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Abstract
This paper proposes a new method of point cluster analysis. There are at least three 
important points that we need to consider in the evaluation of point clusters. The 
first is spatial inhomogeneity, i.e., the inhomogeneity of locations where points can 
be located. The second is aspatial inhomogeneity, which indicates the inhomogene-
ity of point characteristics. The third is an explicit representation of the geographic 
scale of analysis. This paper proposes a method that considers these points in a sta-
tistical framework. We develop two measures of point clusters: local and global. The 
former permits us to discuss the spatial variation in point clusters, while the latter 
indicates the global tendency of point clusters. To test the method’s validity, this 
paper applies it to the analysis of hypothetical and real datasets. The results sup-
ported the soundness of the proposed method.

Keywords  Point clusters · Spatial inhomogeneity · Aspatial inhomogeneity · 
Weighted random labeling · Geographical scale of analysis

JEL Classification  C65 · R10

1  Introduction

The concept of a cluster of points is one of the most important concepts in point pattern 
analysis. Point cluster analysis judges whether a point pattern is clustered, dispersed 
(regular), or random and detects local point clusters. An objective is to reveal the under-
lying structure of point patterns, i.e., how and why point clusters are generated. Geog-
raphy considers the clusters of retail stores and restaurants (Scott 1970; Dawson 2012). 
Epidemiology discusses the clusters of disease cases (Elliot et al. 2000; Lawson 2013). 
Criminology analyzes the clusters of crime spots (Brantingham and Brantingham 
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1981; Wortley et al. 2008). Point cluster analysis has drawn much attention in various 
academic fields related to spatial phenomena.

There are at least three important points that we need to consider in the analysis of 
point clusters. The first is spatial inhomogeneity, which refers to the inhomogeneity of 
locations where points can be located. Suppose retail stores such as clothing and shoe 
stores. Zoning regulations restrict the locations of retail stores to commercial zones, 
and thus, the potential locations are inhomogeneous. Cuzick and Edwards (1990) con-
siders the clusters of disease cases. Their locations are limited only to the residences of 
individuals, which is also usually inhomogeneous.

The second point is what we call aspatial inhomogeneity, which indicates 
the inhomogeneity of point characteristics. Pubs and bars prefer small buildings 
in commercial areas. Home decor and sporting goods shops tend to be located 
at larger places along highways. Older people are more likely to contract heart 
disease and diabetes (Brown et  al. 2011; Kirkman et  al. 2012). The height and 
diameter of trees affect the selection of hole-nesting birds (Van Balen et al. 1982; 
Peterson and Gauthier 1985).

We cannot neglect these two inhomogeneities in point cluster analysis since it may 
lead to erroneous conclusions. Suppose a statistical analysis concludes disease cases as 
clustered, suggesting an infectious disease. This, however, can happen by chance when 
the residences of individuals are clustered, even if the disease is not infectious. Birds’ 
nests often form spatial clusters, but it may be caused by the characteristics of trees, 
such as their height and diameter, rather than their spatial locations.

The third point we need to consider is the geographic scale of analysis. Geographic 
scale refers to the spatial extent and resolution of analysis (Dabiri and Blaschke 2019; 
Oshan et  al. 2022). Consideration of geographic scale is critical since the analy-
sis results heavily depend on the geographic scale. Ripley’s K-function, for instance, 
explicitly considers the analytical scale in point cluster analysis, which is represented 
by the radius of circles.

Point cluster analysis has been discussed in various academic fields, and 
numerous methods have been developed for this purpose. Existing methods, how-
ever, do not fully cover the above three points, as discussed in the following sec-
tion, which motivated us to develop a new analytical method. We focus on the 
case where the locations of points are discrete and limited, such as individuals 
and buildings mentioned earlier. Our question is whether a certain type of points, 
such as disease cases and retail stores, are spatially clustered in this setting. We 
consider both the global and local point clusters, i.e., the global tendency and 
spatial variation in point clusters. Section 2 discusses the advantages and disad-
vantages of existing methods. Section 3 describes our method in detail. Section 4 
tests the method’s validity by applying it to hypothetical and real datasets. Sec-
tion 5 summarizes the conclusion and discusses the topics of future research.
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2 � Related works

2.1 � Methods based on the complete spatial randomness

The nearest neighbor method is a simple but effective tool for classifying point pat-
terns (Clark and Evans 1954; Clark and Evans 1955; Diggle 1975). It measures the 
average distance between points and their nearest neighbor points and compares it 
with the average distance obtained under complete spatial randomness. A drawback 
is that the nearest neighbor method does not explicitly consider the geographic scale 
of analysis (Upton and Fingleton 1985; Boots and Getis 1988; Quattrochi and Good-
child 1997; Zhang et al. 2014). Different point patterns can have the same nearest 
neighbor distance, which implies that the nearest neighbor cannot distinguish many 
different patterns.

Ripley’s K-function resolves this problem (Ripley 1976; Ripley 1979). It 
places circles around points and counts the number of other points inside the 
circles. The K-function then compares it with that obtained under the complete 
spatial randomness. While the K-function evaluates the global tendency of clus-
tering, scan statistic (Kulldorff and Nagarwalla 1995; Kulldorff 1997) focuses on 
local clusters of points. Placing circles of various sizes at various locations, scan 
statistic compares the numbers of points inside the circles with that outside the 
circles. Unfortunately, K-function and scan statistic in their original forms do not 
consider the spatial inhomogeneity of points. The complete spatial randomness 
assumed as the null hypothesis is often too relaxed in the real world (Cuzick and 
Edwards 1990).

2.2 � Methods considering the spatial inhomogeneity of points

A model-based approach is one option to control the spatial inhomogeneity of 
points. Spatial statistics have developed stochastic point processes that describe 
the spatial patterns of points (Cliff and Ord 1981; Diggle and Rowlingson 1994; 
Baddeley 2007). We can generate point patterns based on a spatial point process 
and compare them with an observed pattern. A difficulty lies in the choice of the 
point process. Appropriate choice requires us to have enough knowledge of point 
processes, which is not always satisfied, especially at an early stage of analysis.

An exploratory approach is another option, and many methods are available to 
treat spatial inhomogeneity (Kulldorff 2006 provides a comprehensive review). The 
k nearest neighbors (k-NN) test developed by Cuzick and Edwards (1990) is one of 
the most popular methods and is widely used, especially in epidemiology (Gatrell 
et al. 1996; Haining 2003; Diggle 2013). The test considers the location of disease 
cases and controls, and the null hypothesis randomizes individuals’ labels (case/
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control) without changing their locations to evaluate the degree of point clustering. 
Ripley’s cross K-function is also applicable to evaluate point clusters under spatial 
inhomogeneity (Diggle 1983; Cressie 2015). Though it usually assumes complete 
spatial randomness as the null hypothesis, we can include spatial inhomogeneity by 
using random labeling (Lynch and Moorcroft 2008; Tao and Thill 2019). Cumu-
lative and maximum χ2 tests are also often used to control spatial inhomogeneity 
(Hirotsu 1986; Lagazio et  al. 1996; Rogerson 2006; Boulesteix and Strobl 2007). 
Though these χ2 tests were not originally developed for spatial analysis, they are 
applicable to treat spatial inhomogeneity.

A drawback of the above exploratory methods is that they do not consider the 
aspatial inhomogeneity, i.e., the inhomogeneity of point characteristics. These meth-
ods assume that all points have the same probability of being assigned a certain 
label, which is unrealistic in real-world situations and thus should be relaxed.

2.3 � Methods considering the aspatial inhomogeneity of points

Matched case–control design is one solution to control the aspatial inhomogeneity, 
which is often used in experiment designs in medical and biological sciences (Chet-
wynd et al. 2001; Jacquez et al. 2005; Pearce 2016). The design considers character-
istics of individuals, such as age or gender, and chooses the controls in such a way 
that the distribution of their characteristics is close to those of cases. Though this 
method does not aim for spatial analysis, we can extend it into the spatial domain. A 
disadvantage is that it requires many individuals to be chosen as controls, especially 
when characteristics vary considerably among individuals.

Weighted random sampling is a procedure of selecting elements from a set 
according to a weighted probability distribution (Ahrens and Dieter 1985; Devroye 
2006; Hübschle-Schneider and Sanders 2022). Unlike matched case–control design, 
weighted random sampling does not require many points. It is a candidate for con-
trolling aspatial inhomogeneity in point cluster analysis.

2.4 � Method considering geographic scale of analysis

There are at least two approaches to representing the geographic scale of analysis. 
One is to use an absolute spatial measure, such as the distance between locations, as 
a scale parameter. The K-function, for instance, utilizes circles to count the number 
of points. The radius of circles works as a parameter of representing the analytical 
scale. Similarly, scan statistic uses circles to detect point clusters, where the circle 
radius is a scale parameter.

Another approach is to use a relative spatial measure. Cuzick and Edwards (1990) 
consider the kth nearest neighbor points, where k represents the analytical scale. Jac-
quez (1996) also considers the kth nearest neighbor point to analyze the space–time 
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interaction in point distributions. The colocation quotient is defined based on the 
type of the kth nearest neighbor points (Leslie and Kronenfeld 2011).

The two approaches have both advantages and disadvantages. An advantage of 
absolute measures is that we can easily understand the role and effect of analytical 
scale since they are represented by real values measured on a concrete space (Rog-
erson 2006). Relative measures are not easily interpretable since the distance to the 
kth nearest neighbor point varies among locations, which yields difficulty in choos-
ing appropriate k (Chetwynd et  al. 2001; Song and Kulldorff 2003; Tango 2007). 
An advantage of relative measures is that they explicitly consider the spatial inho-
mogeneity in analysis (Leslie and Kronenfeld 2011). Absolute measures implicitly 
assume homogeneous space; thus, they are not directly applicable to point cluster 
analysis under spatial inhomogeneity.

As seen above, existing methods do not fully satisfy all three points of our 
demand, i.e., simultaneously considering spatial inhomogeneity, aspatial inho-
mogeneity, and analytical scale. However, they provide us with effective tools for 
challenging our problems. The randomization test is effective to control the spatial 
inhomogeneity. Extending weighted random sampling, we can treat the aspatial 
inhomogeneity of points. Concerning the representation of the geographic scale of 
analysis, we choose an absolute measure complemented by the randomization test to 
treat the spatial inhomogeneity. We will describe our method in detail in the follow-
ing section.

3 � Method

Suppose a region Ξ contains N points, denoted as Z1, Z2,… ZN. Each point is labeled 
P or Q, which may represent cases of a disease or trees having birds’ nests men-
tioned in Sect. 1. NP and NQ denote the numbers of P and Q points, respectively. 
Our question is whether P points are clustered in the whole distribution. We assume 
a single characteristic of points considered closely related to the label, such as the 
age of individuals and the size of trees. We call this characteristic attribute hereafter. 
The attribute plays a key role in controlling the aspatial inhomogeneity.

3.1 � Relationship between the label and the attribute

This subsection discusses the relationship between the label and the attribute. There 
are two types of attributes: categorical variables and numerical variables. The fol-
lowing treats these cases successively.

We first assume that the attribute is a categorical variable. Suppose that N 
points represent buildings and that labels P and Q indicate buildings of fast food 
restaurants and other buildings, respectively. We classify these buildings into 
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three categories, i.e., those in urban, suburban, and rural areas. The area cate-
gory is the attribute of buildings. Fast food restaurants tend to be located in urban 
rather than suburban or rural areas, implying that buildings in urban areas are 
more likely to be labeled P. We calculate the ratio of the buildings of fast food 
restaurants in each of the three area categories, which indicates the tendency for 
a building to be labeled P. We use the ratio as the weight in the null hypothesis of 
the statistical test described in the next subsection. Buildings with larger weights 
are more likely to be labeled P.

We then consider the case where the attribute is a numerical variable. Again, we 
consider the labels P and Q, which indicate the type of building mentioned earlier. 
We take the floor size of buildings as the attribute. Assume that fast food restaurants 
avoid very small and very large buildings and prefer middle-sized buildings. The 
floor size distribution of fast food restaurants has a bell shape. We then fit a Gauss-
ian distribution to the size distribution and estimate the probability distribution. 
The estimated distribution indicates the relationship between the type of building 
and floor size, i.e., the tendency for a building to be labeled P. Using the estimated 
distribution, we calculate the weight of each point. Log normal and beta distribu-
tions are alternative options if the size distribution is skewed. A logistic distribu-
tion is useful when the tendency of being labeled P or Q monotonically increases or 
decreases. This applies to the relationship between diabetes and body weight since 
overweight monotonically increases the risk of diabetes (Colditz et al. 1990; Feld-
man et al. 2017).

As above, we first clarify the relationship between the label and the attribute. The 
weight quantitatively measures this relationship and works as a control variable of 
aspatial inhomogeneity.

3.2 � Evaluation of point clustering

This subsection evaluates the clusters of points labeled P. We first discuss local 
analysis and then move to the global analysis. The former aims to capture the spatial 
variation in point clusters, while the latter aims to understand the global tendency of 
point clusters.

The local analysis starts by drawing a circle of radius r at a location X, denoted 
by C(r, X). We count the points labeled P and Q in C(r, X), denoted by nP and nQ, 
respectively. The ratio of P points in C(r, X) is given by

We compare α(r, X) with the ratio of P points in Ξ, as done in scan statistics:

(1)�(r,X) =
nP

nP + nQ
.
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If P points are clustered in C(r, X), α(r, X) is larger than α0. We perform a Monte 
Carlo simulation to evaluate the statistical significance of α(r, X). The null hypothe-
sis assumes that α(r, X)=α0, i.e., the probability that a point is labeled P, is the same 
inside and outside C(r, X). The alternative hypothesis assumes that α(r, X) > α0, i.e., 
the probability that a point is labeled P is greater in C(r, X) than in its outside.

We extend the weighted random sampling as follows. We randomly label all the 
points without changing their locations in each simulation. A single simulation con-
sists of N steps, which is equal to the total number of points. In each step, we choose 
a label, P or Q, and a point to be labeled following a statistical procedure. The prob-
ability that we choose a label is proportional to the number of points to be labeled. 
We denote the probabilities of choosing P and Q as sP and sQ, respectively. They are 
initially given by

and

respectively, and updated with a decrease in unlabeled points. The probability of 
choosing a point to be labeled is proportional to its weight. We denote the weight 
of Zi of labels P and Q as wPi and wQi, respectively. The probabilities of Zi being 
labeled P and Q are given by

and

respectively. We update these probabilities in the labeling process so that the sum-
mations of tPi and tQi are both equal to one. We repeat the above step until all the 
points are labeled. The following is the algorithm of the labeling process. Lines 5.4 
and 6.4 update the probabilities of label choice, while lines 8 and 9 update the prob-
abilities of point choice.

(2)�0 =
NP

N
.

(3)sP =
NP

N

(4)sQ =
NQ

N
,

(5)
tPi =

wPi
∑

j

wPj

(6)tQi =
wQi

∑

j

wQj

,
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Algorithm 1   Algorithm PL (Point Labeling).

We call the above process the weighted random labeling hereafter. Points are 
labeled according to a probability distribution. We call ordinary random labeling the 
unweighted random labeling. All the points have the same weight and thus have the 
same probability of labeling. The weighted random labeling differs from the weighted 
random sampling in that the former assigns two labels in parallel while the latter 
assigns only one. Our approach is a generalized form of weighted random sampling 
and thus can be easily extended to treat more than two labels simultaneously.
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Figure 1 shows an example of the process of weighted random labeling. There 
are six points, three labeled P and the others labeled Q. Labeling progresses from 
top to bottom. The red indicates the point labeled at each step, while the blue repre-
sents the already labeled points. The second and third columns indicate the label and 
point chosen at each step.

We calculate the probability that α(r, X) or a larger value is obtained under the 
null hypothesis and denote it as β(r, X). We then define a measure

(7)�(r,X) = 1 − 2�(r,X).
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Fig. 1   Weighted random labeling where Z1–Z6 denotes six points. Three are labeled P, while the others 
are labeled Q. Labeling progresses from top to bottom. The red indicates the point labeled at each step, 
while the blue represents the already labeled points. The second and third columns indicate the label and 
point chosen at each step (color figure online)
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The range of γ(r, X) is from − 1 to 1. Positive values indicate that P points are 
clustered in C(r, X), while negative values indicate that points are sparse.

Figure 2 shows point patterns where the weighted random labeling is expected to 
lead to the correct judgment of point clusters. Numbers indicate the weight of points 
to be labeled P. Circles indicate the local studied area C(r, X). Red and black points 
represent P and Q points, respectively. The red points in Figure  2a look spatially 
clustered, but it is because of large weight values. It is a pseudo cluster correspond-
ing to Type I errors in statistical tests. The red points in Figure 2b are weakly clus-
tered and may not be regarded as a clustered pattern. However, their weight is very 
small, implying that these points are less likely to be labeled P. We should regard 
Figure 2b as a clustered pattern corresponding to Type II error. We can similarly dis-
cuss dispersed point patterns shown in Figure 2c and 2d. We should judge Figure 2c 
as not dispersed while Figure 2d as dispersed.

We place a lattice on Ξ and calculate γ(r, X) at every lattice point. By visualizing 
the obtained γ(r, X) as a map, we can discuss the spatial variation in the clusters of P 
points. Like Ripley’s K-function, the radius r works as a parameter representing the 
geographic scale of analysis (Lam and Quattrochi 1992; Ruddell and Wentz 2009). 
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Fig. 2   Examples of point patterns where the weighted random labeling is expected to lead to correct 
judgment of point clusters. Numbers indicate the weight of points to be labeled P. Circles indicate the 
local studied area C(r, X). Red and black points are P and Q points, respectively. a Red points look 
spatially clustered, but it is because of their large weights, b red points are weakly clustered, but their 
weights are small, c red points are dispersed due to large weights, d red points are weakly dispersed, but 
their weights are small (color figure online)
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A large value gives us a macroscale perspective, while a small value permits us to 
analyze the local spatial pattern in detail.

We then move to the global analysis. Our question is whether P points are clus-
tered across the region Ξ. If P points are clustered, γ(r, X) varies across locations, 
while γ(r, X) is uniform when points are dispersed. We thus consider the variance of 
γ(r, X):

A large λ(r) indicates that P points are clustered, while a small value indicates a 
dispersed pattern. We randomize the labels using the earlier method to evaluate the 
statistical significance of λ(r). We denote Λ(r) as the probability that λ(r) or a larger 
value is obtained under the null hypothesis. We then define a measure

The measure φ(r) ranges from − 1 to 1. Like λ(r), a large φ(r) indicates a clus-
tered pattern of points, while a small value indicates a dispersed pattern.

4 � Applications

To test the validity of the proposed method, we perform two applications. One uses 
a hypothetical dataset, while the other uses a real dataset. We wrote two programs in 
C++ and ran them on an i9-12900U CPU 2.40 GHz, RAM 128 GB computer run-
ning Windows 10 Professional.

4.1 � Application to hypothetical dataset

This subsection evaluates the proposed method using point distributions, each of 
which consists of 1000 points in a square of side 1.0. We generated 1000 distribu-
tions and evaluated their clustering degree by the nearest neighbor method (Clark 
and Evans 1954; Diggle 1983). We chose five distributions whose spatial clustering 
degree was evaluated as the 10, 30, 50, 70, and 90 percent high, denoted by D10, 
D30, D50, D70, and D90. Concerning r, we tried five values r = 0.02, 0.04, 0.06, 0.08, 
and 0.10, which lead to 5 × 5 = 25 settings. The Gaussian distribution of mean 0 and 
variance 1 generated ten sets of weights for each setting, and we obtained 1000 labe-
ling patterns according to the weights. We chose five significant and five insignifi-
cant clustering label patterns at a five percent level based on φ(r). To evaluate the 
statistical significance of these patterns, we performed the Monte Carlo simulation 
at a five percent level based on the unweighted and weighted random labeling.

Table 1 shows the number of types I (false positive) and II (false negative) errors 
in 10,000 experiments in each setting. Acceptable levels of type I and II errors are 
often said to be 5 and 20 percent, respectively (Swinscow and Campbell 2002; 
Suresh and Chandrashekara 2012). Experiments generally satisfy these requirements 
except for the type I error of the unweighted random labeling in Table 1a. The result 

(8)�(r) =
∑

X

{

�(r,X) − �(r,X)
}2
.

(9)�(r) = 1 − 2Λ(r).
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clearly shows that the weighted random labeling reduces statistical errors. Type I 
errors were reduced in all 25 settings in Table 1a. Type II errors were reduced in 17 
settings in Table 1b, statistically significant by the binomial test, where the p-value 
was 0.022.

4.2 � Application to a real dataset

This subsection analyzes the spatial pattern of pubs in Shinjuku-ku, Tokyo. Our 
aim was to evaluate whether pubs are clustered among all the restaurants. We used 
telephone directory data provided by the NTT TownPage cooperation and building 
footprint data provided by the Zenrin cooperation. Figure 3 shows the restaurant dis-
tribution in Shinjuku-ku. This area contains 4187 restaurants, and 1382 of them are 
pubs.

Pubs prefer small buildings. We thus considered the floor size as the weight 
for evaluating pub clusters. Figure  4 shows the histogram of the floor size of 
pubs. We fitted the lognormal distribution to these data by the maximum likeli-
hood method and obtained the distribution represented by the red line in the fig-
ure, where (µ, σ2) = (2.474, 0.462). We defined the probability that ith building is 
assigned to other types of restaurants by

tQi = 1 −
wPi

∑

j

wPj

.

Table 1   The number of errors in 10,000 experiments in each setting. (a) Type I errors, (b) Type II errors

(a) Type I errors

Unweighted random labeling Weighted random labeling

r D10 D30 D50 D70 D90 D10 D30 D50 D70 D90

0.02 847 901 509 1096 1425 472 431 505 523 412
0.04 1211 817 722 866 1653 458 535 439 405 437
0.06 1051 1133 617 1167 1106 557 498 391 425 494
0.08 845 1320 1400 1579 1654 487 461 444 468 356
0.10 816 1034 1302 1890 1594 442 448 486 555 423

(b) Type II errors

Unweighted random labeling Weighted random labeling

r D10 D30 D50 D70 D90 D10 D30 D50 D70 D90

0.02 1521 1120 1279 1412 1857 1376 1000 1245 1056 1177
0.04 1400 1722 937 839 1817 1143 1080 1173 1055 1044
0.06 895 1048 1024 1532 1825 969 971 1133 1038 1146
0.08 989 931 1134 1341 2006 961 954 1169 949 1082
0.10 1227 775 1191 1809 1713 1224 985 1253 1154 935
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We first performed the local analysis. We performed the Monte Carlo simula-
tion 10,000 times to obtain γ(r, X) at 6173 lattice points. The calculations were 
completed within 100 min in all the cases. The following shows the results when 
r = 500, 250, and 125 m.

Figure  5 shows the distribution of γ(r, X) where r = 500  m. The two figures 
show the unweighted and weighted random labeling results, respectively. Red 
colors indicate pub clusters, while blue colors are sparse areas. Both figures show 
that pubs are clustered around the Shinjuku and Yotsuya stations. In contrast, 
pubs are clustered around the Takadanobaba station only in Fig. 5a and the Iida-
bashi station only in Fig. 5b. Figure 5a does not consider the floor size of build-
ings, while Fig.  5b uses the floor size distribution as the weight. Pubs tend to 
be located in small buildings, as shown in Fig.  4. Figure  5 suggests that small 
buildings are clustered around the Takadanobaba station, while few are clus-
tered around the Iidabashi station. The red color around Takadanobaba station in 
Fig. 5a appears because of the clusters of small buildings rather than because of 
the pubs. They are pseudo clusters.

Figure 6 shows the distribution of γ(r, X) where r = 250 m. The geographic scale 
of analysis is smaller; thus, the figures provide detailed patterns of pub clusters. Red 
colors exist around the Takadanobaba station in Fig.  6a and the Iidabashi station 
in Fig. 6b. This is consistent with Fig. 5. One difference lies in the area around the 

Takadanobaba

Shinjuku Yotsuya

Ichigaya

Iidabashi

0 500m

N

Railway and station0810

Fig. 3   The distribution of restaurants in Shinjuku-ku
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Takadanobaba station, as shown in Fig. 6b. The figure indicates that pubs are clus-
tered west of the Takadanobaba station, which is unclear in Fig.  5b. Another dif-
ference is the blue colors around the Shinjuku station in Fig. 6b. The pubs are not 
clustered close to the Shinjuku station.

Figure 7 shows the distribution of γ(r, X) where r = 125 m. Figure 7b shows a 
more detailed spatial pattern of pub clusters. Pub clusters around the Shinjuku sta-
tion exhibit more complicated shapes. Pub clusters appear at the center of Shin-
juku-ku and could not be detected in Figs. 5 and 4. Two clusters in the west of the 
Takadanobaba station are divided into three clusters, as shown in Fig. 7b.

Table 2 shows φ(r), which represents the clustering tendency at the global scale 
in Shinjuku-ku. Large positive values indicate that the pubs are highly clustered at 
these scales. The values are different between the unweighted and weighted random 
labelings. This finding supports the importance of considering floor size when eval-
uating pub clusters.

0

0.1

0.2

250 500 750 1000 [m2]

Fig. 4   Histogram of floor sizes of pubs and the lognormal distribution fitted to the floor size distribution
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(a) 

Takadanobaba

Shinjuku Yotsuya

Ichigaya

Iidabashi

0 500m

N

Railway and station0.10.1- 0.0

(b) 

Takadanobaba

Shinjuku Yotsuya

Ichigaya

Iidabashi

0 500m

N

Railway and station0.10.1- 0.0

Fig. 5   The distribution of γ(r, X) where r = 500 m. a Unweighted random labeling, b weighted random 
labeling
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(a) 

Takadanobaba

Shinjuku Yotsuya

Ichigaya

Iidabashi

0 500m

N

Railway and station0.10.1- 0.0

(b) 

Takadanobaba

Shinjuku Yotsuya

Ichigaya

Iidabashi

0 500m

N

Railway and station0.10.1- 0.0

Fig. 6   The distribution of γ(r, X) where r = 250 m. a Unweighted random labeling, b weighted random 
labeling



Point cluster analysis using weighted random labeling﻿	

(a) 

Takadanobaba

Shinjuku Yotsuya

Ichigaya

Iidabashi

0 500m

N

Railway and station0.10.1- 0.0

(b) 
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Yotsuya

Ichigaya

Iidabashi

0 500m

N

0.10.1- 0.0

Fig. 7   The distribution of γ(r, X) where r = 125 m. a Unweighted random labeling, b weighted random 
labeling



	 Y. Sadahiro, I. Yamada 

5 � Conclusion

This paper proposed a new method for evaluating point clusters. The measure γ(r, X) 
is useful for discussing the spatial variation in point clusters, while φ(r) reflects the 
global tendency of point clusters. To test the validity of the method, we first applied 
it to a hypothetical dataset. The result statistically supports the advantage of the 
weighted random labeling. We then applied the method to the analysis of the spatial 
pattern of pubs in Shinjuku-ku, Tokyo. Empirical findings are useful and support the 
effectiveness of the proposed method.

An advantage of our method is that it considers all the three important points dis-
cussed in Sect. 1, i.e., spatial inhomogeneity, aspatial inhomogeneity, and analytical 
scale. The method, however, is not free of limitations. We discuss them and exten-
sions for future research.

Firstly, this paper considers a numerical variable as the point attribute. Sub-
Sect. 3.1, on the other hand, also mentions categorical variables as the attribute. Cat-
egorical attributes of buildings include their structure, availability of parking lots, 
surrounding land use, and so forth. Weight calculation is easier than numerical vari-
ables. This, however, does not assure that the proposed method works successfully 
for categorical variables. Further applications are required to test the effectiveness of 
our method.

Secondly, this paper adopts an absolute measure to represent the geographical 
scale of analysis. As discussed in SubSect.  2.4, however, relative measures have 
their advantages. One method of relative approach is to replace the number of points 
in circle C(r, X) with that within the kth nearest neighboring points. We do not have 
to modify the proposed method in this approach substantially. It is worth trying to 
use relative measures with resolving the difficult problem of choosing an appropriate 
k.

Thirdly, we should extend the proposed method to the spatiotemporal domain. 
Spatiotemporal point clusters have long been discussed in the literature (Diggle 
et al. 1995; Kulldorff et al. 1998; Alvarez et al. 2016). It may seem easily achiev-
able by replacing the circle C(r, X) with a cylinder. This approach, however, has 
two problems. Firstly, the scale of analysis depends on two variables, i.e., the radius 
and height of the cylinders. We will obtain various results, and the comparisons and 
interpretations of these results may be difficult. Secondly, the computing time will 
increase. An efficient algorithm is again necessary.

Fourthly, this paper considers the clusters of two labels represented as P and Q. 
Clusters, however, can occur where more than two labels exist. The colocation quo-
tient developed by Leslie and Kronenfeld (2011) considers the colocation of more 

Table 2   The measure φ(r) 
where r = 500, 250, and 125 m

r Unweighted Weighted

500 0.84 0.91
250 0.88 0.90
125 0.86 0.87
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than three types of points. We can improve our approach to treat more than two 
labels, as mentioned in SubSect. 3.2. An extension in this direction seems fruitful 
and interesting.

Fifthly, this paper assumes categorical labels. Consideration of numerical labels 
is a useful extension. A question is whether points of similar numerical values are 
clustered, which is equivalent to the question of spatial autocorrelation analysis. 
Existing spatial autocorrelation measures use unweighted randomization in statisti-
cal tests. Extending our method, we may be able to introduce weighted randomiza-
tion in spatial autocorrelation analysis.
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