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Abstract
This paper quantifies and graphically illustrates the distance decay effect and spatial 
reach of spillover effects derived from a spatial Durbin (SD) model with parameter-
ized spatial weight matrices. Building on attributes of the concept of spatial autocor-
relation developed by Arthur Getis, we adopt a distance-based negative exponential 
spatial weight matrix and parameterize it by a decay parameter that is different for 
each spatial lag in this model, both of the regressand and of all regressors. The quan-
tification and illustration are applied to the spatially augmented neoclassical growth 
framework, which we estimate using data for 266 NUTS-2 regions in the EU over 
the period 2000–2018. We find distance decay parameters ranging from 0.233 to 
2.224 and spatial reaches ranging from 700 to more than 1500 km for the different 
growth determinants in this model. These wide ranges highlight the restrictiveness 
of the conventional SD model based on one common spatial weight matrix for all 
spatial lags.
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1  Introduction

As the world economy becomes increasingly integrated, there is growing evi-
dence that economic growth is correlated across space. This pattern is clearly 
visible in the data, and although it is increasingly recognized in empirical stud-
ies  (Moreno and Trehan 1997; López-Bazo et  al. 2004; Ertur and Koch 2007; 
Ramajo et  al. 2008), there is no consensus in the literature on the magnitude 
and the spatial reach of observed growth spillovers. This lack of consensus is 
highlighted in a recent article by Rosenthal and Strange (2020) whose title raises 
the pressing question: “How close is close.” Their answer draws on a range of 
research on agglomeration effects in economics and regional science, yet without 
providing a clear research methodology on how to estimate spillover effects.

To address this question, we propose a novel approach to determine growth 
spillovers within the spatially augmented neoclassical growth framework. This 
approach draws on the work of Arthur Getis regarding the concept of spatial auto-
correlation, which we “translate” into present-day spatial econometrics, and the 
methodology of Tan (2023) to parameterize the spatial weight matrix with a dif-
ferent parameter for each determinant that captures the rate at which interactions 
between economies decay in terms of distance. Our contribution is to introduce a 
novel approach to quantify and visualize the spillover effects of each determinant 
based on distance, while considering the uncertainty associated with the param-
eter estimates, including the distance decay parameter that defines the accompa-
nying spatial weight matrix.

We illustrate the power of this approach by estimating spillover effects in GDP 
per capita growth for EU NUTS-2 regions over the period from 2000 to 2018. There 
is extensive work in the literature that has tried to estimate the magnitude of growth 
spillovers. Early work on spillovers used regional dummies (Easterly and Levine 
1997) or control variables that are averaged across nearby countries (Ades and Chua 
1997). Moreno and Trehan (1997) are among the first to use a spatial econometric 
model to empirically test whether growth spillovers work through the regressand, 
the error term and/or the income regressor. At that time, they labeled the coefficient 
of the spatially lagged regressand, which reflects per capita growth in neighboring 
economies, as a spillover effect. More recent work has used various approaches to 
measure spillovers at the sub-national level and analyze their spatial reach (Bot-
tazzi and Peri 2003; Funke and Niebuhr 2005; Rodríguez-Pose and Crescenzi 
2008). There is also an extensive body of literature on spillovers between urban 
areas (Glaeser et al. 1992; Henderson et al. 1995). While this literature has provided 
empirical evidence regarding the existence of growth spillovers, the results regard-
ing their magnitude are inconclusive (Funke and Niebuhr 2005; Ramajo et al. 2008; 
Benos et al. 2015; Márquez et al. 2015). One reason is that these authors have either 
used indirect ways to account for growth spillovers, such as the trade-off between 
national growth and greater regional equality in economic outcomes (Gardiner et al. 
2011), or have attempted to estimate growth spillovers directly, using econometric 
specifications and spatial weight matrices which impose restrictions on the extent of 
distance decay and the corresponding spatial reach of spillovers.
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Our analysis avoids these problems by linking the magnitude of growth spillo-
vers to distance and allowing the rate of distance decay to differ per growth deter-
minant. We illustrate the indirect or spillover effects of each growth in terms of 
distance, slope, magnitude and level of significance. In addition to the existence 
and importance of spillover effects consistent with previous studies, our findings 
confirm substantial variations in their magnitudes due to differences in the rate of 
distance decay between growth determinants. These findings complement previ-
ous studies in the literature on regional economic growth based on the spatially 
augmented versions of the neoclassical growth model (López-Bazo et  al. 2004; 
Ertur and Koch 2007, 2011; Elhorst et al. 2010).

The setup of this paper is as follows. In Sect. 2 we link our approach to attrib-
utes of the concept of spatial autocorrelation developed by Arthur Getis. In Sect. 3 
we present the spatially augmented neoclassical model of economic growth and 
its empirical model in the form of a spatial Durbin (SD) model that we use for 
our analysis. In Sect. 4 we introduce the parameterizations of the spatial weight 
matrices and show their relationship with the direct and spillover effects of the 
growth determinants in the SD model. In Sect. 5 we describe the data, report and 
discuss the estimation results, plot the spillover effects for the different growth 
determinants and examine the robustness of the results to changes in the model 
specification. Finally, Sect. 6 concludes.

2 � Arthur Getis: the concept of spatial autocorrelation

In a survey article to the Handbook of Applied Spatial Analysis (Fischer and 
Getis 2010), Arthur Getis summarizes the development of the concept of spatial 
autocorrelation over the past decades and highlights its main uses and attributes 
within the literature (Getis 2010). This article also provides detailed references 
to all key papers on this topic, which need not be repeated here. In this section 
we review these main uses and attributes, translate them into present-day spatial 
econometrics and only provide limited references to some of Getis key papers, 
which reflect his thoughts on the topic. More details on the development of this 
literature can be found in the aforementioned survey and in Getis (2008).

Specifically, Getis (2010, pp. 257–259) underscores the following attributes 
and uses of spatial autocorrelation, which he indicates ‘should convince all of 
those who deal with georeferenced data that an explicit recognition of the concept 
is basic to any spatial analysis’:

	 1.	 Proper specification [to avoid misspecification] requires that any spatial associa-
tion is subsumed with the model proper.

	 2.	 A thorough understanding of the effects of regressor variables on a dependent 
variable requires that any spatial effects in both dependent and independent 
variables are quantified.
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	 3.	 Spatial autocorrelation statistics are usually designed to test the null hypothesis 
that there is no relationship among realizations of a single variable, but the tests 
may be extended to consider spatial relations between variables.

	 4.	 Measures of spatial autocorrelation will change in certain known ways when 
the configuration of spatial units changes.

	 5.	 A focus on a single spatial unit’s effect on other units and vice versa.
	 6.	 Measures of spatial association can identify the parameters of distance decay 

(for example, the parameters of a negative exponential model).
	 7.	 A series of measures of spatial autocorrelation over time sheds light on temporal 

effects.
	 8.	 If the goal is to avoid, as much as possible, spatial autocorrelation in the sample, 

then a reasonable sample design would benefit from a study of spatial autocor-
relation in the region where the sample is to be selected.

	 9.	 Before engaging in many types of spatial analysis, it is necessary to make the 
assumption that spatial stationarity exists.

	10.	 A means of identifying spatial clusters.
	11.	 A means of identifying outliers, both spatial and non-spatial.

Translated into present-day spatial econometrics, these attributes are a plea for the 
SD model in which the spatial weight matrices take an exponential form and nega-
tively depend on a distance decay parameter. This parameter should also be allowed 
to differ for each spatial lag in the model, including the spatially lagged regressand 
and the spatially lagged regressors.

The standard SD model, which has received much attention in applied spatial 
econometric studies thanks to the work of LeSage and Pace (2009), covers the first 
two attributes. According to these authors, the cost of ignoring spatial lags in the 
regressand and the regressor variables, when relevant, is high since the coefficients 
of the remaining variables may then be biased. By contrast, ignoring a spatial lag in 
the error term, if relevant, will only result in a loss of efficiency.

Regarding the third attribute, several spatial autocorrelation test statistics have 
been proposed and used in the applied literature to motivate the use of spatial econo-
metric models. Getis himself did important work in this research area (Getis and 
Ord 1992; Ord and Getis 1995). A common test statistic is Moran’s I. However, 
when applied to the regressand in raw form, the null hypothesis that it is spatially 
uncorrelated generally needs to be rejected because this statistic does not control 
for potential spatial lags in the regressor variables. Theoretically, it is possible that 
a standard linear regression without any spatial lags is sufficient because the regres-
sor variables may also be spatially correlated in such a way that they fully cover the 
spatial correlation in the regressand. In this regard, Anselin and Rey (2014) label 
Moran’s I as a “non-constructive test in that the alternative is diffuse, and not a spe-
cific (focused) model’’ (p. 107).

Another commonly used approach to motivate the use of spatial economet-
ric models is to apply the robust Lagrange multiplier tests developed by Anselin 
et  al. (1996). These tests analyze whether the linear regression model estimated 
by OLS should be extended to include a spatial lag in the regressand or the error 
term, known as, respectively, the spatial autoregressive (SAR) model and the spatial 
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error (SE) model. However, these tests also do not control for potential spatial lags 
in the regressor variables. When estimating the SD model, which includes spatial 
lags in the regressor variables, this potential misspecification can be avoided. Fur-
thermore, since the OLS, SAR and SE models are special cases of the SD model  
(LeSage and Pace 2009), it can also be tested using Wald or likelihood ratio (LR) 
ratio tests whether the SD model simplifies to one of these models (Elhorst 2014; 
Juhl 2021). Once the SD model (or one of these simpler models) has been estimated, 
one is not done yet. The researcher should also test the residuals for any remaining 
spatial dependence. The cross-sectional dependence (CD) test of Pesaran (2015) can 
be used if panel data are available. In contrast to traditional cross-sectional depend-
ence tests in the literature, this test does not require any pre-specified spatial weight 
matrix and hence it also fulfills the fourth attribute. It is also well-suited for the typi-
cal panel data setting in the empirical spatial econometric literature, where the num-
ber of observations in the cross-sectional domain dominates the number of observa-
tions over time. If the CD test applied to the residuals of the SD model still points to 
any remaining spatial dependence, only then further adjustments may be necessary 
to find a proper model.

Another advantage of the SD model over other spatial econometric models in 
empirical research is its flexibility in modeling spillovers, and thus the fifth attribute. 
The main interest of many empirical researchers is not the parameter estimates of 
the regressor variables, but the marginal impact of changes they have on the regres-
sand. Two marginal effects stand out: the direct effect of changing the regressor 
variable of one unit on the regressand of that unit itself, and the cumulative effect 
of changing the regressor variable of one unit on the regressand of all other units  
(LeSage and Pace 2009). This cumulative effect is known as the indirect effect, but a 
more appealing way to refer to it is the synonym spillover effect, the description we 
will use in this paper. Halleck Vega and Elhorst (2015) demonstrate that only mod-
els that include spatial lags of the regressor variables are able to produce spillover 
effects that can take any empirical value relative to the direct effects. By contrast, 
the popular SAR, SE and combined SAR-SE models are problematic in this respect 
since they impose restrictions on the magnitude of spillover effects in advance. In 
the SE model, the spillover effects are zero by construction, and in the SAR and 
SAR-SE models, the ratio between the spillover and the direct effect is the same for 
every regressor variable.

Up to now, the sixth attribute of measuring distance decay received relatively lit-
tle attention in the spatial econometric literature. Most studies adopt one common 
spatial weight matrix for all spatial lags in the SD model. By parameterizing the 
distance-based negative exponential spatial weight matrix by a decay parameter 
that differs for each spatial lag, we also try to give shape to this particular attribute 
highlighted in Getis’ work (Getis and Aldstadt 2004; Getis 2009). The present study 
illustrates the benefits of this approach in the context of a spatially augmented neo-
classical growth framework, which we estimate using annual data for 266 NUTS-2 
regions in the EU over the period 2000–2018.

Our approach of estimating the SD model with parametrized spatial weight matri-
ces that differ across spatial lags resembles the underlying logic of multiscale geo-
graphically weighted regressions (MGWRs) (Fotheringham et al. 2017, 2024). Both 
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approaches recognize that the relationships between the regressand and the regres-
sor variables may operate at different spatial scales and therefore require different 
spatial weight matrices. The main difference is that MGWR focuses on parameter 
heterogeneity of the direct effects based on different bandwidths indicating the data-
borrowing range of each regressor variable, while the SD model not only focuses 
on the determination of direct effects but also of spillover effects. This point is also 
mentioned by Getis (2010, pp. 271–272) when he briefly assesses GWR’s strengths 
and weaknesses.1

Using data over a period that covers the financial crisis of 2008–2009 and the 
resulting Great Recession, followed by the European debt crisis of 2010–2015, we 
also cover the seventh attribute, as growth rates were relatively high before this 
recession and relatively low in the period immediately after it. Figure 1 displays the 
average growth rate of GDP per capita across all regions, which dropped precipi-
tously in 2009 and then recovered gradually. Furthermore, by using data at the sub-
national level, which will be characterized by a substantial level of spatial autocor-
relation, we also can test whether the proposed SD model is able to cover the eighth 
attribute by applying the CD test on its residuals.

To test whether the ninth attribute of spatial stationarity is satisfied, we will spec-
ify in the next section which restriction on the parameters needs to be verified in 
the SD model. The last two attributes, the identification of outlier observations and 
spatial clusters, are also considered in our empirical analysis in Sects. 5.2 and 5.3.

Fig. 1   The average GDP per capita growth rate across all regions over time

1  Although existing approaches to estimate MGWRs are so far limited to cross-sectional data, some ini-
tial tests conducted based on a cross-sectional version of our data set suggest that the bandwidths of the 
estimated MGWRs are consistent with the distance decay parameters of our model. However, a proper 
comparison of the two approaches goes beyond the scope of the present paper.
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3 � The spatially augmented neoclassical growth framework

The world’s evolving income distribution lies at the heart of the economic growth 
literature. Within this literature, the neoclassical growth framework is the most com-
monly used framework to understand the pattern of economic growth and the evolu-
tion of per capita incomes across countries and regions. The framework originates 
from theoretical contributions by Solow (1956) and Swan (1956) associating eco-
nomic growth with the process of capital accumulation under diminishing returns. 
Following the standard empirical implementation of the neoclassical framework in 
a panel data context due to Islam (1995) leads to the following regression equation:

where ln yi,t denotes the natural logarithm of GDP per capita of economy 
i (= 1,… ,N) in period t (= 1,… , T) and Δ ln yi,t = ln yi,t − ln yi,t−1 its growth rate.2 
invi,t denotes the investment rate whose impact is measured by the parameter β1. ni,t 
denotes the rate of population growth, g the rate of technological progress and q the 
depreciation rate.3 The combined effect of these three variables is measured by the 
parameter β2. ln yi,t−1 is the natural logarithm of the initial level of GDP per capita at 
the beginning of each time period whose effect is captured by β3. The specification 
also includes cross-sectional fixed effects, μi, which reflect all time-invariant factors 
that lead to differences in growth rates across economies, such as geographic and 
institutional factors. Since growth rates are also affected by common trends, time 
period fixed effects, ξt, are also controlled for. Finally, εi,t represents an indepen-
dently and identically distributed error term for all i with zero mean, variance σ2 
and finite fourth moment. The appendix explains the implications for the parameter 
estimates of not assuming normality of the error terms.

One important limitation of the standard neoclassical growth framework is the 
assumption that each economy operates in isolation of others. This assumption 
seems implausible especially when this framework is applied to sub-national econo-
mies between which production factors are highly mobile and technology can be 
easily transferred (Beugelsdijk et  al. 2018). Over the past two decades, awareness 
of this limitation has increased, leading to increased interest in the influence of an 
economy’s spatial location on its growth rate.

A prominent example is the study of Ertur and Koch (2007). They propose a spa-
tially augmented version of the neoclassical growth model that allows for interaction 
across economies due to productivity spillovers arising from capital investments. 
Their model builds on and is supported by a large body of other studies highlight-
ing the importance of technological and knowledge spillovers (e.g., Audretsch and 

(1)Δ ln yi,t = �1 ln invi,t + �2 ln
(

ni,t + g + q
)

+ �3 ln yi,t−1 + �i + �t + �i,t,

2  The presentation of this equation is based on annual data. The index t − 1 can be replaced by t − p if 
GDP per capita growth is measured over p years. In that case the growth rate should correspond to an 
average over this time period.
3  In line with the common assumptions of the neoclassical growth framework, the rates of technological 
progress and depreciation, g and q, are not indexed as they are assumed to be common for all economies 
and time periods. We follow Islam (1995) to assume that g + q = 0.05. In Sect. 5.4 we investigate what 
happens if we extend our specification to incorporate endogenous growth determinants.
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Feldman 2004; Autant-Bernard and LeSage 2011). Ertur and Koch (2007) also dem-
onstrate that the empirical counterpart of their spatially augmented version of the 
neoclassical growth model takes the form of an SD model. This empirical model 
has not only been applied in a wide range of empirical studies,4 but it has also been 
extended in several follow-up studies, including Elhorst et  al. (2010), Pfaffermayr 
(2012), Jung and López-Bazo (2017), Lee and Yu (2016), Fiaschi et al. (2018), Diaz 
Depena et al. (2019), and Panzera and Postiglione (2022). For a panel of N cross-
sectional observations over T time periods, the SD model in vector form reads as

where ΔYt =
(

Δ ln y1t,… ,Δ ln yNt
)� denotes an N × 1 vector of the regressand intro-

duced in Eq. (1). W
(

�0
)

ΔYt represents the spatial lag of ΔYt and θ0 the spatial autore-
gressive response parameter of this spatial lag. 

(

X1t,… ,XMt

)

 is an N × M matrix 
of the regressor variables introduced in Eq.  (1) and 

[

W
(

�1
)

X1t,… ,W
(

�M
)

XMt

]

 an 
N × M matrix of their spatial lags. The impacts of these regressor variables and 
their spatial lags are measured by the M × 1 vectors 

(

�1,… , �M
)� and 

(

�1,… , �M
)� , 

respectively. The spatial weight matrix, symbolized by W, is an N × N matrix 
describing the spatial arrangement between each pair of economies i and j, whose 
elements wij in this paper are assumed to depend on a distance decay parameter δm 
( m = 0, 1,… ,M + 2 ). Its functional form is the topic of the next section. Additional 
regressor variables are Yt−1 and W

(

�M+1

)

Yt−1 representing the initial levels of GDP 
per capita in the own and neighboring economies at the start of the observation 
period, and ΔYt−1 and W

(

�M+2

)

ΔYt−1 representing the time lag of the regressand 
ΔYt and its spatial counterpart W

(

�0
)

ΔYt.5 As explained above, � =
(

�1,… ,�N

)T 
and the set ξt ( t = 1,… , T  ) denote cross-sectional and time fixed effects, respec-
tively, where �N is an N × 1 vector of ones.

Overall, Eq. (2) shows that the GDP per capita growth rate of a given economy 
depends on the investment rate and the rates of population growth, technological 
progress and depreciation, both in the given economy and that of its neighbors, 
which determine the long-run equilibrium or steady-state level of GDP per capita. It 
further depends on the initial GDP per capita level in both the given and neighbor-
ing economies at the start of each time period, which reflects how far each economy 
is from its long-run equilibrium. Additionally, it depends on its lagged growth rate, 
as well as the contemporaneous and lagged growth rates of its neighbors.

To find out under which parameter condition the spatially augmented version of 
the neoclassical growth framework leads to convergence or divergence, we rearrange 
and express Eq. (2) in terms of GDP per capita levels, to get:

(2)

ΔYt = �0W
(

�0
)

ΔYt +
(

X1t,… ,XMt

)(

�1,… , �M
)�
+
[

W
(

�1
)

X1t,… ,W
(

�M
)

XMt

](

�1,… , �M
)�

+ �M+1Yt−1 + �M+1W
(

�M+1

)

Yt−1 + �M+2ΔYt−1 + �M+2W
(

�M+2

)

ΔYt−1 + � + �t�N + �t,

4  For detailed surveys of the regional growth literature, see Döring and Schnellenbach (2006), Harris 
(2011) and Breinlich et al. (2014).
5  Even though the regressors W

(

�0
)

ΔY
t
,ΔY

t−1,W
(

�
M+1

)

Y
t−1 and W

(

�M+2

)

ΔY
t−1 share information with 

Yt−1, they remain unique, which implies that their coefficients are identified. Additional identification 
requirements in an SD model are discussed in Lee and Yu (2016).
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Assuming row-normalized spatial weight matrices, Yu et  al. (2012) show that the 
sum of the coefficients of the first five terms on the right hand of this equation deter-
mines spatial stationarity, i.e., converge or divergence. This yields:

Convergence occurs if the latter sum is smaller than 1, and thus if the coefficients 
of the initial levels of GDP per capita in the given and neighboring economies 
are smaller than 0 ( 𝛽M+1 + 𝜃M+1 < 0 ). In contrast, divergence occurs if the sum is 
greater than 1 ( 𝛽M+1 + 𝜃M+1 > 0 ). A special case of neither convergence nor diver-
gence occurs when �M+1 + �M+1 = 0 , which Yu et al. (2012) label as spatial co-inte-
gration. This corresponds to a situation in which GDP per capita growth rates in dif-
ferent economies fluctuate over the business cycle to a varying extent, but eventually 
remain on different growth paths during the entire sample period.

4 � Parameterization and estimation

Following Arthur Getis’ sixth attribute, a negative exponential functional form 
is used to specify W(δm). Its diagonal elements are set to zero to prevent econo-
mies from influencing themselves and its off-diagonal elements are specified by 
wij

(

�m
)

= exp
(

−�mdij
)

 , where dij denotes the geographic distance between each pair 
of economies i and j. Although this functional form is commonly used, the novelty of 
our study is that each distance decay parameter (δm > 0) is estimated rather than pre-
specified and is allowed to be different for each spatial lag m (m = 0, 1,… ,M + 2).6  
Here the values of m = 1, and m = 2 refer to the distance decay parameters of the 
investment rate and the combined rates of population growth, technological pro-
gress and depreciation, respectively. Additionally, m = 0 refers to the distance 
decay parameter of the spatial lag in the regressand, and m = M + 1 = 3 and 
m = M + 2 = 4 to the distance decay parameters of the initial level of GDP per cap-
ita and time-lagged GDP per capita growth rate, respectively. The elements wij(δm) 

(3)

Yt = �0W
(

�0
)

Yt +
(

1 + �M+1 + �M+2

)

Yt−1 +
(

−�0W
(

�0
)

+ �M+1W
(

�M+1

)

+ �M+2W
(

�M+2

))

Yt−1

− �M+2Yt−2 − �M+2W
(

�M+2

)

Yt−2 +
(

X1t ,… ,XMt

)(

�1,… , �M
)�

+
[

W
(

�1
)

X1t ,… ,W
(

�M
)

XMt

](

�1,… , �M
)�

+ � + �t�N + �t

(4)
�0 +

(

1 + �M+1 + �M+2

)

+
(

−�0 + �M+1 + �M+2

)

− �M+2 − �M+2 = 1 + �M+1 + �M+1.

6  We limit our discussion to the conventional specification of the SD model, which adopts a common 
pre-specified spatial weight matrix for each spatial lag. It is important to distinguish the description neg-
ative exponential spatial weight matrix from the matrix exponential spatial specification (MESS) pro-
posed by LeSage and Pace (2007). Although the naming suggests similarities to our approach, the spa-
tial multiplier matrix of MESS boils down to 

∑∞

s=0
�s
W

s∕s! compared to 
∑∞

s=0
�s
0
W

s of the conventional 
SD model. Since �0 = 1 − exp (�) , the estimation results will eventually not differ to any great extent. 
Although the MESS approach has the computational advantage that the Jacobian in the log-likelihood 
is zero by construction, it essentially operates like the conventional SD model, as both rely on the same 
spatial weight matrix for all spatial lags.
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of the negative exponential distance decay matrix, after row-normalizing each spa-
tial weight matrix W(δm),7 read as

To draw conclusions regarding the impact of the regressor variables on the 
growth rate of its own and neighboring economies, we consider their direct and 
spillover effects, as the parameter estimates alone provide an incomplete picture of 
the marginal effects in the SD model (LeSage and Pace 2009; Elhorst 2014). The 
direct effect ( DEm′ ) measures the average impact of a change in the m′th regressor 
variable ( m� = 1,… ,M + 2 ) of a given economy on its own growth rate, while the 
spillover effect ( SEm′ ) measures the cumulative effect of changing this regressor var-
iable on the growth rates of all its neighbors:

These effects encompass feedback effects that pass through neighboring regions and 
eventually circulate across all regions in the sample, including the region that insti-
gated the change in one of the regressor variables.8 Halleck Vega and Elhorst (2015) 
demonstrate that only models that at least include spatial lags of the regressor vari-
ables ( �m′ ), such as the SD model, are able to produce spillover effects that can take 
any empirical value. Parameterizing the spatial weight matrix of every regressor 
enhances this flexibility. Adopting one common W matrix for each spatial lag can be 
rather restrictive and lead to incorrect inferences because each regressand–regressor 
relationship may operate at a different spatial scale. More precisely, if the Ws of all 
regressors in the SD model are assumed to be the same, i.e., if �0 = �1 = ⋯ = �M+2 
in (6b), the spatial reach of their spillover effects will also be the same. While it is 
true that the impact at a specific distance may remain different for each regressor 
due to their individual parameters �m′ and �m′ , the critical point here is that the spa-
tial reach—the distance over which this impact is felt measured by δm—will remain 
uniform for all regressor variables. In Sect. 5.3 we explore this property graphically 
in the context of our empirical application.

To estimate the parameters of Eq. (2) and the corresponding variance–covariance 
matrix, we use a nonlinear quasi-maximum likelihood (QML) estimator, which does 
not require normality of the error terms. Heteroskedasticity will be accounted for if 

(5)wij

�

�m
�

=
exp

�

−�mdij
�

∑N

j=1
exp

�

−�mdij
�
.

(6a)DEm� =
1

N
tr
{

(

IN − �0W
(

�0
))−1(

�m�IN + �m�W
(

�m�

))

}

,

(6b)
SEm� =

1

N
��
N

{

(

IN − �0W
(

�0
))−1(

�m� IN + �m�W
(

�m�

))

}

�N

−
1

N
tr
{

(

IN − �0W
(

�0
))−1(

�m� IN + �m�W
(

�m�

))

}

.

7  Normalization by rows is a standard requirement to ensure the identification of the slope parameters in 
a spatial econometric model (Lee and Yu 2016).
8  Debarsy et al. (2012) also provide formulas to determine these effects over time.
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homoskedasticity is rejected. The delta method (Arbia et al. 2020) is used to calcu-
late the significance levels of the direct and spillover effects. The technical details 
of this estimator—first- and second-order derivatives, the derivation of the informa-
tion matrix and the variance–covariance matrix, an econometric-theoretical proof 
that this estimator is asymptotically normal if N goes to infinity, and an overview of 
the conditions under which the response and distance decay parameters are identi-
fied— are described in Tan (2023, Chapter 2). A brief summary is provided in the 
appendix of this paper.

5 � Empirical analysis

5.1 � Data

The empirical analysis of our spatially augmented neoclassical growth framework is 
based on a full-balanced panel of 266 EU NUTS-2 regions across 27 countries over 
the period 2000–2018 provided by Eurostat’s regional database. Conducting the 
analysis with EU NUTS-2 regions has the advantage of working with harmonized 
data on GDP and other macroeconomic aggregates, which are not available at a more 
disaggregated level. We measure economic growth in each region as the change in 
the natural logarithm of real GDP per capita in constant prices and adjusted for PPP 
(Δlnyt). This regressand is linked to the current rate of investment spending (lninvt) 
and the combined rate of population growth rate, technological progress and capi-
tal depreciation, ln

(

nt + g + q
)

 , as implied by Eq. (1). The correlation coefficients 
between the four main regressor variables in Eq.  (2) amount to 0.30 at the maxi-
mum (in absolute value) and their variance inflation factors to 1.03, indicating that 
multicollinearity is no issue. As part of our robustness analysis, we expand the set 
of regressor variables to also include regional measures of the tertiary educational 
attainment of the working-age population ( ln educt ) and the share of employment in 
science and technology ( ln sci&techt ). For the construction of parameterized spatial 
weight matrices, we use the great-circle distance in kilometers between all pairs of 
regions based on the latitude and longitude coordinates of their centroids.

5.2 � Basic results

Table 1 reports the estimation results of our spatially augmented neoclassical growth 
model for different specifications of the spatial weight matrix or matrices. The esti-
mates in column [1] are based on one common spatial weight matrix for all spatial 
lags and are representative of a wide range of previous empirical studies. Although 
many adopt a binary contiguity matrix based on the principle of sharing a common 
border, one problem is that several EU regions are islands, which become isolated if 
the contiguity principle is applied to them (Anselin and Rey 2014, pp. 38–40). Since 
the number of neighbors for the 256 non-island regions in the sample appears to be 
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5.98 on average, we use a six nearest neighbor matrix in column [1] so that the 10 
island regions in our sample can also be included in the analysis.9

The estimates in column [2] are based on one common exponential distance 
decay matrix using a pre-specified value of δ = 0.01. This value of 0.01 has been 
used in several other studies based on EU regions (Pfaffermayr 2012; Ezcurra and 
Rios 2020). The estimates in column [3] are based on one common exponential dis-
tance decay matrix whose distance decay parameter is estimated rather than pre-
specified, using the nonlinear estimation techniques developed by Tan (2023). The 
obtained estimate of δ in this case when multiplied by 100 is 1.088, which is very 
close to the pre-specified value of 0.01 in column [2] (when this number is also mul-
tiplied by 100). This multiplication is applied so that the optimal value of the dis-
tance decay parameter takes value around 1 within the interval (0,10], which from 
a computational viewpoint performs better (Tan 2023, Ch.2). Finally, in column [4] 
of Table 1, we report the estimates for our preferred specification where the distance 
decay parameters of each spatial lag in the model are estimated separately.

We first discuss the results from a statistical point of view. In the next section 
we also provide an economic interpretation and visualize the spillover effects of the 
preferred specification.

Comparing the values of the log-likelihood function values (LogL) and the 
Akaike information criterion (AIC), which corrects for differences in the number of 
estimated parameters, it appears that as we allow for more flexibility in the spatial 
weight matrix, this leads to a better fit of the data. When replacing the relatively 
sparse six nearest neighbor matrix in column [1] with a denser exponential distance 
matrix in column [2], both statistics improve substantially. When the distance decay 
parameter in column [3] is estimated subsequently, both statistics improve further, 
albeit limitedly, as 0.01 in this particular case was already a good guess of the dis-
tance decay parameter. Finally, the best fit is obtained when allowing for different 
instead of one common distance decay parameter.10 This finding provides compel-
ling empirical evidence that the distance decay parameters associated with each spa-
tial lag are statistically different and therefore are better estimated rather than pre-
specified. Indeed the distance decay parameters in column [4] appear to range from 
0.233 for the population growth rate to 2.224 for the initial level of GDP per capita.

When running Pesaran’s CD-test statistic on the regressand in raw form, we 
obtain a value of 302.3, indicating that GDP per capita growth rates are strongly 
spatially autocorrelated. Yet, when applied to the residuals of the models estimated 
in Table 1, this test statistic drops to values between − 0.908 and − 0.605, which are 

9  We opted to include the islands in the sample (except for the overseas territories) to acknowledge their 
existence and avoid an omitted variable bias as discussed in Anselin and Rey (2014). The parameter esti-
mates do not differ significantly (less than 0.005) when estimating the model based on a standard binary 
contiguity matrix. Log-likelihood or related values are however difficult to compare because the number 
of observations also differs when islands are excluded.
10  When conducting an LR test on the LogL value in column [4] relative to column [3], we obtain a test 
statistic of 21.4 (p value 0.00). This also explains why the AIC increases.
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Table 1   Estimation results for different spatial weight matrix specifications

Regional and time fixed effects are controlled for in all columns
Regionally clustered heteroskedasticity-robust significance values
[1] = Estimates with 6 nearest neighbors matrix
[2] = Estimates with negative exponential matrix but pre-specified distance decay parameter of 0.01
[3] = Estimates with parameterized negative exponential matrix, including the distance decay parameter
[4] = Estimates with parameterized negative exponential matrix but different decay parameters for each 
spatially lagged variable

[1] [2] [3] [4]

coeff p value coeff p value coeff p value coeff p value

Coefficient estimates regressors ( �
m′)

 ln(invt) 0.002 0.23 0.002 0.40 0.001 0.46 0.002 0.45
 ln(nt + g + q)  − 0.008 0.07  − 0.008 0.06  − 0.008 0.05  − 0.008 0.01
 ln(yt−1)  − 0.094 0.00  − 0.089 0.00  − 0.088 0.00  − 0.090 0.00
 Δln(yt−1) 0.014 0.53 0.012 0.63 0.009 0.70 0.008 0.71

Coefficient estimates spatial lags (θm)
 W*ln(invt) 0.009 0.00 0.009 0.00 0.010 0.00 0.009 0.00
 W*ln(nt + g + q)  − 0.002 0.62  − 0.005 0.32  − 0.005 0.31  − 0.016 0.00
 W*ln(yt−1) 0.066 0.00 0.070 0.00 0.068 0.00 0.087 0.00
 W*Δln(yt) 0.534 0.00 0.650 0.00 0.631 0.00 0.641 0.00
 W*Δln(yt−1) 0.191 0.00 0.194 0.00 0.198 0.00 0.174 0.00

Distance decay estimates (δm)
 δ (common)*100 1.088 0.000
 δ0*100 1.047 0.000
 δ1*100 1.483 0.340
 δ2*100 0.233 0.244
 δ3*100 0.633 0.000
 δ4*100 2.224 0.001

Direct effects ( DE
m′)

 ln(invt) 0.003 0.22 0.003 0.35 0.002 0.41 0.003 0.37
 ln(nt + g + q)  − 0.009 0.00  − 0.009 0.00  − 0.009 0.00  − 0.009 0.00
 ln(yt−1)  − 0.092 0.00  − 0.087 0.00  − 0.087 0.00  − 0.090 0.00
 Δln(yt−1) 0.035 0.02 0.029 0.05 0.029 0.05 0.030 0.04

Indirect/spillover effects ( SE
m′)

 ln(invt) 0.021 0.01 0.028 0.02 0.027 0.01 0.027 0.03
 ln(nt + g + q)  − 0.014 0.00  − 0.028 0.00  − 0.026 0.00  − 0.059 0.14
 ln(yt−1) 0.032 0.01 0.035 0.05 0.032 0.05 0.080 0.02
 Δln(yt−1) 0.407 0.00 0.560 0.00 0.532 0.00 0.478 0.00

LogL 10,919 10,974 10,976 10,986
AIC  − 21,820  − 21,931  − 21,931  − 21,944
CD test residuals  − 0.605  − 0.789  − 0.802  − 0.908
# Observations 4522 4522 4522 4522
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all within the confidence interval of (− 1.96, + 1.96).11 This indicates that the overall 
spatial association between the regressand and regressors in these models is prop-
erly specified.

If we then test these residuals for homoskedasticity using the modified Wald test, 
which is appropriate for our panel dataset, we obtain a p-value so close to zero that 
homoskedasticity must be rejected in favor of heteroskedasticity. In view of this test 
result, we calculated regionally clustered heteroskedasticity-robust standard errors 
and report p-values of the response parameters based on these robust standard errors.

5.3 � Interpretation of results and graphing spillover effects

The estimation results of the preferred model in column [4] show a plausible model 
structure. The coefficient of the lagged GDP per capita growth rate in a given region 
(Δln(yt−1)) is found to be positive but small and statistically insignificant, indicating 
that recent growth rates are not persistent. By contrast, the coefficients of both the 
contemporaneous and time-lagged growth rates in neighboring regions (W*Δln(yt) 
and W*Δln(yt−1)) are found to be much larger and significant. Comparing the mag-
nitudes of the direct and spillover effects for the time-lagged growth rate also reveals 
a staggering difference. A 1% increase in the growth rate of a region in the previ-
ous year will only lead to a 0.030% increase in the current growth rate, whereas 
the increase would be 0.478% if such an increase occurred in all the neighboring 
regions.

Looking at the estimates for the investment rate we see a similar picture. Whereas 
the effect of the investment rate in the region itself and its corresponding direct effect 
are found to be positive, but small and insignificant, the coefficient of the investment 
rate in neighboring regions and its corresponding spillover effect are much larger 
and statistically significant; a 1% increase in the investment rate in neighboring 
regions is associated with an increase in the GDP per capita growth rate of 0.027%, 
while such an increase in the region itself is nine times smaller.

Turning to the coefficient estimates of the population growth rate in the own and 
in neighboring regions, as well as its direct and spillover effects, they all appear 
to be negative. The difference with the previous two determinants is that only the 
coefficient in the region itself and its direct effect are significant. The direct effect 
is − 0.009, which implies that if population growth increases by 1%, for example 
from 1 million to 1.01 million due to an influx of migrants, GDP per capita growth 
slows down by almost 0.1%.

Finally, looking at coefficient estimates for the initial level of GDP per capita in 
a given region, we see a strong and significant negative effect on GDP per capita 
growth (− 0.090), suggesting convergent dynamics. Yet one needs to be careful 
since the initial level of GDP per capita in neighboring regions has a strong and 
significant positive effect on GDP per capita growth (0.087). The same applies to 

11  Just as in Eqs. (1) and (2), the CD test is based on independently and identically distributed error 
terms for all i with zero mean. The difference is that the variance �2

i
 is assumed to be heteroskedastic. 

The test statistic itself follows a standard normal distribution if N and T go to infinity, which implies that 
its critical values are ± 1.96 at the 5% significance level.
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the corresponding direct (− 0.090) and spillover (0.080) effects, which have opposite 
signs and almost sum to zero. Since we cannot reject the hypothesis that this sum is 
different from zero, the evidence is rather in favor of spatial cointegration, a situa-
tion that is characterized by neither convergence nor divergence over the entire sam-
ple period. This finding could be driven by the observation period and the impact of 
the Great Recession in 2008–2009. Some regions were hit harder than others, while 
after this recession other regions were able to recover faster.12

Although the coefficient estimates and the direct effects may not seem to differ 
much across the columns of Table 1 at first glance, a different picture emerges when 
we compare the spillover effects. To illustrate this in more detail, we decompose and 
plot the spillover effects across regions based on 21 distance classes. If the distance 
of region i to region j is dij kilometers, region j is assigned to distance class (da, 
db], such that da < dij ≤ db . The specific distance classes, as well as the distribution 

of the total of 1
2
N(N − 1) = 35245 region pairs in each distance class, are shown 

in Fig. 2. The first classes are based on relatively small intervals given that spillo-
vers are generally believed to decrease rapidly with distance (e.g., López-Bazo et al. 
2004).

The following explanation using the time-lagged GDP per capita growth rate as 
an example is intended to better understand the decomposition presented in these 
graphs. According to column [4] of Table 1, the spillover effect of this regressor is 
0.478. This summary measure, computed based on Eq.  (6b), represents the aver-
age cumulative effect of changing this regressor in a given region on the regres-
sand of all other 265 regions in the sample, whether near or far. The corresponding 
graph for this regressor in Fig. 3 decomposes this summary measure across regions 
based on the above-described distance classes, such that the surface area under the 
solid line for the time-lagged GDP per capita growth rate adds up to the summary 
measure of 0.478 reported in Table 1. In addition to the time-lagged GDP per capita 
growth rate, Fig. 3 also graphs the decomposed spillover effects of the other growth 
determinants.

In all plots in Fig.  3 the gray-shaded areas indicate the respective 95% confi-
dence intervals, based on the estimation results reported in column [4] of Table 1. 
To determine these confidence intervals we also account for the uncertainty in the 
distance decay parameters. If spatial weight matrices are pre-specified, as in the first 
three columns of Table 1, this type of uncertainty is ignored, as if the researcher 
does know the right specification of the spatial weight matrix.

The graphs in Fig. 3 show several notable patterns. For the first two distance cate-
gories up to 50 km, the spillover effect of the time-lagged GDP per capita growth in 
neighboring regions is greater than the direct effect in the own region. Whereas the 
direct effect amounts to 0.030, the spillover effect can be as high as 0.076 in these 
distance categories. Normally, one would expect the spillover effect to be smaller 
than the direct effect, even though it is a cumulative effect measured over all other 
regions in the sample (see Eq. (6b)). This can be explained, though, by the fact that 
some regions in our sample are located so close to each other geographically that 

12  See also Billé et al. (2023) for a similar finding in Italian regions.
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they form a cluster. It concerns neighboring regions around large metropolitan areas 
such as Brussels, London, Berlin, Prague and the cities of The Hague and Rotter-
dam (both located in South-Holland). It is to be noted that the situation of having 
neighboring regions within a distance of 50 km only occurs for a limited number of 
regions in our sample (0.13%). When regions form such clusters, as documented by 
Meijers and Burger (2017), they effectively borrow size from each other and ben-
efit from agglomeration effects that are both intra- and inter-regional, which in our 
model are captured by spillover effects rather than the direct effect.

This pattern can also be seen for the investment rate where the spillover effect 
decreases with distance markedly, as does the time-lagged GDP per capita growth. 
The difference is that it only exceeds the direct effect when it comes to nearby 
regions up to 25 km. For the spillover effect of the population growth rate, which is 
negative, we see that its absolute value decreases with distance, gradually reaches a 
value of zero, and that even for nearby regions in the smallest distance category of 
25 km, it is approximately five times as small as the direct effect.

Finally, the spillover effect of the initial level of GDP per capita exhibits a more 
complex relationship with distance. It is negative at first, then decreases in mag-
nitude with distance, becomes positive around 100  km, increases further up to 
350 km and finally falls back to zero over a range of 350 to 1250 km. It shows that 
nearby regions with high levels of GDP per capita strengthen the convergence effect, 

Fig. 2   Pie chart of distance categories between the 266 EU NUTS-2 regions. Note: Distance is split up 
in 21 classes measured in kilometers: 1—(0–25] (too small to be visible in this figure). 2—(25–50]. 3—
(50–100]. 4—(100–150]. 5—(150–200]. 6—(200–250]. 7—(250–300]. 8—(300–350]. 9—(350–400]. 
10—(400–450]. 11—(450–500]. 12—(500–600]. 13—(600–700]. 14—(700–800]. 15—(800–900]. 
16—(900–1000]. 17—(1000–1250]. 18—(1250–1500]. 19—(1500–1750]. 20—(1750–2000]. and 21— 
> 2000 km
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whereas regions with high levels of GDP per capita located farther away and espe-
cially in the range of 150 to 500 km weaken the convergence effect. Regions that 
do already well in terms of growth apparently benefit from richer regions within 
this particular spatial range, which often concern centrally located regions in the EU 
though in different countries.

Another notable observation from Fig.  3 is the slope with which the spillover 
effects decay and their spatial reach is different for different growth determinants. 
The first is most obvious for the initial level of GDP per capita, which follows a 
completely different distance decay pattern than the other growth determinants. 
The second is most obvious for the population growth rate, which turns out to have 
a spatial reach even beyond 1500 km, whereas the spatial reach of the investment 
rate does not tend to be greater than 700 km, and of both the growth rate and the 
initial level of GDP per capita not to be greater than 1250 km. If we had adopted 
one common spatial weight matrix for all spatial lags in the model, as in the first 
three columns of Table 1 and constructed the same graphs, their slope and spatial 
reach would be exactly the same for every growth determinant. More specifically, 
the graph of the initial level of GDP per capita would change in a downward-sloping 
graph only, while the spatial reach of the population growth rate would become the 
same as that of the other growth determinants.

To illustrate this, Fig. 4 graphs the spillover effects of the initial level of GDP 
per capita and the population growth rate based on the six nearest neighbor matrix 
and the estimation results reported in column [1] of Table 1. Instead of the inverse 
U-shaped form in Fig. 3 starting with negative values first, the spillover effects of 
the initial level of GDP per capita in Fig. 3 start with positive values and indeed are 
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Fig. 3   Spatial spillover effects of the four explanatory variables of GDP per capita growth as a function 
of distance. Notes: The solid lines denote spillover effects and the dotted lines the 95% confidence inter-
vals. Spillover effects are synonymous with indirect effects. Distance is split up in 21 categories based on 
Fig. 2. The graphs are based on the estimation results reported in column [4] of Table 1
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downward-sloping only. Similarly, instead of differing spatial ranges in Fig. 3, the 
spatial range of both curves in Fig. 4 indeed amounts to the same value of 500 km. 
Further note that these differences are consistent with the estimated spillover effects 
reported in the different columns of Table 1. The summary measure of the spillover 
effects in column [4] is 2.6 times as large for the initial level of GDP per capita and 
4.2 times as large for the population growth rate compared to their counterparts in 
column [1].

We conclude that the sensitivity of the spillover effects to the specification of the 
spatial weight matrix contrasts with the relative stability of the coefficient estimates 
and the direct effects seen across the different columns in Table  1. This contrast 
throws new light on applied research using spatial econometric models. Empirical 
studies that want to verify whether their results are robust for the specification of the 
spatial weight matrix, should put more emphasis on the spillover effects rather than 
the parameter estimates and should consider not only different spatial weight matri-
ces, but also different ones for each spatial lag in their model.

5.4 � Robustness checks

Since the empirical literature usually works with different variants of the spatially 
augmented neoclassical growth framework, in this section we briefly draw attention 
to three alternative specifications. Their results are reported in Table 2.

Column [1] shows the results when the lagged growth rate is removed from the 
preferred model. This simpler version has been estimated in several studies, among 
which the original study of Ertur and Koch (2007). Due to removing this regressor 
variable, the number of observations increases from 4522 to 4788. The disadvantage 
of this model run is that the spillover effects caused by lagged and spatially lagged 
growth rates can no longer be determined, whereas the first graph of Fig. 3 showed 
that they are more than worth considering.

Column [2] continues with the results when the preferred model is extended to 
include additional explanatory variables taken from endogenous growth models 
(Ertur and Koch 2011; Jung and López-Bazo 2017). It concerns the share of the 
population with tertiary education, as a proxy for regional differences in educational 
attainment, and the share of employment in science and technology, as a proxy for 
the share of resources used in research and development. The added value of this 
extension appears to be limited though. Out of all the additional parameters, six in 
total, only the coefficient of the share of resources used in research and develop-
ment appears to be statistically significant. Furthermore, this extension is rejected by 
the data by comparing the AIC in column [2] of Table 2 with that in column [4] of 
Table 1.

Column [3] shows the results when the preferred model is not estimated based 
on annual observations but on three-year overlapping averages, as is more com-
mon in this growth literature. Due to taking averages, the number of observations 
decreases from 4522 to 4256. Given that regressor variables are already averaged, 
we use the specification without the lagged growth rates. When we compare the 
results in this column with those in column [1] of the same table, we see that the 
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significance levels of almost all coefficient estimates and marginal effects improve. 
This approach could thus help to narrow the graphically displayed confidence inter-
vals of the spillover effects.13

6 � Conclusion

In his contribution to the Handbook of Applied Spatial Analysis, Arthur Getis listed 
eleven attributes of the concept of spatial autocorrelation. In this paper we trans-
late these attributes into present-day spatial econometrics and estimate the distance 
decay effect and spatial reach of spillover effects in a SD model. We apply this 
methodology to study spillovers in GDP per capita growth across EU regions and 
illustrate these effects and their confidence intervals as a function of distance.

This approach contrasts with the standard practice in empirical studies of rou-
tinely reporting for each regressor the direct and spillover effects as two numeri-
cal summary measures. Instead, the exposition of the spillover effects based on the 
graphs developed in this paper constitutes in our view an important step forward 
in the existing literature. This is because they disentangle the spillover effects as 
a function of distance, which is one of the major topics in regional science, spa-
tial economics and economic geography. Furthermore, since the spillover effects of 
the regressors tend to be the main focus of many spatial econometric studies, these 
graphs may contribute to a better understanding of these effects.

By parameterizing the spatial weight matrix of each spatial lag by a different dis-
tance decay parameter, we also show that the spatial reach of the spillover effect of 
each regressor is no longer the same, which from an empirical viewpoint further 
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Fig. 4   Spatial spillover effects of two explanatory variables of GDP per capita growth as a function of 
distance based on one common six nearest neighbors spatial weight matrix. Notes: The solid lines denote 
spillover effects and the dotted lines the 95% confidence intervals. Spillover effects are synonymous with 
indirect effects. Distance is split up in 21 categories based on Fig. 2. The graphs are based on the estima-
tion results reported in column [1] of Table 1

13  This approach may be considered if outliers are a problem. However, the percentage of residuals 
greater than three times the standard deviation does not vary more than between 1.19 and 1.53% across 
the seven regressions in Tables  1 and 2. The largest annualized residual, averaged over all regions in 
absolute value, of no more than 1.04 occurs in 2009, which is due to the crises described in Sect. 2 and 
illustrated in Fig. 1.



284	 J. P. Elhorst et al.

1 3

Table 2   Estimation results of robustness checks

[1] [2] [3]

coeff p value coeff p value coeff p value

Coefficient estimates regressors ( �
m′)

 ln(invt) 0.002 0.27 0.002 0.36 0.009 0.00
 ln(nt + g + q)  − 0.007 0.06  − 0.008 0.02 0.003 0.34
 ln(educt)  − 0.004 0.00
 ln(sci&techt) 0.011 0.00
 ln(yt−1)  − 0.081 0.00  − 0.091 0.00  − 0.099 0.00
 Δln(yt−1) 0.007 0.76

Coefficient estimates spatial lags (θm)
 W*ln(invt) 0.015 0.00 0.015 0.00 0.015 0.00
 W*ln(nt + g + q)  − 0.011 0.02  − 0.019 0.00  − 0.050 0.00
 W*ln(educt) 0.070 0.00
 W*ln(sci&techt)  − 0.007 0.00
 W*ln(yt−1) 0.075 0.00 0.078 0.00 0.091 0.00
 W*Δln(yt) 0.698 0.00 0.637 0.00 0.760 0.00
 W*Δln(yt−1) 0.176 0.00

Distance decay estimates (δm)
 δ (common)*100 0.965 0.00 1.054 0.00 1.147 0.00
 δ0*100 1.316 0.11 1.296 0.16 1.284 0.03
 δ1*100 0.352 0.12 0.218 0.23 0.366 0.00
 δ2*100 0.163 0.45
 δ3*100 2.946 0.72
 δ5*100 0.676 0.00 0.661 0.00 0.687 0.00
 δ6*100 2.213 0.00

Direct effects (DEm)
 ln(invt) 0.004 0.15 0.003 0.25 0.012 0.00
 ln(nt + g + q)  − 0.008 0.00  − 0.009 0.00 0.000 0.86
 ln(educt)  − 0.003 0.52
 ln(sci&techt) 0.011 0.04
 ln(yt−1)  − 0.080 0.00  − 0.090 0.00  − 0.100 0.00
 Δln(yt−1) 0.029 0.05

Indirect/spillover effects (SEm)
 ln(invt) 0.054 0.00 0.042 0.01 0.086 0.00
 ln(nt + g + q )  − 0.052 0.05  − 0.066 0.15  − 0.195 0.00
 ln(educt) 0.185 0.46
 ln(sci&techt) 0.002 0.93
 ln(yt−1) 0.062 0.07 0.057 0.13 0.067 0.01
 Δln(yt−1) 0.473 0.00

LogL 10,910 10,991 12,908
AIC  − 21,800  − 21,942  − 25,795
CD test residuals  − 1.142  − 1.083  − 0.588
# Observations 4788 4522 4256
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enhances the flexibility of these effects. This finding highlights the restrictiveness 
of the SD model based on one common spatial weight matrix for all spatial lags, 
reflecting the standard in spatial econometric research up to now. In their 2009 spa-
tial econometric textbook, LeSage and Pace (2009, pp. 72–73) presented the spillo-
ver effects from first- to ninth-ordered neighbors numerically in an attempt to disen-
tangle the spillover effects across space. However, hardly any study has explored this 
further. We hope that graphing the spillover effects for each individual regressor, as 
in this paper, will be followed up in more studies. While we opted to illustrate this 
methodology based on regional data, it can also be applied to finer micro-datasets, 
which should allow for a more precise estimation of spillover effects.

Appendix: Brief description of the QML estimator

The log-likelihood (LogL)  of the spatially augmented neoclassical growth frame-
work with parameterized spatial weight matrices reads as

where � =
(

� , �2, �0, �0.… .�M+2

)

 and � =
(

�1,… , �M+2, �1,… , �M+2, �1,… , �T−1
)

 . 
The parameter vector ζ captures the response coefficients of the explanatory vari-
ables, their spatial lags and the time fixed effects, as specified in Eq. (2) and below 
shortly symbolized by Z*. The superscript * is used to denote the demeaned values 
of the variables for cross-sectional fixed effects. For reasons specified below, the 
response parameter θ0 of the lagged dependent variable W

(

�0
)

ΔY∗ is taken sepa-
rately in the estimation. Finally, it is assumed that the data are sorted first by time 
and then by cross-sectional unit.

The QML estimator of ζ and σ2 can be solved analytically from the log-likelihood 
function conditional on the remaining parameters:

(7)lnL(�) = −
NT

2
ln
(

2��2
)

+ T ln
|

|

|

IN − �0W
(

�0
)

|

|

|

−
1

2�2
e∗�e∗.

(8)𝜁
(

𝜃0, 𝛿0,… , 𝛿M+2

)

=
(

Z∗�Z∗
)−1

Z∗�SΔY∗.

(9)𝜎̂2
(

𝜃0, 𝛿0,… , 𝛿M+2

)

=
1

NT
(SΔY∗ − Z∗𝜁 )

�
(SΔY∗ − Z∗𝜁 ).

Table 2   (continued)
Estimates are based on parameterized negative exponential matrices with different decay parameters for 
each spatially lagged variable. Regional and time fixed effects are controlled for in all columns
Regionally clustered heteroskedasticity-robust significance values
[1] = Model without lagged growth rates
[2] = Model extended to include endogenous growth variables
[3] = Model estimated based on three-year averages rather than annual observations and without lagged 
growth rates
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where S = IT ⊗
(

IN − 𝜃0W
(

𝛿0
)) . By substituting these solutions in (7), the con-

centrated log-likelihood function of θ0 and the distance decay parameters δm 
( m = 0,… ,M + 2 ) is obtained

where 𝜎̂2 is programmed as in (9), and 𝜁 as part of this expression is programmed as 
in (8). This iterative two-stage setup has the effect that if one or more values of θ0 
and δm change, the estimates for 𝜁

(

𝜃0, 𝛿0.… , 𝛿M+2

)

 and 𝜎̂2
(

𝜃0, 𝛿0,… , 𝛿M+2

)

 change 
accordingly in the maximization process.

By demeaning the variables for the cross-sectional fixed effects, the transformed 
errors e* become linearly dependent. Consequently, 𝜎̂2 will be biased when T is small 
or fixed. To get an unbiased estimate, Lee and Yu (2010) propose the bias correction 
(bc) 𝜎̂2

bc
= (T∕(T − 1)𝜎̂2 . This correction can easily be carried out after the parameters 

of the model have been estimated.
By making the spatial weight matrices dependent on distance decay parameters, they 

become stochastic in the sense that they are subject to a margin of error. Gupta (2019) 
shows that many established estimation methods also work with an exogenous stochas-
tic spatial weight matrix, as long as the sample size N diverges to infinity faster than the 
row and column sums of the stochastic spatial weight matrices. This condition requires 
that the distance decay parameters of the negative exponential distance decay matrix 
are strictly positive (Tan 2023. p. 20). Furthermore, by row-normalizing the exponen-
tial distance decay matrices, each pair of parameters (θm, δm) ( m = 0,… ,M + 2 ) is 
identified, as long as each response parameter θm is bounded away from zero. By con-
trast, if we would allow θm = 0, the row and column elements of this response parameter 
in the information matrix equal zero, as a result of which it is not invertible and the 
variance covariance matrix not defined.

The response and distance decay parameters can be estimated by maximum likeli-
hood (ML) or quasi-(Q)ML, depending on whether or not the error terms are assumed 
to be normally distributed. If their distribution is not specified, as in this paper, applica-
tion of QML will have a downward effect on the significance levels of the parameter 
estimates, because the asymptotic distribution of the QML estimator is

with

where μ4 denotes the fourth moment of the error terms and the variance–covariance 
matrix Σ� and the correction matrix Ω� are specified in Tan (2023. pp. 42–44). This 
expression shows that only if the error terms are assumed to be normally distributed, 
the impact of Ω� cancels out. This is because �4 − 3�4 = 0 under this circumstance, 

(10)
lnL

(

𝜃0, 𝛿0,… , 𝛿M+2|𝜁 , 𝜎̂
2
)

= −
NT

2
ln
(

2𝜋𝜎̂2
)

+ T ln
|

|

|

IN − 𝜃0W
(

𝛿0
)

|

|

|

−
NT

2

(11)
√

NT
�

𝜗̂ − 𝜗
�

→ N(0,Ψ).

(12)Ψ = lim
T

T − 1

(

1

NT
Σ�

)−1
(

1

NT
Σ� +

T − 1

T

�4 − 3�4

�4
Ω�

)

(

1

NT
Σ�

)−1

.
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yielding � = lim
T

T−1

1

NT
Σ−1
�

 . In addition to this, the significance levels of the param-
eter estimates of the regressors are corrected for heteroskedasticity.

Further technical details of the QML estimator—first- and second-order deriva-
tives, the derivation of the information matrix and the variance–covariance matrix, 
an econometric-theoretical proof that this estimator is asymptotically normal if N 
goes to infinity, and an overview of the conditions under which the response and 
distance decay parameters are identified—are described in Tan (2023, Chapter 2). 
The data used and programming code developed to generate the results reported 
in Tables 1 and 2 and Figs. 3 and 4 are made available at spatial-panels.com. The 
results obtained meet all the identification conditions discussed in this appendix.

Acknowledgements  This paper is inspired by the insightful work of Arthur Getis (1934–2022), one of 
the founding fathers of spatial econometrics, and is meant to serve as a tribute to his legacy in this field. 
We also gratefully acknowledge the helpful comments of the guest editor, two anonymous reviewers, as 
well as seminar participants of the 62nd ERSA conference (Alicante, Spain) and the Statistische Woche 
2023 (Dortmund, Germany). The data and programming code used in this paper are available at www.​
spati​al-​panels.​com.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Ades A, Chua HB (1997) Thy neighbor’s curse: regional instability and economic growth. J Econ Growth 
2:279–304

Anselin L, Rey SJ (2014) Modern spatial econometrics in practice. GeoDa Press LLC
Anselin L, Bera AK, Florax R, Yoon MJ (1996) Simple diagnostic tests for spatial dependence. Reg Sci 

Urban Econ 26(1):77–104
Arbia G, Bera AK, Doğan O, Taşpınar S (2020) Testing impact measures in spatial autoregressive mod-

els. Int Reg Sci Rev 43(1–2):40–75
Audretsch DB, Feldman MP (2004) Knowledge spillovers and the geography of innovation. In: Hender-

son JV, Thisse JF (eds) Handbook of regional and urban economics, vol 2. Elsevier, Amsterdam, pp 
2713–2739

Autant-Bernard C, LeSage JP (2011) Quantifying knowledge spillovers using spatial econometric mod-
els. J Reg Sci 51(3):471–496

Benos N, Karagiannis S, Karkalakos S (2015) Proximity and growth spillovers in European regions: the 
role of geographical, economic and technological linkages. J Macroecon 43:124–139

Beugelsdijk S, Klasing MJ, Milionis P (2018) Regional economic development in Europe: the role of 
total factor productivity. Reg Stud 52(4):461–476

Billé AG, Tommelleri A, Ravazzola T (2023) Forecasting regional GDPs: a comparison with spatial 
dynamic spatial models. Spat Econ Anal 18(4):530–551

Bottazzi L, Peri G (2003) Innovation and spillovers in regions: evidence from European patent data. Eur 
Econ Rev 47(4):687–710

Breinlich H, Ottaviano GI, Temple JR (2014) Regional growth and regional decline. In: Aghion P, Dur-
lauf SN (eds) Handbook of economic growth, vol 2. Elsevier, Amsterdam, pp 683–779

http://www.spatial-panels.com
http://www.spatial-panels.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


288	 J. P. Elhorst et al.

1 3

Debarsy N, Ertur C, LeSage JP (2012) Interpreting dynamic space-time panel data models. Stat Methodol 
9(1–2):158–171

Diaz Depena A, Rubiera-Morollon F, Paredes D (2019) New approach to economic convergence in the 
EU: a multilevel analysis from the spatial effects perspective. Int Reg Sci Rev 42(3–4):335–367

Döring T, Schnellenbach J (2006) What do we know about geographical knowledge spillovers and 
regional growth?: a survey of the literature. Reg Stud 40(3):375–395

Easterly W, Levine R (1997) Africa’s growth tragedy: policies and ethnic divisions. Quart J Econ 
112(4):1203–1250

Elhorst JP (2014) Spatial econometrics: from cross-sectional data to spatial panels. Springer, Berlin
Elhorst JP, Piras G, Arbia G (2010) Growth and convergence in a multiregional model with space–time 

dynamics. Geogr Anal 42(3):338–355
Ertur C, Koch W (2007) Growth, technological interdependence and spatial externalities: theory and evi-

dence. J Appl Econom 22(6):1033–1062
Ertur C, Koch W (2011) A contribution to the theory and empirics of Schumpeterian growth with world-

wide interactions. J Econ Growth 16(3):215–255
Ezcurra R, Rios V (2020) Quality of government in European regions: do spatial spillovers matter? Reg 

Stud 54(8):1032–1042
Fiaschi D, Lavezzi AM, Parenti A (2018) Does EU cohesion policy work? Theory and evidence. J Reg 

Sci 58(2):386–423
Fischer MM, Getis A (eds) (2010) Handbook of applied spatial analysis: software tools, methods and 

applications. Springer, Berlin
Fotheringham AS, Yang W, Kang W (2017) Multiscale geographically weighted regression (MGWR). 

Ann Am Assoc Geogr 107(6):1247–1265
Fotheringham AS, Oshan TM, Li Z (2024) Multiscale geographically weighted regression: Theory and 

practice. CRC Press, Boca Raton
Funke M, Niebuhr A (2005) Regional geographic research and development spillovers and economic 

growth: evidence from West Germany. Reg Stud 39(1):143–153
Gardiner B, Martin R, Tyler P (2011) Does spatial agglomeration increase national growth? Some evi-

dence from Europe. J Econ Geogr 11(6):979–1006
Getis A (2008) A history of the concept of spatial autocorrelation: a geographer’s perspective. Geogr 

Anal 40(3):297–309
Getis A (2009) Spatial weights matrices. Geogr Anal 41(4):404–410
Getis A (2010) Spatial autocorrelation. In: Fischer MM, Getis A (eds) Handbook of applied spatial analy-

sis. Springer, Berlin, pp 255–278
Getis A, Aldstadt J (2004) Constructing the spatial weights matrix: using a local statistic. Geogr Anal 

36(2):90–104
Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 

24(3):189–206
Glaeser EL, Kallal HD, Scheinkman JA, Shleifer A (1992) Growth in cities. J Polit Econ 

100(6):1126–1152
Gupta A (2019) Estimation of spatial autoregressions with stochastic weight matrices. Econom Theor 

35:417–463
Halleck Vega S, Elhorst JP (2015) The SLX model. J Reg Sci 55(3):339–363
Harris R (2011) Models of regional growth: past, present and future. J Econ Surv 25(5):913–951
Henderson V, Kuncoro A, Turner M (1995) Industrial development in cities. J Polit Econ 

103(5):1067–1090
Islam N (1995) Growth empirics: a panel data approach. Q J Econ 110(4):1127–1170
Juhl S (2021) The Wald test of common factors in spatial model specification search strategies. Polit Anal 

29(2):193–211
Jung J, López-Bazo E (2017) Factor accumulation, externalities, and absorptive capacity in regional 

growth: evidence from Europe. J Reg Sci 57(2):266–289
Lee LF, Yu J (2016) Identification of spatial Durbin panel models. J Appl Econom 31(1):133–162
LeSage JP, Pace RK (2007) A matrix exponential spatial specification. J Econom 140(1):190–214
LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman and Hall/CRC, Boca Raton
López-Bazo E, Vayá E, Artis M (2004) Regional externalities and growth: evidence from European 

regions. J Region Sci 44(1):43–73
Márquez MA, Ramajo J, Hewings GJ (2015) Regional growth and spatial spillovers: evidence from an 

SpVAR for the Spanish regions. Pap Reg Sci 94:S1–S18



289

1 3

The distance decay effect and spatial reach of spillovers﻿	

Meijers EJ, Burger MJ (2017) Stretching the concept of ‘borrowed size. Urban Stud 54(1):269–291
Moreno R, Trehan B (1997) Location and the growth of nations. J Econ Growth 2(4):399–418
Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. 

Geogr Anal 27(4):286–306
Panzera D, Postiglione P (2022) The impact of regional inequality on economic growth: a spatial econo-

metric approach. Reg Stud 56(5):687–702
Pesaran MH (2015) Testing weak cross-sectional dependence in large panels. Econom Rev 

34(6–10):1089–1117
Pfaffermayr M (2012) Spatial convergence of regions revisited: a spatial maximum likelihood panel 

approach. J Reg Sci 52(5):857–873
Ramajo J, Marquez MA, Hewings GJ, Salinas MM (2008) Spatial heterogeneity and interregional spillo-

vers in the European Union: do cohesion policies encourage convergence across regions? Eur Econ 
Rev 52(3):551–567

Rodríguez-Pose A, Crescenzi R (2008) Research and development, spillovers, innovation systems, and 
the genesis of regional growth in Europe. Reg Stud 42(1):51–67

Rosenthal SS, Strange WC (2020) How close is close? The spatial reach of agglomeration economies. J 
Econ Perspect 34(3):27–49

Solow RM (1956) A contribution to the theory of economic growth. Q J Econ 70(1):65–94
Swan TW (1956) Economic growth and capital accumulation. Econ Rec 32(2):334–361
Tan C (2023) Modelling spatial weight matrices and lags in spatial panel models. Dissertation, University 

of Groningen. https://​doi.​org/​10.​33612/​diss.​63068​5888
Yu J, de Jong R, Lee LF (2012) Estimation for spatial dynamic panel data with fixed effects: the case of 

spatial cointegration. J Econom 167:16–37

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.33612/diss.630685888

	The distance decay effect and spatial reach of spillovers
	Abstract
	1 Introduction
	2 Arthur Getis: the concept of spatial autocorrelation
	3 The spatially augmented neoclassical growth framework
	4 Parameterization and estimation
	5 Empirical analysis
	5.1 Data
	5.2 Basic results
	5.3 Interpretation of results and graphing spillover effects
	5.4 Robustness checks

	6 Conclusion
	Appendix: Brief description of the QML estimator
	Acknowledgements 
	References




