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Abstract. DARP, acronym for Drift Analysis of Regression Parameters,
originated as a heuristic technique for the investigation of parametric drift
in any arbitrary `expansion space', geographic or otherwise. DARP was in-
tended as an exploratory tool useful to aid with the formal speci®cation of
parametric drift. In this paper, the DARP technique is reformulated in terms
of `DARP models', and the estimation and testing of these models by GLS,
FGLS, and ML are discussed. The ML estimation of a spatial DARP model
is demonstrated using empirical data.
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1. Introduction

DARP (Casetti 1982) stands for Drift Analysis of Regression Parameters. It
was proposed as a heuristic technique useful in the speci®cation of models
constructed by the Expansion Method. This introductory section outlines
brie¯y the Expansion Method, DARP, and their relation to each other. Sub-
sequent sections de®ne the `DARP models' and discuss their estimation by
Generalized Least Squares (GLS), by Feasible Generalized Least Squares
(FGLS), and by Maximum Likelihood (ML). An example of Maximum
Likelihood estimation of a geographical DARP model and a concluding sec-
tion cap the paper.

The Expansion Method (Casetti 1972, 1997) is both an approach to the
construction of mathematical models suited to formalize and investigate
parametric drift, and a research philosophy intimating that the variation of
interesting relations across relevant contexts is a more fruitful object of en-
quiry than any quest for invariant `laws'. It involves taking an initial model
with at least some of its parameters in letter form and rede®ning at least some
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of these letter parameters into functions of expansion variables. The expanded
model thus obtained is capable of portraying the drift of the initial model in
the space spanned by the expansion variables.

A wide class of expanded models can be written in terms of a linear initial
model

Y � Xb � e �1�
and expansion equation(s)

b � f �Z; p� � h �2�
which yield the expanded model

Y � X f �Z; p� � Xh� e; �3�
where Y is a dependent variable, X is a matrix of independent variables, Z is a
matrix of expansion variables, b and r are vectors of parameters, and e and h
are vectors of error terms. Given an initial model, a speci®cation of f �; �, and
the probability distributions of e and h, the terminal model (3) can be esti-
mated by whatever technique is appropriate, and the hypothesis that the ini-
tial model drifts can be tested.

In many research situations, the initial model is a well established formu-
lation such as, for instance, a demand function, while its expansion spaces and
expansion equation(s) are dealt with only implicitly in the pertinent substan-
tive literatures. In these situations the question can arise of whether the initial
model holds with di¨erent parameters across an expansion space, but we nei-
ther know that this drift does in fact occur, nor what forms it takes. Circum-
stances such as these call for trying and testing a number of speci®cations of
f �; � and of h. Clues as to which values b tends to have at selected points in the
expansion space can help these searches, much in the same way that scatter
diagrams can aid in the speci®cation of econometric models. DARP was pro-
posed as a heuristic device that can provide these clues.

DARP was designed to produce estimates of the initial model at locations
in the expansion space referred to as `reference points'. To this e¨ect, DARP
de®nes observation speci®c weights that are a decreasing function of the dis-
tances in Z space between each observation and a reference point. These
weights `deemphasize' the observations to an extent depending upon their
distance from the reference point, so that in the estimation of an initial model,
the observations more distant from the reference point will matter less then
the observations close to it. Hence, DARP consists in the weighted estimation
of the initial model's parameters using weights that are speci®c to a reference
point. Repeating this weighted estimation for, say, a grid of reference points
will yield parameter estimates that are potential clues about the drift of the
initial model in the expansion space.

The plots or maps of the DARP estimates of the initial model's parameters
versus the Z variable(s) can suggest speci®cations of the expansion equation(s)
and of the terminal model that can be then subjected to statistical/econometric
estimation and testing. One useful application of DARP in the spatial sciences
is when the expansion space is spanned by the geographical coordinates of the
observations as in Casetti and Jones (1983).

The recently proposed `Geographically Weighted Regression' (Brunsdon
et al. 1996; Fotheringham et al. 1997) is a geographical implementation of
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DARP, complemented by a scheme for parameter estimation and testing. It is
not clear, however, whether and to what extent, within the context of this
scheme, the small and/or large sample properties of the estimator proposed
have been established, and the statistical/econometric bases for inferences
about the population parameters addressed. Of course, both of these are nec-
essary to move away from a heuristic frame of reference.

DARP is related to the literatures on Kernel and Nearest Neighbor re-
gressions (Cleveland 1979; Cleveland and Devlin 1988; Eubank 1988; Hardle
1990; Hastie and Tibshirani 1990; Muller 1988). However, the center of
gravity of these techniques is on the often heuristic investigation of a model's
drift in its predictor space for the purpose of obtaining a better speci®cation of
the model.

The Jacknifed DARP (JDARP for short) is a complement of DARP
(Casetti 1983). While DARP de¯ates the observations distant from a reference
point, JDARP de¯ates the observations close to it. If in¯uential outliers are
located in Z space in proximity to the reference point, JDARP reduces their
impact on the estimation results. Thus JDARP results can suggest the removal
of the observations located in some region(s) in Z space. Both DARP and
JDARP yield estimates of the initial model at any arbitrary point in the ex-
pansion space. However, only the DARP estimates are useful in the investi-
gation of parametric drift.

The DARP and JDARP techniques can be thought of as information ®l-
ters centered upon a reference point and capable of weakening the informa-
tion content of the observations distant from, or close to, it. However, they
are reminiscent of the ®lters discussed in the Fourier analysis literatures,
rather than of the ones designed to alleviate unwanted characteristics of the
data (Getis 1995).

2. The DARP models

In this paper DARP and JDARP are recast in terms of DARP models. A
DARP model is generated by expanding the variance of the error term of an
initial model into a monotonic function of the distance between the ob-
servations and a reference point in an expansion space. Let us illustrate this
de®nition using a standard linear econometric model as initial model, geo-
graphical space as the expansion space, and a geographical location as refer-
ence point. Let

Y � Xb � e �4�
E�ee 0� � s2I �5�

be a standard econometric model. Here and throughout this paper it is as-
sumed that the elements of e are normally distributed. Assume that a sample
of N observations is given, that two geographical coordinates identify each
observation as a point in geographic space, and that a reference point is also
speci®ed in terms of its coordinates in geographic space. The reference point
may or may not coincide with the location of an observation.

Denote by h a mononically increasing function of distance from a refer-
ence point, and by hi the function's value generated by the distance between
the ith observation and the reference point. `Expand' the parameter s2 of (5)
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by the expansion equation s2 � g�h; g�, so that

s2
i � g�hi; g� �6�

where g is a vector of parameters, and s2
i denotes the variance of the error

term for the ith observation. Equations (4) and (6) de®ne a DARP model.
In general, a DARP model is an econometric model in which the variance

of the error terms has been expanded into a monotonic function of the ob-
servations' distance from a reference point in an expansion space Z. The ob-
vious implication of this de®nition is that for the same speci®cation of (4) and
(6) we can have as many DARP models as there are points in the Z space: that
is, in®nitely many.

The speci®cation of (6) employed in this paper is

s2
i � exp�g0 � g1hi� �7�

where s2
0 � exp�g0�, and hi is the square of the distance between the ith ob-

servation and the reference point.
In matrix notation, the covariance of this class of DARP models can be

written in the two equivalent formulations

E�ee 0� � F � s2
0C �8�

where F is a diagonal matrix in which the ith diagonal element is
exp�g0 � g1hi�, and C is also a diagonal matrix with the ith diagonal element
equal to exp�g1hi�.

Let us focus brie¯y upon the signi®cance of the parameter g1. A positive g1
deemphasizes the observations distant from the reference point, and conse-
quently produces estimates of (4) that are `local' with respect to it. A negative
g1 deemphasizes the observations closer to the reference point, thus treating
them as quasi outliers with a smaller role in the estimation of (4). If g1 � 0 the
distance in Z space between the observations and the reference point does not
a¨ect the variance of the error terms, and s2

i � s2
0 for all i's.

A DARP analysis involves the estimation of a set of DARP models shar-
ing an initial model, an expansion space, and variance expansions, but asso-
ciated with a set of distinct reference points. In the case considered here the
variance expansions are speci®ed by (7). The g1's in (7) can be assumed or es-
timated. A DARP analysis in which the same positive value of g1 is assumed
for every DARP model in it generates local estimates of the initial model that
can suggest the occurrence of parameter drift. If the assumed g1 has the same
negative value in all the DARP models, the analysis implements a search for
di¨erential performance of the initial model across the expansion space, and
its results can suggest the occurrence of `performance' drift.

It should be noted that a DARP analysis in which the value of g1 is
assumed is quite legitimate. The straightforward estimation of a standard
econometric model by OLS is equivalent to the estimation of a DARP model
assuming that g1 � 0. If it is legitimate to assume that g1 � 0, it must be also
legitimate to assume that g1 has any other arbitrary value, provided that there
is a rationale for it. The search for evidence of parametric or performance
drift is one such rationale.
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If instead g1 is estimated, it is the analysis itself that determines whether
and where parameter drift or performance drift occurs, and these conditions
may very well coexist in di¨erent regions in the expansion space.

Summing up, the DARP models focussed upon here are de®ned by (4) and
(8). Three approaches to the estimation of these models are discussed in the
sections that follow.

3. The estimation of DARP models

The DARP models are a special class of heteroskedastic models. The DARP
models with the expansion speci®ed by (7) are a special type of multiplicative
heteroskedasticity models (Harvey 1976). In the section that follows we dis-
cuss brie¯y and in generalities the estimation of the DARP models de®ned by
(4) and (8) by Generalized Least Square (GLS), by Feasible Generalized Least
Square (FGLS), and by Maximum Likelihood (ML). Discussions of the GLS,
FGLS, and ML estimators in general and with special regard to the estima-
tion of models with multiplicative heteroskedasticity can be found, for in-
stance, in Fomby (1988), Harvey (1990), and Judge et al. (1985, 1988).

In the paragraphs that follow, estimators will be denoted by the roman
counterparts of the Greek letters indicating the corresponding parameters,
and the GLS, FGLS, and ML estimators will be denoted by GS, FS, and ML
subscripts, which are the ®rst and last letters in their respective acronyms. For
instance, bFS and biFS indicate respectively the FGLS estimators of the pa-
rameter vector b and of the parameter bi.

3.1 GLS estimation

If the value of g1 is either known or assumed, C is also known, and the GLS
estimators of b, of its covariance, and of s2

0 are respectively

bGS � �X 0Cÿ1X �ÿ1X 0Cÿ1Y ; �9�

var�bGS� � s2GS�X 0Cÿ1X�ÿ1; �10�

s2GS �
�Y ÿ XbGS�0Cÿ1�Y ÿ XbGS�

N ÿ K
; �11�

where K stands for the number of columns in X. Notably, bGS is BLUE, s2GS is
an unbiased estimator of s2

0 , and since the elements of e are assumed to be
normally distributed, the t and F statistics calculated using (9), (10), and (11)
can be used to test hypotheses as in the case of a standard linear model esti-
mated by OLS.

The matrix Cÿ1 that appears in (9), (10), and (11) is not needed to calcu-
late the GLS estimators, since a weighted regression using a vector of weights,
w, with elements wi � exp�ÿg1hi� would yield the GLS estimators and their
statistics. In fact Cÿ1 is a diagonal matrix with these weights in its principal
diagonal.

If the assumed g1 is positive, the GLS estimates of b obtained are potential
indicators of the parametric drift of the initial model. If it is negative, these
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estimates are indicators of performance drift of initial model in Z space. Hy-
pothesis testing and con®dence intervals can be used to identify regions in
Z space in which parametric and/or performance drift materialize. Conse-
quently, the estimation of DARP models for a set of reference points and for a
range of values of g1 can indeed produce information useful, in the aggregate,
to specify suitable expansion equations for the b parameters, and also to de-
cide whether subsets of the sample should be either removed, or dealt with in
separate analyses.

The GLS estimation of a DARP model presupposes that the parameter g1
is known or assumed. To estimate g1 as well as b, Feasible Generalized Least
Square (FGLS) or Maximum Likelihood (ML) can be used. Let us consider
the FGLS estimation ®rst.

3.2 FGLS estimation

The FGLS estimation of a DARP model involves obtaining an estimate of g1,
for instance by LS, and then using it as if it were the known g1 parameter in
GLS estimation. Speci®cally, the steps required are as follows. The OLS esti-
mator of b, b, and the residuals e � Y ÿ Xb are obtained. Using the elements
of e, the vector q 0 � �ln�e21�; . . . ; ln�e2N�� is constructed and LS is applied to

q � g0 � g1h� n, where n 0 � ��ln�e21=s2
1�; . . . ; ln�e2N=s2

N��, to obtain the esti-
mator ĝ1 of g1. The elements of n have non zero expectations and covariances
and are heteroskedastic. However, it can be shown that they are asymptoti-
cally homoskedastic and with zero covariances, and also that while ĝ0 is
biased with a known bias, ĝ1 is unbiased. Which implies that ĝ1 is a consistent
estimator of g1 but ĝ0 is not a consistent estimator of g0. Here only ĝ1 is
needed. By replacing ĝ1 for g1 in (8) the estimator Ĉ of C is obtained.

The FGLS estimator of b is

bFS � �X 0Ĉÿ1�ÿ1X 0Ĉÿ1Y �12�

The small sample properties of bFS are unknown. It is known, however,
that bFS is asymptotically normally distributed, with mean b, and with a co-
variance matrix that is consistently estimated by

s2FS�X 0Ĉÿ1X�ÿ1 �13�
where

s2FS �
�Y ÿ XbFS�0Ĉÿ1�Y ÿ XbFS�

N ÿ K
�14�

is a consistent estimator of s2
0 . Hypothesis testing and con®dence intervals can

be based on these results, under the presupposition that the sample used is
large `enough'. For a full discussion of the FGLS estimation of multiplicative
hetheroskedasticity models cfr Judge et al. (1988 p. 367 ¨ ) or Harvey (1976
p. 462).

The statistic �ĝ1�2=4:9348Shi has an asymptotic chi-square distribution
with one degree of freedom, and it can be used to test the null hypothesis that
g1 � 0 (Judge et al. 1988 p. 370).

96 E. Casetti, A. Can



3.3 ML estimation

When the probability distribution of the error terms in a model is known, the
model's likelihood can be expressed as a function of the parameters to be
estimated, and the ML estimates are the parameter values that maximize the
model's likelihood for the data given. Here the error terms in the vector e are
normally distributed and independent. The ML estimation of a DARP model
speci®ed by (4) and (8) involves expressing the model's likelihood as a func-
tion of b and g given Y, X, and h. The logarithmic transformation of the
likelihood function, that is conventionally used since it attains a maximum for
the same parameter values that maximize the likelihood function is here

L�b; gjY ;X ;H� � ÿN

2
ln 2pÿ 1

2
lnjFj ÿ 1

2
�Y ÿ Xb�0Fÿ1�Y ÿ Xb�; �15�

where the N by 2 matrix H can be de®ned in terms of its ith row Hi � �1; hi�.
In order to maximize L with respect to b and g the partial derivatives qL=qb
and qL=qg are obtained and set to zero. The resulting system of non linear
equations is solved numerically to obtain the ML estimators of b and g. These
estimators can be calculated iteratively by the method of scoring. The ML
estimators bML and cML are consistent, and are asymptotically independent
and normally distributed with asymptotic covariance matrices

�X 0Fÿ1X �ÿ1 �16�

and

2�H 0H�ÿ1: �17�
Testing and con®dence intervals of the elements of bML and cML can be based
on the covariance matrices (16) and (17), with the estimated F constructed
from the cML vector at convergence of the scoring algorithm. However, the
test of the null hypothesis that g1 � 0 can be also based on the Wald statistic
�c1ML�2=�2Shi� that has a chi-square distribution with one degree of freedom.
For a discussion of the ML estimation of multiplicative heteroskedasticity
models cfr Harvey (1976; 1991 p. 98 ¨ and 134 ¨ ), Greene (1997 p. 565 ¨ ),
and Fomby et al. (1984 p. 183 ¨ ).

It is useful to comment on the comparative advantages of the FGLS and
ML estimators. Both bFS and bML are consistent, and both have an asymp-
totic covariance matrix equal to �X 0Fÿ1X�ÿ1, which means that they are
equally asymptotically e½cient. The FGLS and the ML estimators of g1 are
also both consistent, but their asymptotic variances are respectively 4:9348Shi

and 2Shi. This implies that c1ML is asymptotically more e½cient than c1FS. An
important implication of this di¨erence is that the ML estimates of both b and
g will converge faster to the true parameter values than their FGLS counter-
parts, and consequently will perform better with any sample of less than in®-
nite size.

While the ML estimators are preferable to their FGLS counterparts, the
latter represent a workable alternative if the iterations required to obtain the
ML estimators fail to converge. However, the analyst who wishes to pursue
this course of action might prefer the estimation alternative suggested by
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Harvey (1976) whereby ĝ1 is replaced by an estimator of g1 produced by one
iteration of the scoring algorithm (Fomby et al. 1984 p. 185 ¨ ).

The demonstration that follows employs the ML estimation. The empirical
analyses in the demonstration were carried out using the command for the
estimation of multiplicative heteroskedasticity models (HREG) in the econo-
metric package LIMDEP ver. 7.

4. A demonstration

In the section that follows, the ML estimation of DARP models is demon-
strated using the `Expenditures Data Set' published in Pindyck and Rubinfeld
(1991, Table 6.2, pp. 155±156). The observations in this data set are the 48
conterminous states in the US. Its variables are: total state and local govern-
ment expenditures, EXP; state income, STINC; federal grants to the states,
AID; and state population, POP. EXP, STINC, and AID are in millions of
dollars, POP is in million persons. These data were complemented by the
spatial coordinates of the states' centroids.

The analyses reported here were carried out on the per capita variables
PCEXP, PCINC, and PCAID, obtained by dividing EXP, STINC and AID
by POP. The DARP models estimated are

PCEXP � b0 � b1PCINC� b2PCAID � e �18�

E�ee 0� � F; �19�

where F is a diagonal matrix with the ith element in its principal diagonal
equal to exp�g0 � g1hi�; hi is the squared distance between the centroid of the
ith state and a reference point. Since the states' centroids were selected as ref-
erence points, 48 DARP models, one per observation, were estimated by ML.
The estimation itself was not computationally burdensome. The number of
iterations required ranged from a minimum of 7 to a maximum of 28.

Selected estimation results are shown in Table 1. Each line in the table re-
ports results pertaining to the DARP model for the State identi®ed by the
code in column 1. Columns 2, 3, and 4 give the ML estimates of b, the esti-
mate of g1 is in column 5, and the one's and zero's in column 6 indicate
whether the null hypothesis that g1 � 0 is rejected or not. The test is based on
the asymptotic normality of the ML estimators and uses the covariance esti-
mated at the point of convergence of the scoring algorithm. Since all the esti-
mates of the b's are signi®cant no inferentials concerning them are reported.
Also unreported are the estimates of g0, that is not relevant to the discussion
carried out here.

Special attention need be given to the estimates of g1 that tell us whether in
the expansion space there are regions characterized by parametric and/or
performance drift. Of the 48 estimates of g1 32 are negative, and 16 are posi-
tive. Of the 32 negative estimates 25 are signi®cant; of the 15 positive only 2
are signi®cant.

The spatial patterns of the estimated g1's are portrayed in Fig. 1. The tri-
angular symbols in Fig. 1 show where the positive/negative signi®cant/non-
signi®cant estimates of g1 are located. If we draw on the map a line from
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North Dakota to Florida all the States to the right hand side of the line have
negative and mostly signi®cant c1ML's, while to the left of the line the c1ML's
are mostly positive and non signi®cant.

Table 1. DARP analyses: ML estimates

Code bOML b1ML b2ML c1ML sigf�c1ML�
(1) (2) (3) (4) (5) (6)

ME ÿ0.445960 0.215698 1.66422 ÿ0.0015336 1
NH ÿ0.442991 0.215347 1.65960 ÿ0.0016317 1
VT ÿ0.444211 0.215516 1.66223 ÿ0.0017184 1
MA ÿ0.440019 0.214913 1.65531 ÿ0.0016027 1
RI ÿ0.438757 0.214711 1.65356 ÿ0.0015635 1
CT ÿ0.438822 0.214715 1.65449 ÿ0.0016406 1
NY ÿ0.442875 0.215269 1.66331 ÿ0.0019222 1
NJ ÿ0.436029 0.214167 1.65417 ÿ0.0017213 1
PA ÿ0.438293 0.214350 1.66293 ÿ0.0020209 1
OH ÿ0.439127 0.213141 1.69493 ÿ0.0025267 1
IN ÿ0.440121 0.210904 1.74618 ÿ0.0027968 1
IL ÿ0.441915 0.207530 1.82067 ÿ0.0028293 1
MI ÿ0.457044 0.214898 1.74229 ÿ0.0032334 1
WI ÿ0.467845 0.211356 1.86440 ÿ0.0037897 1
MN ÿ0.470856 0.206048 1.97285 ÿ0.0032203 1
IA ÿ0.447715 0.203882 1.91002 ÿ0.0023521 0
MO ÿ0.432826 0.202781 1.85661 ÿ0.0014320 0
ND ÿ0.445783 0.203349 1.88993 ÿ0.0008193 0
SD ÿ0.433592 0.203038 1.83573 ÿ0.0002410 0
NE ÿ0.425948 0.203234 1.79010 0.0003021 0
KS ÿ0.424419 0.203675 1.76777 0.0006764 0
DE ÿ0.433665 0.213646 1.65443 ÿ0.0017281 1
MD ÿ0.433535 0.213515 1.65726 ÿ0.0018140 1
VA ÿ0.430367 0.212435 1.66561 ÿ0.0018865 1
WV ÿ0.433320 0.212718 1.67493 ÿ0.0021295 1
NC ÿ0.425973 0.211103 1.67164 ÿ0.0017601 1
SC ÿ0.422023 0.209292 1.68906 ÿ0.0016814 1
GA ÿ0.418809 0.206684 1.72433 ÿ0.0015724 1
FL ÿ0.414232 0.204783 1.73540 ÿ0.0011214 1
KY ÿ0.431103 0.209481 1.73117 ÿ0.0023451 1
TN ÿ0.425734 0.206785 1.75733 ÿ0.0020328 1
AL ÿ0.419470 0.203916 1.77754 ÿ0.0013680 0
MS ÿ0.424605 0.202538 1.81556 ÿ0.0006987 0
AR ÿ0.429179 0.202860 1.82019 ÿ0.0002074 0
LA ÿ0.433929 0.204033 1.80134 0.0006179 0
OK ÿ0.426022 0.204316 1.75443 0.0010312 0
TX ÿ0.429902 0.205969 1.72677 0.0015175 0
MT ÿ0.417643 0.203324 1.75082 0.0004603 0
ID ÿ0.412726 0.204453 1.70476 0.0006978 0
WY ÿ0.415740 0.203911 1.72643 0.0007331 0
CO ÿ0.417252 0.204744 1.71113 0.0010132 0
NM ÿ0.422239 0.206326 1.69736 0.0012233 0
AZ ÿ0.421913 0.207162 1.68518 0.0010388 1
UT ÿ0.415680 0.205566 1.69166 0.0009231 0
NV ÿ0.415489 0.206118 1.68294 0.0008242 0
WA ÿ0.411624 0.204267 1.70623 0.0005707 0
OR ÿ0.412181 0.205169 1.69005 0.0006647 0
CA ÿ0.417403 0.206908 1.67697 0.0007931 1
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Speci®cally, the spatial pattern of the estimated g1's suggest that the pa-
rameters of the initial model (18) may drift across the geographical space
south of North Dakota to Florida line, and that the model performs com-
paratively less well north of this line. However, the possibility that parametric
drift does occur in this region also cannot be ruled out. DARP estimates with
c1ML < 0 signal a weak performance of the initial model at and near the ref-
erence points involved, but do not imply the absence of parametric drift.
Conversely, DARP estimates with c1ML > 0 as in the case of the region south
of the North Dakota to Florida line suggest the possible occurrence of para-
metric drift, but do not imply the absence of spatial variation in the perfor-
mance of (18) across this region. Both performance drift and parameter drift
can drive the DARP estimates. When the ®rst prevails, c1ML < 0; when the
second prevails, c1ML > 0.

A DARP analysis can uncover the possible tendency of the initial model's
parameters to have di¨erent values across the expansion space or portions of
it (`parametric drift'), and the possible occurrence of regions in the expansion
space in which the initial model ®ts less well or not at all (`performance drift').
These two `types' of results are qualitatively di¨erent. The simultaneous oc-
currence of both within the same analysis, as in Table 1 and Fig. 1, can be
conceptualized in terms of two complementary constrained estimations. In
one of these the DARP model is estimated subject to the constraint that
g1 U 0, while in the other the same model is subject to the constraint that
g1 V 0.

Fig. 1. Spatial distribution of c1ML
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The g1 V 0 constraint is here taken to mean that whenever c1ML < 0 we
replace the estimate of b obtained, with the one based on assuming that
g1 � 0. This g1 V 0 constraint is appropriate when we investigate the possible
occurrence of parametric drift, since it results in estimates that do not address
the performance drift. Instead, when the variation in the initial model's per-
formance is focussed upon, the complementary g1 U 0 constraint is appropri-
ate. This constraint yield estimates that do not address the possible occurrence
of parametric drift, and is operationalized by replacing, whenever c1ML > 0,
the estimates of b obtained with the ones based on assuming that g1 � 0. Only
the constrained ML estimates of b based on the g1 V 0 constraint are dealt
with in this demonstration. These estimates will be denoted by a D in their
subscripts. For instance, bD and biD indicate the constrained ML estimates of
b and bi based on the g1 V 0 constraint.

The ML estimation of (18), and (19) for g1 � 0 is identical to the ML es-
timation of (18) with the stipulation that E�ee 0� � s2I . The results from such
estimation are

PCEXP � ÿ0:42967
�ÿ4:29�

� 0:20307
�10:81�

PCINC� 1:8145
�8:21�

PCAID� e R2 � 0:76:

�20�
The t values are in parenthesis under their respective coe½cients. The bD re-
sulting from the constrained ML estimation of (18) and (19) based on the
g1 V 0 constraint can be obtained by replacing the bML in the lines of Table 1
in which c1ML < 0 by the corresponding estimates in (20). This bD documents
the possible occurrence of parametric drift.

In order to display the parametric drift of the b's across the expansion
space considered, b0D, b1D, and b2D were mapped. Figures 2, 3, and 4, do
indeed suggest that the b's drift in geographical space. In a demonstration
such as the one presented here these comments will su½ce. In a substantive
research, though, these results would have to be investigated more closely, and
the analyst might want to experiment with the respeci®cation of the initial
model and/or with the segmentation of the data and/or with the expansion of
some or all the initial model's parameters.

The segmentation of the data set could involve either the removal of some
observations, or the partitioning of the data set into subsets to be analyzed
separately. The most obvious expansions suggested by the DARP results
considered are `trend surfaces expansions', that involve rede®ning some or all
the b's as low degree polynomials in the observations' coordinates. However,
the trend surface expansions can prove di½cult to work with because of the
very substantial multicollinearity that they tend to engender. Alternative,
more promising expansions could consist in rede®ning the b 's into functions
of an index re¯ecting the spatial patterns revealed by the maps. The fact that
the states to the right of the North Dakota to Florida line tend to be older,
smaller, and more closely spaced than the ones to the left of the line, can
perhaps suggest suitable indices and can also point to the substantive ration-
ales behind the parametric drift observed.

Let us note that our demonstration of a DARP analysis was successful.
The ML estimation of the demonstration models converged to a result in a
few iterations at all the reference points considered. Also, the estimation re-
sults are readily interpretable and substantively intriguing. They suggest the
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occurrence of both parametric and performance instability in geographic
space. Overall, the demonstration indicates, albeit in a preliminary fashion,
that ML is a workable approach to the estimation of DARP models.

5. Conclusions

Let us place in perspective the nature, scope, and utility of the DARP analyses
in general, and of the spatial DARP analyses in particular. The `DARP
models' discussed in this paper are generated by `expanding' the variance pa-
rameter of an initial econometric model into a monotonic function of distance
from reference points in an expansion space. Thus, they qualify as `expansion
models'. The estimates of DARP models associated with a collection of ref-
erence points constitute a DARP analysis, and can be regarded as a non-
parametric expansion of the initial model involved.

The DARP analyses are applicable to investigating the parametric and
performance drift of any conceivable initial model across any conceivable ex-
pansion spaces. These include the spaces spanned by some or all the predictor
variables, or by variables that do not appear among the predictor variables, or
by a mix of both. Consequently, the scope of the DARP analyses is wider than
that of the Kernel and Nearest Neighbor regressions that focus upon a mod-
el's instability across its predictor space. In this respect these techniques rep-
resent a special case within the frame of reference encompassing DARP and
the Expansion Method.

Fig. 2. Spatial distribution of b0D
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Let us sketch brie¯y some possible outcomes of a DARP analysis. If for
none of the models in a DARP analysis the null hypothesis of no drift can be
rejected, the analysis suggests that the initial model is stable in the expansion
space considered. The `opposite' outcome occurs when we have a successful
DARP analysis, namely, when at least some of the estimated DARP models
identify regions in the expansion space in which parametric and/or perfor-
mance instabilities exist. A successful DARP analysis opens the door to a
variety of responses.

Some responses might start from a respeci®cation of the initial model.
Others would retain the same initial model, but take the drift conditions un-
covered as the starting point of a sequence involving data segmentations and/
or expansions followed by new DARP analyses. The sequences involved
would terminate when the models arrived at are stable over the data from
which they are estimated.

However, another response to a successful DARP analysis may consist in
the simple recognition that parametric drift and/or performance drift exist.
Such recognition could be followed by the attempt to use pertinent bodies of
qualitative and quantitative knowledge to explain, interpret, and possibly
theorize, this ®nding. Scholarly outputs bundling the description of a DARP
analysis with graphs, maps and narratives can constitute an implementation
of this response. There seems to be no a priori rationale suggesting that a
particular type of response to a successful DARP analysis is best under all
circumstances.

Next, let us consider the `spatial' DARP analyses. A spatial DARP model

Fig. 3. Spatial distribution of b1D
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is generated by expanding the variance parameter of an initial econometric
model, spatial or otherwise, into a monotonic function of the observations'
distance from a reference location in a geographic expansion space. A spatial
DARP analysis is the set of estimates of spatial DARP models associated with
a set of reference locations in a geographic space. Questions concerning, for
example, the drift of a production function across a region, or the drift of a
spatial interaction model across a continent can be readily addressed via spa-
tial DARP analyses. The results obtained constitute non parametric spatial
expansions, and may lead to the subsequent speci®cation and testing of
parametric spatial expansions based on geographical coordinates (or trans-
formations thereof ), or on indices of some phase of `spatial di¨erentiation'.

Within the context of a spatial DARP the reference points are locations
that do not necessarily coincide with the locations of the observations. This
disconnect between reference points and observations is potentially very use-
ful. Consider for example a DARP analysis in which the observations are the
3100 plus counties in the United States. Using as reference points a few hun-
dred locations at the intersections of a grid rather than county speci®c loca-
tions can render much easier to obtain and map the results of the analysis. In
other circumstances it may be convenient to locate equally spaced reference
points on a transect, or on a route such as an interstate highway, in order to
investigate the possible parametric or performance drift of an initial model as
we move along the transect or route.

It is useful to touch brie¯y upon the interface between spatial DARP and
related parametric expansions, on one hand, and some central themes of spa-

Fig. 4. Spatial distribution of b2D
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tial econometrics (Anselin 1988). Suppose that a model is estimated from
spatially referenced observations, and that subsequent testing indicates a sig-
ni®cant spatial autocorrelation in its residuals. One typical response calls for
testing, and possibly modifying, the econometric speci®cation of the model.
Spatially autoregressive terms and spatially autocorrelated error terms are a
likely object of this speci®cation search, and may eventually produce a suc-
cessful model, purged of any signi®cant spatial autocorrelation in its residuals.
What characterizes this response is that it does not require a respeci®cation of
the substantive segment of the original model.

An alternative response to positive spatial autocorrelation tests might
consist in a speci®cation search focussed upon the substantive segment of
the original model. Spatial DARP analyses and subsequent parametric ex-
pansions inspired by their results are one possible avenue to implement it. The
DARP analyses are oriented toward seeking and addressing the structural in-
stability that constitutes a substantive shortcoming of the initial model. Any
expanded model arrived at by this process can be subjected to further DARP
analyses in order to determine whether both the instabilities originally ob-
served and the spatial autocorrelation have in fact disappeared.

However, initial models including spatially autoregressive terms and/or
spatially autocorrelated error terms can be the speci®cation an analyst starts
from. In this situation also, suitable spatial DARP analyses and subsequent
parametric expansions could be used to investigate and address the possible
structural instability of the initial formulation.

Summing up, the searches centering on DARP and/or on parametric ex-
pansions, and those centering on spatial econometric respeci®cations are dis-
tinct responses to the perverse outcome of diagnostic tests. Which one of these
two types of searches is appropriate when, constitutes an interesting and im-
portant question. Possibly, the circumstances speci®c to a given project and
the judgement of the project's scholars, should be relied upon for the guidance
to address it.
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