
J Geograph Syst (1999) 1:3±22

Improving neural network performance on the
classi®cation of complex geographic datasets

Mark Gahegan, Gordon German, Geo¨ West

Department of Geographic Information Science, Curtin University of Technology,
P.O. Box U1987, Perth, Western Australia 6845, Australia
(e-mail: mark, gordon, geo¨@cs.curtin.edu.au)

Abstract. Neural Networks are now established computational tools used for
search minimisation and data classi®cation. They o¨er some highly desirable
features for landuse classi®cation problems since they are able to take in a
variety of data types, recorded on di¨erent statistical scales, and combine
them. As such, neural networks should o¨er advantages of increased accu-
racy. However, a barrier to their general acceptance and use by all but `ex-
perts' is the di½culty of con®guring the network initially.

This paper describes the architectural problems of applying neural net-
works to landcover classi®cation exercises in geography and details some of
the latest developments from an ongoing research project aimed at over-
coming these problems. A comprehensive strategy for the con®guration of
neural networks is presented, whereby the network is automatically con-
structed by a process involving initial analysis of the training data. By careful
study of the functioning of each part of the network it is possible to select the
architecture and initial weights on the node connections so the constructed
network is `right ®rst time'. Further adaptations are described to control net-
work behaviour, to optimise functioning from the perspective of landcover
classi®cation. The entire con®guration process is encapsulated by a single ap-
plication which may be treated by the user as a `black box', allowing the net-
work to the applied in much the same way as a maximum likelihood classi®er,
with no further e¨ort being required of the user.

Key words: Classi®cation, neural networks, G15

JEL classi®cation: C88, C63, C45, C44

1. Introduction

Since the 1980's an enormous amount of literature has been generated on the
topic of neural networks (e.g. Pao 1989; Freeman and Skapura 1991; Fischer
1994). They have been successfully applied to geographic and remotely-sensed
data in a number of di¨erent studies (e.g. Bischof et al. 1992; Kamata and
Kawaguchi 1993: Civco 1993). Despite this, their uptake as tools for geogra-

(Springer-Verlag 1999

phy and remote sensing has been slow, with some researchers concluding that
the problems encountered may outweigh the advantages (e.g. Skidmore 1995).
However, others (e.g. Benediktsson et al. 1990) have argued that the distri-
bution-free nature of neural networks allows them to exceed the accuracy of
more conventional tools.

The work presented describes part of a research project to develop neural
network tools that are easy to apply, but without sacri®cing performance (in
terms of accuracy and e½ciency). The network package described tackles the
classi®cation problem; speci®cally, where a large and disparate input vector is
being used to characterise (label) a dataset into a number of discrete, known
classes. Such problems are common in the spatial sciences. In practice, the
setup of a classi®er `net' typically involves a good deal of expertise and a large
amount of experimentation. A study of the function of the various network
components, as they relate to the classi®cation problem, has brought to light
various strategies for automating the con®guration.

Some aspects of network con®guration are presented. Results are given
along the way to demonstrate the e¨ects of the techniques described on a
publicly available dataset. The entire classi®er, including the dataset and rel-
evant documentation, is available on the internet for those interested in trying
it out or evaluating it against other classi®ers (http:www.cs.curtin.edu.au/
@gisweb/donnet/) The authors are keen to hear feedback from those who
do so.

1.1 Classi®cation and the dataset

The classi®cation of areas of the Earth's surface in terms of land use, vegeta-
tion cover, soil type, etc. is often a necessary step prior to importing the data
into a geographic information system. The ®nal product is usually in the form
of a chloropleth map, where each map element is assigned exactly one label.
As such, the classi®cation process is a discrete one; either an element belongs
exclusively to a certain class or it doesn't. However, it is also possible to con-
struct mappings where the ownership of a certain pixel is shared among sev-
eral classes, giving rise to a probabilistic categorisation of the data (e.g. Foody
1996). This paper is concerned with the former approach, and neural network
implementations for the latter will be discussed in a separate paper.

Discrete classi®cation is the transformation of a set of attributes associated
with a map element into a single class label. These attributes may represent
many di¨erent themes, for example Landsat TM imagery, geological data,
hydrological properties and so forth. Supervised classi®cation is the process of
classifying a dataset into a number of pre-de®ned discrete classes, based on
some known data ! class relationship (the ground truth). This is in contrast
to unsupervised classi®cation, where the classi®er itself determines the output
classes to be constructed. This research concentrates speci®cally on supervised
classi®ers.

Supervised classi®cation procedures generally consists of the following
three stages:

1. The training phase. In supervised learning, the classi®er is trained to rec-
ognise certain combinations of attribute values as identifying a particular
class, by providing a small number of sites within the area of interest for

4 M. Gahegan et al.

which the class is known in advance. This training set should contain a rep-
resentative sample of all the desired output classes.
2. The veri®cation phase. Veri®cation is the process of determining the success
of the training phase, and hence the likely accuracy of the classi®er when
applied to unseen data. There are several methodologies employed for the
veri®cation of supervised classi®ers. Quite often, the training set is simply re-
presented to the trained classi®er and the accuracy determined. This is, of
course, not veri®cation in the true sense, as all the samples in the set have
already been seen by the classi®er during the training phase. However, often
there is just not enough samples available in the dataset, with associated
ground truth, to facilitate the production of an additional sample set. Alter-
natively, a holdout regime might be employed, where one or more samples are
held back during each training epoch and the entire set used for veri®cation.
However, the preferred method (and the one used in this research) is to pro-
duce a statistically independent set, the validation set, from the data (hence no
member of the validation set is used in the training phase) and assess the ac-
curacy of the classi®er on this. This assessment is normally reported as the
percentage of samples correctly classi®ed. This can be calculated as simply the
total number correctly classi®ed, (Percentage Correctly Classi®ed, or PCC),
or as the mean of the percentage correctly classi®ed per class (the Average
Normalised Response, or ANR). The PCC ®gure is more often reported;
however it does not take into account the real-world situation, where class
sizes may vary enormously, so that the ANR should be the preferred ®gure. In
this research, we present both ®gures, allowing direct comparison with other
works which might quote a PCC ®gure. Validation results can also be pre-
sented as a confusion matrix (see Table 4 later) which shows the performance
of the classi®er across all output classes. Errors of commission, errors of
omission, and Kappa statistics (Congalton 1991) can all be calculated
straightforwardly from this matrix. To improve reporting accuracy, each ex-
periment may be conducted a number of times on the same dataset, using a
di¨erent division of training and validation data each time. The results pre-
sented here are an average obtained over a number of experiments1.
3. The classi®cation phase. The entire dataset is presented to the classi®er,
which then produces a classi®ed map based on the relationships learnt during
the training phase.

The data used in this paper is from the Kioloa dataset (Lees and Ritman
1991), the latest version of which will shortly be available as a NASA Path-
®nder reference site. It describes a coastal region in New South Wales, Aus-
tralia. The aim of the classi®cation is to di¨erentiate the various ¯oristic spe-
cies occurring in a highly variegated landscape. The region contains a small
amount of rainforest, intermixed with eucalypt tree types, cleared land and
coastline. As Fig. 1 shows, very little di¨erentiation of forest is possible using
Landsat TM data alone. Consequently, the dataset also contains geology,
slope, aspect, ¯ow accumulation and height coverages.

With such a large amount of ancillary information the exercise could be
considered as species habitat classi®cation as opposed to image classi®cation.

1 Care must be taken when comparing the results presented by di¨erent authors, as the methods
of calculating success vary enormously.

Neural networks 5

In all, ten di¨erent input layers are available, some of which are ordinal (e.g.
aspect, geology) whilst others are more quantitative (e.g. ¯ow accumulation,
Landsat TM). All data is in raster format on a common 30 � 30 metre grid.
Nine target classes have been identi®ed and are characterised by a set of 1704
training points; in which individual pixels are labelled to represent the domi-
nant vegetation cover, by ®eld observation. Unlike agricultural landuse clas-
si®cation, the training sites do not represent contiguous regions in larger tar-
get objects, but are instead isolated and `random' samples.

This dataset was selected because (i) it is publicly available, allowing others
to compare results (Prechelt 1994) (ii) it presents a `hard' classi®cation prob-
lem (Lees 1994) and (iii) it contains highly diverse data that would be di½cult
to combine using a more conventional approach such as a maximum likeli-
hood classi®er (MLC) (e.g. Lillesand and Kiefer 1979).

1.2 Neural networks as supervised classi®ers

Within the family of arti®cial neural network architectures, the MLP (or more
formally the Multi-Layer Perceptron) can function as a highly parameterised,
non-linear supervised classi®er which ``learns'' by means of some form of cost
minimisation, based on a given set of target values. Unlike many statistical
classi®ers such as the MLC, no prior assumption is made regarding the sta-
tistical distribution of the data; rather, the MLP learns a unique distribution
for each dataset. Hence the often-used term distribution free.

In classi®cation problems, the network attempts to produce the correct
class labels for each of the input attribute vectors. Evidence (E) consists of a
®nite number (n) of observation vectors (X), each consisting of p pieces of
evidence pertaining to a single location, X � �x1; x2; . . . ; xp�. Given a set of q

Fig. 1. Landsat TM scene fragment, using false colour (bands 2, 4 and 5).

6 M. Gahegan et al.

mutually exclusive output classes C � fC1;C2; . . . ;Cqg, the network provides
a mapping from each X to either a single class (the most dominant value) as:
G : E ! C, or to the power set of classes as: G : E ! 2C . The former `winner
takes all' approach is taken here; that is, the output is discrete. A diagram of a
typical network is shown in Fig. 2.

Each neuron (or node) functions as an independent computational unit
and behaves in the following manner: (i) all inputs to the node are summed,
(ii) the summed value is passed through a non-linear activation function to
give an output value and (iii) the output value is passed on, via a weighted
connection, to the next layer of nodes. Typically, a non-linear activation
function such as the sigmoid function is used, of the form

y�i �
1

1� e�yi�y�=f

where y represents a threshold, or bias, and f is the gain of the function, which
in most implementations is held constant. The weighted connections, more
commonly called weights, have their values constantly changed during the
training phase, as the network attempts to map the input data to the desired
output classes.

1.3 Overview of network structure

The con®guration of a neural network remains a di½cult problem to which a
general solution and methodology has yet to be fully determined. Whilst there
are any number of packages, architectures and searching strategies available
(e.g. Cho and Kim 1993; Baum and Haussler 1989), the choice of network
architecture and the mechanics of con®guration and training are largely `dis-
covered' by experimentation. Such experimentation typically involves large
amounts of time and requires an in depth understanding of network function.

Fig. 2. A simpli®ed network architecture.

Neural networks 7

By contrast, the commonly used maximum likelihood classi®er (MLC) re-
quires only brief user interaction to con®gure.

An earlier paper by the authors (German and Gahegan, 1996) describes a
neural network `black box' classi®er (called DONNET±Discrete Output
Neural Network), that can be used in much the same way as an MLC, in that
it is robust and easily con®gured. It has the advantages that the input dataset
may be of arbitrary complexity and that classi®cation accuracy appears to
remain stable (and above that obtained by an MLC). The correct architecture
is determined from the data by the package, removing the normal ``trial-and-
error'' approach required when using most other neural network packages.
This ease-of-use also improves the repeatability of the classi®cation process
and is one of the main advantages of the DONNET package. Other variations
from the standard MLP are presented in Section 3. A brief overview of the
characteristics of the DONNET classi®er are presented here, with some of the
more pertinent points explained in detail in the next few sections:-

1. All nodes have one or more inputs and one output.
2. There is one input layer, one hidden layer and one output layer of nodes.
3. The hidden and output layer nodes map their inputs to their output via a

non-linear activation function. The input layer simply passes its input to
its output.

4. Weighted connections link each node in a layer to all others in the next
layer (see Fig. 2).

5. The number of nodes in the input layer, p, is equivalent to the number of
elements in the input data vector (?In the Kioloa dataset used here there
are four bands of Landsat TM data, one geology layer, one hydrology
layer and four surface morphology layers, so p � 10.).

6. The number of nodes in the output layer, q, is equivalent to the number of
target classes to be recognised; that is, each output node represents a class
label (q � 9 for this dataset).

7. The number of hidden layer nodes, h, is equivalent to the number of
pairwise linear discriminant functions needed to separate the data into q
classes. This is explained further in the next section.

8. The initial starting value for the weights are derived from the data, rather
than starting from some random point in weight-space. This helps to
assure convergence and speeds up training.

9. The node bias is modelled as an additional weight into each node for
computational simplicity, but is mathematically equivalent to a variable
threshold in the activation function.

10. A modi®ed Scaled Conjugate Gradient algorithm is used for the mini-
misation of the cost, or objective function. All parameters are selected
by the algorithm, removing the need for user involvement (Benediktsson
et al. 1993; Moller 1993).

11. A winner-takes-all (WTA) strategy is employed in determining the class
membership at the output stage i.e. the node with the highest output value
labels that particular input pixel as belonging to its representative class.

2. Network learning

One choice that the user must make concerns the number of nodes required in
the hidden layer. Too few nodes may not be able to separate out all desired

8 M. Gahegan et al.

classes; too many may result in failure to converge in a reasonable time. The
non-linearity of the input/output mapping can make it di½cult to see the re-
lationship between the network's nodes and weight connections and the sepa-
rating out of the classes from the input data in the attribute space. This map-
ping of the activity in the network's w-dimensional weight space, where w can
be many hundreds, to the p-dimensional attribute space (p � 10 for this data
set) can be more easily grasped if one considers the classi®cation problem
from the point of view of a discriminant function classi®er.

Rather than guess or experiment to ®nd a suitable number of neurons for
the hidden layer (h), an assumption is made regarding class separability. Spe-
ci®cally, it is assumed that each pair of output classes is separable by a single
hyperplane, so h represents the number of pairwise discriminant functions
needed to separate out the q classes. For the nine output classes in the Kioloa
dataset the number of hidden nodes is therefore:

h � 9

2

� �
� 8� 7� � � � � 1 � 36:

Each hidden layer node is responsible for the positioning of a single hyper-
plane in attribute space. The dimensionality of the hyperplanes is determined
by the number of weight connections at the input to the node, which is ®xed
by p. That is, each node hi controls the position of a hyperplane separating a
pair of classes in a p-dimensional attribute space. During the training phase,
each hyperplane is positioned so as to reduce the classi®cation error between
two particular classes (see Fig. 5, shown later). Hence the attribute space is
divided into ``semi-classi®ed'' regions and it is the function of the output layer
to combine these regions in such a way as to produce the ®nal classi®cation.
Due to the non-linear nature of the node activation functions and the high level
of connectivity between the hidden and output layers, this is far more than a
simple summing or subtracting of regions in the classical set theory sense, with
levels of fading and mixing being allowed amongst the semi-classi®ed regions
(Dunne and Campbell 1994).

In practice, results indicate that pairwise separation is tenable for many
di¨erent types of geographic data, and in some cases gives an over-
parameterisation of the problem which can be optimised later by net `prun-
ing'. There are, however, situations where this assumption breaks down
where the classes are not easily separable given the training data, as is the case
where the class boundary is convoluted. In this case, further improvement
requires either a hyperplane of increased dimensionality (see later) or possibly
the addition of further hyperplanes.

From the viewpoint of computational e½ciency, it is desirable to initialise
the net with weight values close to the ®nal solution, so that training time
might be reduced. In a three layer network, two sets of weights must be ini-
tially con®gured, termed the U and W matrices (see Fig. 2). A reasonable
starting position is given by assuming that the classes are linearly separable
and using the Fischer's group of linear pairwise discriminant functions (Dun-
teman 1984) as a basis for the starting network weights2. The procedure for
con®guring the W matrix from the training data is then:

2 In fact, the entire network can be run as a linear discriminant classi®er and gives a normalised
classi®cation accuracy (PCC) of around 48% on the Kioloa dataset.

Neural networks 9

For each hidden node k�k � 1 . . . h�, calculate the discriminant function
LDi; j , separating each pair of classes i and j as:

LDi; j � Mi ÿMj

1
2

Si � 1
2

Sj

where Mi � mean vector for class i and Si � covariance matrix for class i.
Compute the grand mean (GM) of i and j, followed by y, as the inner
product of GM and LDi; j. The elements of the vector LDi; j are the weights
feeding into the kth hidden layer node and y is the bias of the kth hidden
layer node.

The W matrix is now known, so too are the input values, the required
output values (the target) and the activation functions. The output from the
hidden layer nodes and the required inputs to the output layer nodes can
hence be determined, from which the correct U matrix can be found. The
procedure is:

Fit a weights ®le to the net with the above calculated values for the W
matrix and random values for the U matrix. Run the net for one iteration
to produce the hidden layer outputs (a matrix X of size p� h).

Determine the matrix B (of size p� q) as the values expected at the
inputs of the output layer nodes for the given targets (if the output activa-
tion function is sigmoid, an input value of ÿ1:0 will give an output ap-
proaching 0.1; �1:0 will give an output approaching 0.9). Each row of
B represents an expected vector of node inputs for a particular training
vector and each column represents one of the output nodes. The U matrix
is then calculated as the inner product of Xÿ1 and B.

This approach to network architecture, con®guration and training appears to
be robust on the datasets tested so far, with classi®cation accuracies of 70.79
PCC and 51.44 ANR obtained for the Kioloa dataset.

3. Further improvements to network architecture and training

Experiments have been conducted into various ways of re®ning the architec-
ture and con®guration to further improve on classi®cation accuracy. These
include (i) forced learning (ii) appropriate scaling of the data (iii) an alter-
native cost function and (iv) hyperplane distortion. Table 1 shows the incre-
mental improvements obtained by applying these re®nements to the basic
network described in Section 1.3 (in terms of PCC and ANR over ten separate
classi®cations). The following subsections detail these re®nements and the re-
sults more fully. Notice that the best results from the training phase do not
equate with the best results from validation, due to over-training of the net-
work. Indeed, the results obtained by training can be improved still further to
over 90% PCC, simply by allowing more iterations. However, the validation
results will drop o¨ accordingly. This problem of over®tting the data is one
that the user needs to be aware of and has been discussed at some length in the
literature (e.g. Sarle 1994; Skidmore 1995). However, it should by viewed in
terms of misuse of a tool, rather than a failing of the methodology.

10 M. Gahegan et al.

3.1 Forced learning

By including a suitable enhancement vector, the error during the training
phase for vectors of a particular class can be given a higher precedence than
other classes. These values are then used to scale the cost function and the
derivatives depending on which class the particular input vector is supposed to
be assigned to. The e¨ect is to concentrate the learning (movement of the
separating hyperplanes in attribute space) on certain class pairs.

The methodology for calculating these values is as follows:

Fit the net with the weights as derived from the linear discriminant func-
tions (see above).

Run the dataset once through the net to generate an output classi®ca-
tion and construct a confusion matrix based on this output.

From this confusion matrix, calculate normalised class success; i.e. the
number of correctly classi®ed samples (the values on the main diagonal of
the confusion matrix) divided by the respective class size.

We intuitively require an inverse relationship between the normalised
class successes and any required scaling of the cost function. The data is
therefore ®tted to a smooth negative exponential function with an o¨set to
allow for both inhibitory and excitatory biases. So, the normalised class
success vector is transformed via a function:

enhvaluei � aeÿbxi � c

where xi is the normalised class success for class i.

Values for the coe½cients a, b and c have been found empirically. The results
from testing on several datasets have suggested the best generalised perfor-
mance is obtained when

enhvaluei � 3eÿ5xi � 0:35:

3.2 Data preparation

The input data itself can be scaled to improve network training time. Scaling
ensures that all input nodes respond over a similar dynamic range. This ef-

Table 1. Classi®cation results for various enhancements

Net Type Training Validation

PCC ANR PCC ANR aIterations

MLP (standard) 83.3 72.5 70.97 51.44 2000
MLP (scaled) 82.79 74.00 70.26 52.43 500
� forced learning 84.07 74.75 66.12 54.82 500
� randomised input 83.49 75.38 65.72 55.00 500
� modi®ed activation 87.52 74.51 68.37 57.20 120
� new cost function 83.13 73.38 72.61 60.37 120

Neural networks 11

fectively reduce the area of weight-space to be searched, since ordinarily the
network has to account for the di¨erences in signal magnitude that occur be-
tween the various input layers by `learning' their relationship one to another.
Scaling also removes any initial bias towards a particular layer based arbi-
trarily on he relative magnitude of recorded data values. With a reduction in
the weight space to be searched, the number of training epochs required for
net convergence is decreased. A reasonable solution is attained in around 120
iterations on this dataset, with further training giving only marginal im-
provements of under two percent. Without scaling, convergence takes around
1,000 iterations. In real terms, this represents a time reduction from about
sixty minutes to around twelve minutes for the training task (on a 150 MHz
Silicon Graphics Indy).

A further advantage is that there is a reduced chance of saturation of the
hidden layer. The non-linear sigmoid activation function quickly saturates to
a value of 1.0 or 0.0 as the node input approaches 1.0 or ÿ1:0 (see Fig. 3).
This prevents any further di¨erentiation of the input value. With the high fan-
in rate of the hidden layer nodes that comes with the use of large dimensional
input vectors, saturation can readily occur, preventing convergence of the
network. Scaling the inputs helps to ensure that the occasional high-valued
weight vector (selected during the search of the weight space) will not saturate
the nodes.

Presenting the training set in the same order at each iteration can lead to
reinforcement of learning errors and overtraining. Consequently, the order of
the input vectors is randomised after each presentation epoch, to alleviate this
problem.

Fig. 3. Two possible sigmoidal activation functions. A shows the more traditional form, B has
extended non-linear regions.

12 M. Gahegan et al.

3.3 Activation function

The non-linearity of the activation function associated with a given hidden
node acts on the hyperplane produced by that particular node's input weight
connections. This can be considered as a more indeterminate positioning of
the hyperplane (as opposed to the discrete positioning that would result from
a simple step function), allowing an input vector lying close to the hyperplane
to `exist' in more than one class. The gain and bias of the sigmoidal activation
function gives the network some control over indeterminacy (currently, in the
DONNET classi®er, like most neural net classi®ers, only the bias is variable).

The sigmoid functions commonly used for nodal activation consist of an
approximately linear region, bounded on either side with a non-linear region
and ®nally a saturated region, where the output value remains constant for a
change in input (see Fig. 3).

The standard sigmoid function de®ned earlier goes into saturation for any
input values x, x < 5 or x > 5. By extending the non-linear regions (e¨ectively
allowing a greater swing in the input before saturation occurs), we allow a
greater `smearing' of the hyperplane position, giving the network a better
chance of separating out input vectors that overlap in the attribute space.
Consequently, DONNET allows the use of both the standard sigmoid func-
tion described earlier, or an approximate sigmoid given by

y� � 0:5� x

�1� abs�x���

and shown in Fig. 3 where A represents the standard sigmoid and B the
modi®ed version. This function increases the active region of the input before
saturation. classi®cation results, when compared to the standard sigmoid
function, are presented in Table 2.

3.4 Cost function

The majority of neural network implementations use a least squares formula-
tion for the cost, or objective function:

E �
X

n

X
k

1

2
�tk ÿ zk�2

where tk is the target value expected at an output node k, zk is the actual
output of that node and n is the number of input vectors in the training set.

Table 2. Comparison of activation functions

Hidden layer sigmoid Output layer sigmoid ANR

normal normal 56.37
increased gain normal 58.16
normal increased gain 59.50
increased gain increased gain 60.37

Neural networks 13

This function not only incorporates the error at the output node of interest (zi,
where i is the class to which the input vector belongs) but also all the residual
errors associated with the other output nodes. In e¨ect, the separating hyper-
planes are readjusted needlessly whilst the minimisation routine attempts to
reduce these residual values as well, with no bene®cial increase in the classi®-
cation accuracy. Hence, for a winner-takes-all strategy, minimising the above
function is not necessarily the most e½cient way of selecting the correct
weights and an alternative approach to constructing a cost function can be
postulated.

One possibility is to reduce the penalty associated with the losing nodes
and their associated errors. The idea here is that, so long as the correct node
has the highest value (hence the input vector is assigned to the correct class),
the network should not be penalised for small `errors' in the output of losing
nodes, provided they are below some error threshold (k). The following algo-
rithm implements this idea:

Calculate output node errors as per least squares formula (above).
If [winning node � correct class] AND [S(losing node error) < k�

number of classes] then
reset the error of all losing nodes to zero.

If (winning node error < k) then
reset the error of the winning node to zero

This also requires a slight change to the calculation of the partial derivatives
of dE, which are needed by the minimisation routine. This algorithm has so
far produced moderate increases in the generality of the network, in as much
as the classi®cation accuracy remains about the same for the training set, but
improves slightly for the validation set (see Table 1). Obviously, a value must
be chosen for k, within the range 0.0 to 0.2 (greater than this will allow over-
lap between the winning and loosing values). Figure 4 shows a plot of k vs
classi®cation accuracy.

The experimental evidence suggests that a value of 0.015 provides a large

Fig. 4. Graph of cost function penalty versus Average Normalised Response (ANR).

14 M. Gahegan et al.

enough bu¨er to stop the hyperplanes from being moved unnecessarily, whilst
still giving enough of an inhibitory e¨ect on the residuals.

3.5 Hyperplane distortion

If the data values in attribute space are reasonably linearly separable (between
class pairs) then the classi®cation accuracy should be high. In most of the ex-
periments conducted so far this assumption has proved reasonable. Where the
complexity of the class boundary is such that a single hyperplane cannot pro-
duce a satisfactory ®t then some output classes may remain di½cult to sepa-
rate out. Ideally, careful selection of input datasets might avoid this problem
altogether, but it is rarely the case that we can collect the ideal dataset that we
require.

Where class overlap problems persist, and in the absence of additional data
layers, the attribute space may be enhanced by borrowing a technique from
the Functional Link Networks (FLN) proposed by Pao (1989). Each element
of the input vector is additionally represented by one or more `enhancement'
nodes, whose value is a function of that element. In the case of where more
than one node is added, the functions chosen should be ortho-normal to each
other. The e¨ect is to increase the dimensionality of the attribute space by the
number of added nodes, but without actually adding in more data. This
(hopefully) allows a better separation of output classes since the hyperplanes
now have additional degrees of freedom, e¨ectively allowing some distortion,
as shown in Fig. 5.

In the current version of DONNET, enhancement is triggered when the
decrease in classi®er error per epoch is less than some user-de®ned value
(typically 0.001). Training then continues on the whole enhanced network, but
at a slower pace due the increase in attribute dimensionality. Two enhance-
ment nodes e1 and e2 are added for each input node pi. Given the value of pi

as xi, e1 and e2 are initialised as e1 � sin�xi� and e2 � cos�xi�. The weighted
connections for these nodes are derived from the original weight, via the
ortho-normal function value, scaled to the magnitude of the original weight.

Fig. 5. Class separation using hyperplanes, contrasting the ®tting abilities of standard and dis-
tortable hyperplanes.

Neural networks 15

Although the results (in Table 1) show some improvement, this is not an
ideal method, since the adaptation currently a¨ects the whole attribute space
rather than just the poorly separable regions. Experimentation with a more
focussed approach is under way at present. In this alternative strategy, the
enhancement nodes are spawned only when the classi®cation rate between two
classes fails to pass a particular threshold, accompanied by little change in
error per epoch. Similarly, the addition of two enhancement nodes is arbi-
trary (although based on observed improvements). Ideally, the number of en-
hancement nodes should in some way re¯ect the complexity of the class pair
boundary.

4. Results

The fully enhanced network (summarised by the last row in Table 1) produces
the best results in terms of the validation accuracy. Optimising performance
based on the training set alone does not appear to produce classi®ers that are
generalisable. For comparison, Table 3 shows the results of a decision tree a
standare MLP (Fitzgerald and Lees 1994) and an MLC (Fitzgerald 1995) on
the same dataset. Table 4 shows the training set confusion matrix for the fully
enhanced network and Table 5 the validation set confusion matrix. Bold
®gures represent the correct assignments. The resulting classi®ed overlay is
shown in Fig. 6. Full confusion matrices for some of the other modi®ed net-
works of Table 1 are presented in the appendix.

Table 3. Comparison of various classi®ers on the Kioloa dataset

Net Type Training Validation

PCC ANR PCC ANR

MLP (DONNET) 81.13% 73.38% 72.61% 60.37%
MLP (standard) 45.7% ± ± ±
Maximum Likelihood 50.50% ± ± ±
Decision Tree 50.90% 50.57% ± ±

Table 4. Training class confusion matrix for enhanced network

dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 172 5 6 5 14 0 2 0 0
E. botryoides 9 24 1 6 1 0 1 2 0
lower slope 7 2 14 4 4 0 3 1 0
wet E. maculata 27 0 3 125 8 3 2 0 0
dry E. maculata 12 2 1 22 83 1 0 0 0
rainforest ecotone 6 1 1 9 5 43 0 0 0
rainforest 6 3 0 4 1 2 42 0 0
cleared land 0 0 0 0 0 0 0 111 0
water 0 0 0 0 0 0 0 0 332
class total 204 44 35 168 121 65 58 111 332

16 M. Gahegan et al.

Table 5. Validation class confusion matrix for enhanced network

dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 72 3 5 7 15 0 0 0 0
E. botryoides 8 9 1 1 2 0 0 1 0
lower slope 5 4 3 1 1 1 1 1 0
wet E. maculata 16 1 0 40 17 7 2 0 0
dry E. maculata 8 0 0 14 36 2 0 0 0
rainforest ecotone 4 1 0 8 1 16 2 0 0
rainforest 2 0 0 4 3 2 18 0 0
cleared land 2 0 0 1 0 0 0 52 0
water 0 0 0 0 0 0 0 1 165
class total 102 22 17 83 60 32 29 55 166

Fig. 6. Classi®ed landcover theme produced by the fully enhanced network described.

Neural networks 17

5. Conclusions

The DONNET classi®er has been developed as a stand-alone application,
with a simple user interface. It automates many of the tasks and decisions that
must ordinarily be tackled before a neural network may be used e¨ectively
and we hope will provide the functionality of neural networks to the non-
expert user. As shown in the previous section, it will out-perform many other
classi®ers on complex GIS data.

DONNET has been exhaustively tested on various other geographic data-
sets including agricultural scenes (German and Gahegan, 1996). Results are
encouraging, in that the network has so far always converged on a good
solution. No problems with saturation have been encountered.

There are still a number of improvements to be made. Speci®cally, the
method of positioning hyperplanes could be improved by taking into account
measures of within-class variance (rather like the MLC). This should give
better results in the validation stage. Generally speaking, we intend to move to
a more model based paradigm to facilitate training on more complex patterns
and relationships.

Acknowledgement. Our thanks go to Dr. Brian Lees, Department of Geography, Australian Na-
tional University, Canberra, for his provision of the data used in this paper.

Appendix

Following are some of the confusion matrices relating to the improvements of
Section 3. For a particular improvement, both the training set and validation
set matrices are shown.

18 M. Gahegan et al.

Table A1. MLP with SCG (Section 2)

TRAINING SET dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 169 2 2 14 11 1 4 1 0
E. botryoides 7 28 0 2 3 1 0 3 0
lower slope 12 1 16 0 2 0 3 1 0
wet E. maculata 21 2 1 122 12 6 4 0 0
dry E. maculata 14 3 0 15 85 3 1 0 0
rainforest ecotone 5 2 0 15 2 37 4 0 0
rainforest 6 0 0 6 1 1 44 0 0
cleared land 2 0 0 0 0 0 0 109 0
water 0 0 0 0 0 0 0 0 332
class total 204 44 35 168 121 65 58 111 332

VALIDATION
SET

dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 79 0 0 8 9 2 2 2 0
E. botryoides 9 0 0 2 2 2 4 3 0
lower slope 13 0 0 0 0 1 1 2 0
wet E. maculata 14 0 0 49 11 4 5 0 0
dry E. maculata 14 0 0 10 34 1 1 0 0
rainforest ecotone 2 0 0 9 5 14 2 0 0
rainforest 5 0 0 5 2 1 16 0 0
cleared land 4 0 0 0 1 0 1 49 0
water 0 0 0 0 0 0 0 0 166
class total 102 22 17 83 60 32 29 55 166

Neural networks 19

Table A2. MLP with SCG, forced learning and randomised inputs (Section 3.2)

TRAINING SET dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 181 1 1 9 7 2 2 1 0
E. botryoides 9 28 0 4 1 0 1 1 0
lower slope 10 2 18 1 2 0 1 1 0
wet E. maculata 25 2 1 113 17 7 3 0 0
dry E. maculata 15 2 0 17 82 4 1 0 0
rainforest ecotone 9 0 1 10 2 42 1 0 0
rainforest 7 1 0 6 1 1 44 0 0
cleared land 1 0 0 0 0 0 0 110 0
water 0 0 0 0 0 0 0 0 332
class total 204 44 35 168 121 65 58 111 332

VALIDATION
SET

dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 54 12 12 6 10 2 6 0 0
E. botryoides 4 7 2 0 2 5 0 2 0
lower slope 1 4 5 2 0 2 1 2 0
wet E. maculata 12 2 4 28 18 18 1 0 0
dry E. maculata 7 3 1 7 37 4 1 0 0
rainforest ecotone 2 4 2 10 2 12 0 0 0
reinforest 1 3 1 1 2 5 16 0 0
cleared land 0 0 0 0 0 0 0 53 0
water 2 0 0 0 0 0 1 5 160
class total 102 22 17 83 60 32 29 55 166

20 M. Gahegan et al.

References

Benediktsson JA, Swain PH, Ersoy OK (1990) Neural network approaches versus statistical
methods in classi®cation of multisource remote sensing data. IEEE transactions on Geo-
science and Remote Sensing 28(4):540±551

Benediktsson JA, Swain PH, Ersoy OK (1993) Conjugate gradient neural networks in classi®ca-
tion of multisource and very high dimensional remote sensing data. International Journal of
Remote Sensing 14(15):2883±2903

Bischof H, Schneider W, Pinz AJ (1992) Multispectral classi®cation of Landsat images using
neural networks. IEEE Transactions on Geoscience and Remote Sensing 30(3):482±490

Cho S, Kim JH (1993) Feedforward Neural Network Architectures For Complex Classi®cation
Problems. Proceedings 2nd International Conference on Fuzzy Logic and Neural Networks,
Iizuka92

Civco DL (1993) Arti®cial neural networks for landcover classi®cation and mapping. Inter-
national Journal for Geographical Information Systems 7(2):173±186

Congalton RG (1991) A review of assessing the accuracy of classi®cations of remotely sensed
data. Remote Sensing of Environment 37:35±46

Dunteman GH (1984) Introduction to multivariate analysis. Sage Publications, New York, USA
Dunne R, Campbell N (1994) Some practical aspects of pruning multi-layer perceptron models

applied to remotely sensed data. Research Report a94=06, Murdoch University, Western
Australia

Fischer MM (1994) Expert Systems And Arti®cial Neural Networks For Spatial Analysis and
Modelling. Geographical Systems 1:221±235

Table A3. MLP with SCG, forced learning, randomised input and modi®ed activation function
(Section 3.3)

TRAINING
SET

dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 165 6 3 14 9 1 5 1 0
E. botryoides 4 34 0 3 0 0 3 0 0
lower slope 2 0 31 1 1 0 0 0 0
wet E. maculata 22 0 3 136 4 2 1 0 0
dry E. maculata 14 0 0 3 90 3 1 0 0
rainforest ecotone 8 0 0 3 7 47 0 0 0
rainforest 4 2 0 2 0 0 50 0 0
cleared land 0 0 0 0 0 0 0 111 0
water 0 0 0 0 0 0 0 0 332
class total 204 44 35 168 121 65 58 111 332

VALIDATION
SET

dry
sclero-
phy1

E.
botry-
oides

lower
slope

wet
E. mac-
ulata

dry
E. mac-
ulata

rain-
forest
ecotone

rain-
forest

cleared
land

water

dry sclerophy1 61 4 7 13 15 0 1 1 0
E. botryoides 8 8 1 3 1 0 0 1 0
lower slope 6 3 4 1 0 1 1 1 0
wet E. maculata 14 1 1 35 19 11 2 0 0
dry E. maculata 9 0 0 14 33 4 0 0 0
rainforest ecotone 3 0 1 7 3 14 2 2 0
rainforest 3 0 1 3 3 1 18 0 0
cleared land 0 1 1 1 0 0 0 52 0
water 0 0 3 1 0 0 0 0 162
class total 102 22 17 83 60 32 29 55 166

Neural networks 21

Fitzgerald RW (1995) Neural Networks: Successful Classi®cation. GIS User, No. 13, pp 60±61
Fitzgerald RW, Lees BG (1994) Assessing The Classi®cation Accuracy of Multisource Remote

Sensing Data. Journal Remote Sensing Environment 47:362±368
Freeman JA, Skapura DM (1991) Neural networks: algorithms, applications and programming

techniques. Addison-Wesley, New York, USA
Foody GM, McCulloch MB, Yates WB (1995) Classi®cation of remotely sensed data by an

arti®cial neural network: issues relating to training data characteristics. Photogrammetric
Engineering and Remote Sensing 61(4):391±401

German G, Gahegan M (1996) Neural network architectures for the classi®cation of temporal
image sequences. Computers and Geosciences 9:969±979

Lees BG, Ritman K (1991) Decision tree and rule induction approach to intergration of remotely
sensed and GIS data in mapping vegetation in disturbed or hilly environments. Environmen-
tal Management 15:823±831

Lees BG (1994) Decision Trees, Arti®cial Neural Networks and Genetic Algorithms for Classi®-
cation of Remotely-Sensed and Ancillary Data. Proceedings, 7th Australasian Remote Sens-
ing Conference, Vol. 1, Remote Sensing and Photogrammetry Association Australia, Floreat,
Western Australia, pp 51±60

Lillesand TM, Kiefer RW (1979) Remote Sensing and Image Interpretation. Wiley New York
Kamata S, Kawaguchi E (1993) A neural network classi®er for multi-timporal Landsat images

using spatial and spectral information. Proceedings IEEE 1993 International Joint Conference
on Neural Networks, Vol. 3, pp 2199±2202

Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural
Networks 6:525±533

Pao YH (1989) Adaptive pattern recognition and neural networks. Addison-Wesley, Reading,
MA, USA

Prechelt L (1994) A Study of Experimental Evaluations of Neural Network Learning Algorithms:
Current Research Practice. Technical Report, Faculty of Informatics, University of Karls-
ruhe, Germany

Sarle W (1994) Neural Networks and Statistical Models. Proceedings 19th Annual SAS Users
Group, No. 320, pp 1538±1550

Skidmore A (1995) Neural networks and GIS. GIS User, May±July 1995, pp 53±55

22 M. Gahegan et al.

