (di-
rectly) interconnected. We will consider two di¨erent spatial weight matrices
of this kind. First, we can let the weight equal one for all ¯ows from a zone i
(see Fig. 1C). With this de®nition, we can assess whether all ¯ows from i are
small or large, independent of destination j. Hence, using such a spatial weight
matrix we can de®ne a measure which is independent of destination j,

G �i� �
P

j rij ÿ nr

sf�tÿ 1�nÿ n2=�tÿ 2�g1=2
; �12�

where r is the average and s is the standard deviation of ¯ows between all
pairs of origins and destinations, and n equals the number of zones3. r may
be approximately equal to zero, for instance if rij are residual ¯ows from a
properly speci®ed regression model.

Second, in a similar way we can de®ne a measure which is independent of
origin i by assigning a spatial weight matrix where the weight equals one for
all ¯ows with destination in j, as indicated by Fig. 1 D. We de®ne the corre-
sponding measure as

G��j �
P

i rij ÿ nr

sf�tÿ 1�nÿ n2=�tÿ 2�g1=2
: �13�

This measure is independent of origin i and indicates whether the zone j does
have large or small in¯ow.

As de®ned above, and in Ord and Getis (1995), in the derivation of the Gi

statistic it is assumed that all observations are distributed with equal proba-
bility under the null hypothesis of no spatial association. This is also the
underlying assumption when establishing signi®cance bounds with the condi-
tional permutation approach. However, Bao and Henry (1996) argue that this
may be a strong assumption, and they generalise the Gi statistic to allow for
spatial heterogeneity. This is relevant also when applied to ¯ow-data. For in-
stance, the observations of ¯ows from zone i may be drawn from a di¨erent
distribution than the ¯ows from other zones. Consider a origin-destination
pair with a signi®cant Gij�W d� statistic, indicating that there is local non-
stationarity in ¯ows from i to a neighbourhood of j. A large Gij�W d� can also
be partially or totally attributed to nonstationarity of generation factors as-
sociated with the origin. If this is the case, then the underlying assumption
that all ¯ows are drawn from the same distribution may be violated. To con-
trol for such errors in generation factors, we can compare the ¯ows from the
origin i to a neighbourhood of the destination j with the ¯ows from the origin i
only. In equation (7) we let t � n and

r � ri �h
P

l; l0j ril

nÿ 1
�14�

s2 � s2
i �h

P
l; l0j�ril ÿ ri�2

nÿ 2
: �15�

3 Note that there is no corresponding Gi� statistic, since this statistic would not be independent of j.
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We will use the notation G i
ij�W d� for the measure de®ned by (7), (9), (14)

and (15) to indicate that we compare with ¯ows from i alone, instead of all
¯ows in the sample4. In the perspective of spatial heterogeneity of Bao and
Henry (1996), the Gi

ij�W d� statistic is derived under the assumption that all
¯ows from (only) zone i are equally probable under the null hypothesis of no
spatial association in the ¯ows from zone i alone.

3 First application: Migration model

In this ®rst application we compute the proposed measures to analyse spatial
association of migration ¯ows. The migration model used to generate re-
siduals for this application is of standard type for its purpose, viz. a loglinear
gravity model estimated with OLS5. We estimate gross ¯ows of migrants in
east central Sweden, Stockholm county and surrounding regions. There are
53 zones (municipalities), and consequently 2756 OD-pairs6. As determinants
associated with the origin and destination zones we use: the relative unem-
ployment in the origin zone, the total population in both origins and destina-
tions, ratio between housing prices in origin and destination zones7, and a
dummy-variable if the destination zone is a regional centre. As a determinant
describing the distance friction we use distance in kilometers between each
pair of zones, and a dummy for origins and destinations within the same
county. In Table 1 the estimates are given.

The measures of local spatial association as de®ned above have been im-
plemented in a computer program, which as input takes spatial weight matri-
ces from a GIS8 and residual matrices from the estimated migration model.
The Gij statistics computed by the program have then been imported into the
GIS again for further analysis and visualization. In general, the modelling
process can bene®t from a close integration with GIS. Since space is always
present with localised statistics, a GIS is a natural platform for the analysis.
Also, given the amount of data when working with ¯ow data, a GIS is essen-
tial for visualization of ¯ow data, even in small applications.

To establish signi®cant bounds we have relied on the conditional permu-
tation approach with 1000 permutations. This approach is recommended in
Anselin (1995). The permutation approach as de®ned in, e.g., Anselin (1995)
or Ord and Getis (1995), assumes that all observations (or zones) are equally
probable9. Hence, under the null hypothesis of no spatial association we
assume that the residuals are not correlated. It is important to realize that
the residuals do not represent the correct error term in the presence of spatial
association. Regression residuals are in fact imperfect estimates for the un-

4 G
j

ij �W o� statistic can be de®ned analogously.
5 Note that a unconstrained gravity model may be seen as a cross product measure of spatial
association, as well as a measure of spatial interaction (see Getis 1991). In this perspective, fol-
lowing the arguments of Getis (1995), the residuals from a gravity type model may be considered
as data generated from a ®ltering process.
6 Data was obtained from Statistics Sweden for the period of 1992±1994.
7 The ratio between housing prices in origin and destination is included in the model as a deter-
minant of location within a labour market rather than a determinant of migration between labour
markets. Housing prices refers to prices of single family dwellings.
8 We have used a transport oriented GIS, TransCAD.
9 As discussed earlier, this assumption has been relaxed in Bao and Henry (1996). In the case of
G i

ij�W d� statistic, we randomize over the ¯ows from zone i only, as discussed in Section 2.
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observed error terms in the presence of spatial association10. This is not a
problem speci®c for the approach taken in this paper, but rather a general
problem when applying e.g. the Moran's I in a residual analysis. However, the
problem should be kept in mind when discussing pseudo-signi®cance tests.
The Gij statistic applied in this paper should therefore primarily be considered
as an explorative tool.

We start our analysis by examining the Gij�W o� statistic. Intuitively, the
statistic identi®es pockets of ``hot ¯ows'' from a neighbourhood of origin i to a
destination j.

Considering Fig. 2a,b we observe that some municipalities outside central
Stockholm (Salem in the south and NorrtaÈlje in the north) have many sig-
ni®cant statistics of the same sign. This indicates that there is spatial non-
stationarity in ¯ows when these two municipalities are destinations. Given

Significant residuals
1HJDWLYH

3RVLWLYH

a

Significant residuals
1HJDWLYH

3RVLWLYH

b

Fig. 2a,b. Flows with high (low) Gij�W o� statistic, indicating high (low) residual ¯ow from a
neighbourhood of zone i to zone j. (a) The whole area; (b) detail of the Stockholm region

Table 1. Estimation results, from migration model.
All coe½cients are signi®cant at the 99% level

Variable Coe½cient

unemployment 0.628
population, origin 0.736
population, destination 0.680
regional center (dummy) 0.821
housing price ratio ÿ0.076
distance (km) ÿ1:071
R2 adjusted 0.82

10 See Anselin (1988) pp. 102±103 and references cited there.
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locations with many signi®cant Gij�W o�, generation or attraction factors may
be misspeci®ed. To this end, we apply the G �i� and G��j statistics de®ned by
equations (12) and (13), which are test statistics for local nonstationarities in
generation and attraction factors, respectively.

Studying the G �i� and G ��j statistics in Fig. 3a and b we ®nd that one of the
municipalities with many signi®cantly large Gij�W o� statistics (NorrtaÈlje)
does indeed have signi®cant high G ��j statistics. This might indicate that the
signi®cant Gij�W o� statistics for this municipality could be attributed to non-
stationarity in destination characteristics. Salem on the other hand does not
have signi®cant G ��j statistic, indicating that the negative signi®cant Gij�W o�
statistics can be attributed to origin-destination characteristics. In migration
terms, there is a resistance to move to Salem from municipalities in northern
Stockholm. This seems plausible given some background knowledge of the
socioeconomic pattern in southern and northern Stockholm. The only (proxy)
socioeconomic variable included in the model is prices of single family dwell-
ings. The northern parts of Stockholm are characterised by high incomes and
high educational level, while the opposite is true for the southern part of
Stockholm, such as Salem and its neighbourhood.

Also, note that there are signi®cant Gij�W o� statistics within the Stock-
holm region apart from Salem and NorrtaÈlje. This may partly be explained by
the structure of the model. The model includes variables re¯ecting conditions
in the labour market, which is standard practice in migration modelling. Only
one of the variables (ratio of housing prices) is of relevance for choice of resi-
dence. However, the mobility within the Stockholm region is relocation rather
than migration.

While the map of Gij�W o� statistics shows signi®cant values mainly within

Significance
1HJDWLYH
,QVLJQLILFDQW
3RVLWLYH
2WKHU

a

Significance
1HJDWLYH
LQVLJQLILFDQW
3RVLWLYH
2WKHU

b

Fig. 3a,b. Zones with signi®cantly high (low) G �i� statistic, indicating high (low) aggregate out¯ow
from a neighbourhood of zone i and in b) zones with high (low) G ��j statistics indicating high (low)
aggregate in¯ow to a neighbourhood of zone j. (a) G �i� ; (b) G ��j

Identifying local spatial association in ¯ow data 227



the Stockholm region, the Gij�W d� statistics, considering ¯ows from a zone i
to a neighbourhood of zone j, provides us with a quite di¨erent picture (see
Fig. 4). The pattern of signi®cant Gij�W d� statistics, have origins in the
Stockholm region and destinations in southwest part of the area. The source
in the southwest is the university city, LinkoÈping. Also note, in Fig. 3a, that
the G �i� statistic is positively signi®cant for LinkoÈping. However, the Gij�W o�
statistics is not signi®cant at LinkoÈping. This indicates that the non-
stationarity indicated by the Gij�W d� and G �i� statistics is associated with the
origin LinkoÈping itself, and not with the neighbourhood of LinkoÈping. While
LinkoÈping is a university city, the surrounding municipalities exhibit quite
di¨erent characteristics. The analysis shows that in the presence of spatial
heterogeneity, like in the neighbourhood of LinkoÈping, it is important to
assess nonstationarities with di¨erent spatial weight matrices. Studying only
the Gij�W o� statistic there is no evidence of nonstationarity in migration ¯ows
from LinkoÈping to Stockholm.

As the Gij�W d� has been de®ned, a positive (negative) and signi®cant value
indicates that the size of the residuals from a zone i to a neighbourhood of
zone j are larger (smaller) than expected. But the signi®cance of the Gij�W d�
may be attributed totally or partially to local nonstationarities in the ¯ows
from the origin. In order to test this, we can make use of the measure Gi

ij�W d�

Significant
Negative
Positive

Fig. 4. Flows with high �low� Gij�W d� statistic, indicating high (low) residual ¯ow from zone i to
a neighbourhood of zone j
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as de®ned by equation (7), (9), (14) and (15). With this measure we compare
the ¯ows from the origin i to a neighbourhood of the destination j with the
¯ows from the origin i only, rather than all ¯ows in the sample. This gives a
measure which is more sensitive to local spatial association with respect to
attraction factors.

As discussed in Sect. 2, the Gi
ij�W d� statistics and signi®cance bounds are

derived under the null hypothesis of no spatial association in ¯ows from
location i. With this measure we control for nonstationarities in generation
e¨ects from zone i. With the Gij�W d� statistic, on the other hand, we do not
control for generation e¨ects from zone i. These generation e¨ects, in turn, are
assessed by the G�i� statistic. In Fig. 5 the two di¨erent statistics are plotted
against G �i� . As expected, there is some correlation in a), while there is no vis-
ible correlation in b)11. Correlation of di¨erent measures illustrates the im-
portance of considering di¨erent spatial weight matrices.

As indicated by Fig. 5, there is a relationship between the Gij�W d� statis-
tics and the G �i� statistics. We can analyze the stability of the G �i� statistics by
studying the variance of Gij�W d� . For instance, note that the variance of the
highest G �i� statistic (equal to 6.3) does have a low variance. In fact, the highest
Gij�W d� statistic associated with the zone with the lowest G �i� statistic is just as
high as the highest Gij�W d� statistic associated with zone with the highest G �i�
statistic, indicating a large degree of instability.

The relationship between the di¨erent statistics can be illustrated by con-
sidering an example where all zones have the same number of neighbours, m,
e.g. a lattice. Then we can write

G�i� �
X

j

kjG
�
ij �W d�; �16�

where

kj � 1

m

f�tÿ 1�mÿm2=�tÿ 2�g1=2

f�tÿ 1�nÿ n2=�tÿ 2�g1=2
: �17�

In this case the G �i� statistics can be computed as a (weighted) average of
G �ij �W d�. Equation (16) illustrates how the stability of G �i� statistics can be
analyzed by the G �ij �W d� statistics12. However, generally the G �i� statistics
cannot be written as a weighted sum of G �ij �W d�. The analysis of the stability
of the G �i� statistics should therefore be considered as preliminary.

Normality and correlation

Although the Gij statistic is asymptotically normally distributed, in most ap-
plications so far the validity of the normal approximation has been unclear. In

11 Interestingly enough, there is no correlation between Gij�W o� and Gij�W d� (not shown in
®gure). This indicates that the using di¨erent spatial weight matrices allow us to study di¨erent
aspects of local nonstationarity.
12 This is reminiscent of the de®nition of LISA (see Anselin 1995). A weighted sum over local
indicators of spatial association gives a global measure of spatial association. The G �i� statistic is
not a global statistic, but it does remove the ¯ow dimension (direction) in the same way as a global
statistic removes space.
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this application with residuals from a OLS model, normality is not a problem,
since the residuals from a properly estimated OLS should be normal. To
establish this we can examine the distribution of each of the 2756 statistics
(the residual matrix contains 2756 elements when the diagonal is excluded).
A Jarque-Bera test (JB-test) for each statistic reveals that the null hypothesis
of normal distribution cannot be rejected.

However, although being theoretically normally distributed, the Gij statis-
tics are still correlated with each other13. This calls for some correction and a
permutation approach is appropriate. Since the distribution of the statistic is
indeed normal, we can compare an uncorrected normal approximation with
the conditional permutation approach. The uncorrected normal assumption

13 Anselin (1995) discusses more extensively the normal approximation compared to the condi-
tional permutation approach. In the presence of global autocorrelation, the permutation approach
is preferable. This holds true also if the underlying distribution (in this example the residuals) is
normally distributed.
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Fig. 5. Upper ®gure Gij�W d� plotted against G �i� . Lower ®gure G i
ij �W d� plotted against G �i�
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failed to establish signi®cance in 7 cases when the permutation approach in-
dicated signi®cance, while in 16 cases the normal assumption indicated sig-
ni®cance when the permutation approach did not indicate signi®cance, out of
the computed 2756 statistics. Whether this is a negligible di¨erence or not
depends on the application at hand.

The Gij statistics are easily computed, and usually signi®cant bounds can
easily be established with the conditional permutation approach. This is a
prerequisite when the statistic is to be used as a method in exploratory spatial
data analysis. When working with ¯ow data, the amount of data is often very
large. In this application we have 2756 ¯ows. Also, the spatial weight matrix is
four dimensional. In a straight forward computation of signi®cance bounds
with a general spatial weight matrix, the computational burden becomes large.
In this application it took approximately 24 hours to compute signi®cance
bounds with the W y spatial weight matrix, de®ned in equation (11). This is
not feasible in an explorative spatial data analysis. However, if we in an ex-
plorative analysis allow for some approximations, the computational burden
can be reduced.

For instance, the di¨erence between conditional permutation and permu-
tation with all ¯ows (also the ¯ow from i to j) can be neglected in an applica-
tion with this amount of ¯ows (and this spatial weight matrix). Furthermore,
there is no need to perform permutation for all ¯ows. An average over a small
sample of origin-destination pairs provided a good approximation for the
signi®cance bounds. The uncorrected normal approximation is also a good
approximation in this application with normally distributed statistics. Finally,
it is not necessary to perform as much as 1000 permutations. In fact, 50 or 100
permutations also provided good approximations for the signi®cance bounds.
However, it is important to further assess the exact implementation of
approximations to establish signi®cance bounds with the Gij statistic, and
general spatial weight matrices in order for these measures to be feasible in
explorative spatial data analysis.

4 Second application: Commuting model

In Sect. 3 we have applied the Gij statistic in a residual analysis of a migration
model. The application demonstrated some speci®c properties of the Getis-
Ord statistic applied on residuals from a ¯ow model. In this section we apply
the Gij statistic to a small commuting example with only 15 zones. The re-
siduals in this example originate from a logit model of combined mode and
destination choice. The model was estimated on the commuting pattern in a
region of 15 municipalities in middle Sweden.

In contrast to the application in Sect. 3, the residuals from the commuting
model are not theoretically normally distributed. This will enable us to dem-
onstrate the usefulness of the Gij measure of local spatial association in a case
where the distribution is not theoretically known. Also, with only 15 zones,
small sample properties are important to address.

The model used in this section is a doubly constrained logit model for
simultaneous mode and destination choice. This model is of standard type for
its purpose. The mode choice set is car and public transport. As determin-
ants we used travel cost for both modes and for public transport time was also
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included. Travel cost by car is the marginal travel cost. Travel time is simply
based on the shortest path.

In Table 2 the estimates are given. All coe½cients have reasonable values
which are highly signi®cant.

We have again relied on the permutation approach to establish signi®cance
bounds. Note that if we were to apply the Gij statistic to raw ¯ow data with
OD-constraints, we would have to adjust the permutation approach using
similar formulas as derived by Bao and Henry (1996). However, we assume
that the residuals are uncorrelated under the null hypothesis of no spatial
association. We have already included the OD-constraints into the model,
and the residuals are thus uncorrelated and equal probable under the null
hypothesis. Therefore, analysing residuals from our model, we do not have to
adjust the permutation approach with respect to OD-constraints.

To begin with, in Fig. 6a the signi®cant G �i� statistics according to equation
(12) are mapped, indicating large and small out¯ows14. In Fig. 6b the corre-
sponding G ��j statistic is mapped, indicating high and low in¯ows. In only two
zones are both G ��j and G �i� small. The zones are both located in the eastern

Table 2. Parameter estimates, all coe½cients
are signi®cant at the 99% level. Parameters
for origin zones are left out

Variable Value

public transport const. ÿ1:263
travel time publ. ÿ0:019
travel cost car ÿ0:033
travel cost publ. ÿ0:022

14 We will in this section analyse the residuals of car commuting. The residuals of each mode can
be analyzed similarly.

Significance
1HJDWLYH
,QVLJQLILFDQW
3RVLWLYH
2WKHU

a

Significance
1HJDWLYH
,QVLJQLILFDQW
3RVLWLYH
2WKHU

b

Fig. 6a,b. Zones with high (low) G �i� . statistic, indicating high (low) aggregate out¯ow from a
neighbourhood of zone i and in b) zones with high �low� G ��j statistics indicating high (low)
aggregate in¯ow to a neighbourhood of zone j. (a) G �i� ; (b) G ��j
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part of the region. This suggests that this part of the region exhibits more ``hot
spots''. To establish signi®cance bounds we relied upon the conditional per-
mutation approach as described above.

In Fig. 7a and b the signi®cant Gij�W d� and Gij�W o� can be seen. Clearly,
the zones in the south-east exhibit some signi®cantly large residual ¯ows be-
tween themselves, and signi®cantly small ¯ows out to their neighbourhoods.
In contrast to the migration application in Sect. 3, in this example the Gij�W d�
statistics and the Gij�W o� support the same picture of nonstationarities in the
eastern part of the area. If there were barrier network e¨ects, rather than
nonstationarities among generation or attraction variables, we would expect
to ®nd signi®cant statistics of the same sign with both weight matrices15.

In this application with only 15 zones, small sample issues are important to
address. There are really two di¨erent issues to be considered. First, when the
underlying distribution is not known and the number of neighbours is small
compared to the total number of zones, the distribution of the Gij statistic is
not known16. For most of the measures implemented here, this consideration
is relevant. However, in the case of G �i� statistics (as well as the G ��j statistic),
even for a relatively small number of zones there are many terms to be sum-
med in the numerator of equation (12). Following the arguments of Ord and
Getis (1995) a normal approximation may then be more reasonable. To test if
the G �i� and G ��j statistics are normal, we have used a Jarque-Bera test. The JB

statistics of G �i� and G ��j was approximately equal to 13 for all 15 zones, the

critical value (95%) being 9.21. The JB test on Gij�W d� and Gij�W o�, on the

Significant
1HJDWLYH
3RVLWLYH

a

Significant
1HJDWLYH
3RVLWLYH

b

Fig. 7a,b. Flows with high (low) Gij�W d� and Gij�W o� statistic, indicating high (low) residual ¯ow
from zone i to a neighbourhood of zone j and high (low) residual ¯ow a neighbourhood of zone i
to zone j, respectively. (a) Gij�W d�; (b) Gij�W o�

15 In an earlier version of this paper we have used the Gij statistics in an explorative analysis to
test for barrier e¨ects.
16 With respect to normal approximations, Getis and Ord (1992, pp. 191±192) discuss the im-
plications of small total sample size, as well as small number of neighbours.
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other hand, strongly rejected the null hypothesis of normally distributed Gij

statistics.
Second, with only a small number of zones, we have a small sample of the

underlying distribution itself, which is of importance when establishing sig-
ni®cance bounds with the conditional permutation approach. In particular,
this concerns the Gi

ij statistic, where we work with only n zones. Since the
distribution of residuals from each zone i is non-normal in this application, it
is di½cult to analyze the Gi

ij�W d� statistics, given unknown small sample
properties. However, note that this aspect of small sample properties is of less
concern with the Gij statistic applied to ¯ow data. With n zones we have in the
magnitude of n� n ¯ows. This may be a small sample, but considerably less
so than what is typically the case in applications of the Gi statistic.

5 Conclusions

The purpose of this paper was to generalise the Gi statistic, put forward by
Ord and Getis (1995), to allow for applications with ¯ow-data, and to dem-
onstrate its usefulness in two applications. We have explored nonstationarities
and identi®ed underlying geographical patterns. The localised statistics as
implemented in this paper makes it possible to address how relationships be-
tween variables vary over space17. We believe that the used measures have
improved our understanding of the strengths and weaknesses of the estimated
models in terms of a spatial analysis. This understanding can be incorporated
into improved and more comprehensive models.

The application of the Gi statistic to ¯ow data introduces new aspects
which merit further consideration on its own. The choice of spatial weight
matrix in ¯ow space is one such aspect. Ideally, the spatial weight matrix
should be derived from theory18. However, in practice it is rarely possible to
discriminate among di¨erent candidates, and often just a binary spatial weight
matrix is used. But with ¯ow data, even the common binary weight matrix is
not uniquely de®ned. In this paper we have de®ned two di¨erent binary spa-
tial weight matrices, one with focus on ¯ows from a zone i to a neighbourhood
of zone j, and one with its focus on ¯ows from a neighbourhood of i to a zone
j. These two spatial weight matrices focus on di¨erent aspects of local non-
stationarity. Hence, with use of di¨erent spatial weight matrices we have been
able not only to identify where there is local nonstationarity, but also to some
degree the nature of the nonstationarity.

We have also computed the statistic with a more general spatial weight
matrix, as proposed by Bolduc (1992) and Bolduc et al. (1995). In this paper,
however, we have primarily relied on spatial weight matrices which are bi-
nary, de®ned from the common binary spatial weight matrix. We have found
these matrices useful in our explorative analysis, while the more general for-
mulation, equation (11), did not really add to our understanding of the un-
derlying geographical pattern. Generally, the nature of a spatial weight matrix
in ¯ow space need to be further explored. Another interesting and important
aspect is whether the local statistics with di¨erent spatial weight matrices in

17 See Brunsdon et al. (1996).
18 See Anselin (1988).
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¯ow space can give us any guidance as to what spatial weight matrix should
be incorporated in a more comprehensive and improved model, such as in the
modelling approach put forward by Bolduc (1992) and Bolduc et al. (1995).
The explorative spatial data analysis used in this paper can in this perspective
be seen as a method to identify spatial weight matrices which are best suited to
incorporate spatial dependencies in a modelling context.

Another method, Geographical Weighted Regression, for explorative
analysis of nonstationarities has been proposed by Brunsdon et al. (1996).
With GWR a model is estimated for each observation point in space, and the
observations are spatially weighted. This GWR method is applicable to many
estimators and models, not only regression models. It is also, in principle,
applicable to ¯ow models. The GWR has potential to directly explore how
relationships between di¨erent sets of variables varies over space19. The sta-
tistical measures used in this paper assess this only indirectly with di¨erent
spatial weight matrices. However, given the simplicity of the Gij measure, both
intuitively and computationally, we feel that it is an interesting issue to further
explore the potential of applying these di¨erent methods to ¯ow data.

The Gij statistic in this paper has been implemented in a computer pro-
gram, and then visualized in a GIS. In the perspective of the growing interest
in explorative spatial data analysis (ESDA) methods (see, e.g., Anselin and
Bao 1997; Unwin 1996; Ding and Fotheringham 1992), it is a natural next
step to implement the Gij statistic more fully integrated with a GIS. In the
same way as the Gi statistic has been implemented as macros in GIS software
such as ArcInfo (Ding and Fotheringham 1992) and ArcView (Scott and
Lloyd 1997), we think it would be worthwhile to implement the Gij statistical
measures of local spatial association in transportation related GIS, such as
TransCAD. Although the statistic Gij and Gi are formally equivalent, the
special characteristics introduced with ¯ow data, compared with only scalar
data, motivate special consideration.

In this paper we have employed the Gi statistic, but also local Moran's I
can be computed in a similar manner. As stated by Ord and Getis (1995) and
Anselin (1995), both statistics have their advantages, and both should be cal-
culated in any exercise analyzing spatial association. The advantages of each
measure in a ¯ow-data context should also be further studied.
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