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Abstract
Object matching is a key technology for map conflation, data updating, and data 
quality assessment. This article proposed a new Voronoi diagram-based approach 
for matching multi-scale road networks (VAMRN). Using this method, we first cre-
ated Voronoi diagrams of the road network using the strategy of discretizing road 
lines into points and adding dense points to special road intersection segments. 
Then, we used the Voronoi diagram of road segment to find matching candidates. 
Finally, we obtained matching results by judging the geometric similarity metrics 
we designed and a heuristic combination optimization strategy. The experimental 
results demonstrated that the VAMRN outperformed two existing methods in gen-
erality and matching quality. The F-measures of VAMRN were 18.4, 29.6, 3.8, and 
7.6% higher than the buffer growing method, and 4.5, 2.8, 1.8, and 6.1% higher than 
the probabilistic relaxation method. And the time performance is improved by more 
than 90% over the probabilistic relaxation method.

Keywords Voronoi diagram · Identical roads · Road update · Road network 
matching · Data integration

JEL Classification C60 · C61

1 Introduction

The road network is the connecting framework of cities and regions, and it plays 
a key strategic role in promoting regional economic development and improving 
people’s living standards. At the same time, road network data are also the indis-
pensable core data for emerging fields such as Location-based Services (LBS), 
Smart Navigation, and Social Networking Services (SNS) (Luan 2013). With 

 * Yu Zhao 
 zy1352678154@163.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10109-023-00409-w&domain=pdf
http://orcid.org/0000-0002-2600-6916
http://orcid.org/0000-0002-0222-3422


266 J. Wu et al.

1 3

the rapid advancement of the technologies like Geographic Information System 
(GIS), Remote Sensing (RS), Global Navigation Satellite System (GNSS), and 
social media, it is much easier to produce, distribute, and utilize digital geospatial 
information.

However, the spatial data collected by different departments have different 
application purposes, leading to duplicate collection of spatial data in the same 
area. And these data possibly exist large geometric difference due to map scale, 
image resolution, time, compilation standards, data accuracy, alignment, sensor 
characteristics, or error (Guo 2008). In order to keep the spatial data current and 
eliminate the differences between spatial data, it is necessary to update and fuse 
the spatial data in a reasonable way. While object matching is a basic and key step 
in the process of data updating and fusion. Object matching means that, through 
a series of similarity measures, to distinguish identical objects from different data 
sources, and then built the corresponding relations for related spatial objects (Fu 
et al. 2008). It usually includes match types of 1:1, 1:N, M:1, M:N, 1:0, and 0:1. 
M:N match type means that M objects in one dataset match N objects in another 
dataset. Table 1 shows the examples of the matching pair categories.

Therefore, it is of great research value and application significance to study 
road network matching. For example, Fig. 1 shows that two overlaid road datasets 
covering the same area with different map scales have obvious positional discrep-
ancies. If you want to conduct the conflation of geometry or attribute information 

Table 1  The examples of the matching pair categories
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of the identical roads from two datasets, you must use object matching technol-
ogy to recognize the identical objects.

However, due to the multi-source, multi-scale, multi-temporal of road network 
data, as well as relatively complex structure itself, it is relatively difficult to match 
multi-scale road network. The existing road network matching algorithms still have 
the problems of low matching automation or low computational efficiency. For 
example, the existing buffer-based method for searching matching candidates needs 
manually setting the buffer radius and can cause missing matches or computation 
workload. Therefore, there still exist challenges to implement a generic, automatic, 
and efficient matching of multi-source and multi-scale road networks.

In this paper, we present a novel multi-scale road network matching method 
based on Voronoi diagram (VAMRN). Our matching method can handle geographic 
datasets without attributes or having significant attribute differences (e.g., the differ-
ence in schemas, naming, or coding conventions), even the road networks that have 
large non-consistent positional discrepancies, and have higher matching accuracy. 
The VAMRN method innovatively uses Voronoi diagrams of road segments to find 
candidate matching road segments. Voronoi diagram has more advantages in spa-
tial analysis and partitioning. It can establish the correlation between multi-source 
spatial data based on spatial location. When applied to object matching, it can effec-
tively avoid manually setting the buffer radius used for searching candidates and 
prune the matching searching space. By combining geometric similarity metrics, 
such as length, shape, and direction, as well as a heuristic combination optimiza-
tion strategy, which can effectively achieve identical road matching and improve the 
algorithm generality and matching quality. This method is conducive to solving the 
problem of integrating and updating multi-source road data.

Fig. 1  The non-systematic discrepancies between road dataset at 1:10,000 map scale and road dataset at 
1:50,000 map scale
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2  Related work

The purpose of road network matching is to find out corresponding objects from 
different source datasets and to establish their association relationships. In gen-
eral, two important factors that determine the merits of road network matching 
algorithms are similarity characteristic and matching model. Both of them have 
a significant impact on the matching accuracy of the overall matching algorithm. 
Many researchers have conducted related studies on road network matching.

In the aspect of study on similarity metric, the geometric similarity metric of 
line objects can be roughly judged and filtered in terms of characteristics such as 
distance, direction, length, and shape. Distance similarity characteristic is often 
used to measure correlation between corresponding objects. Gabay and Doyt-
sher (1994) proposed a method for matching linear objects by using the distance 
between the points (vertices or nodes) and the angle between the line segments 
to be matched as a spatial constraint. Zhang (2002) proposed a method for cal-
culating the distance using the middle area of two line objects, and designed a 
shape similarity of line objects using the change of direction of each line segment 
in each line object. By extending the Hausdorff distance algorithm, Deng et  al. 
(2007) proposed a line object matching method based on the extended Hausdorff 
distance. Yang (2016) proposed a mixed-median Hausdorff distance to achieve a 
reasonable distance measure between line entities of varying length and shape. 
The directional similarity characteristic is usually used to determine the differ-
ence in the overall orientation of the objects. Walter and Fritsch (1999) proposed 
a probabilistic statistical matching method based on “buffer growing” to obtain 
the candidate matching set, specifically it uses the statistical properties of angles, 
lengths, shapes, and topological characteristics between line objects to determine 
the threshold value of confirming corresponding objects, and uses the dominance 
function in information theory to calculate the optimal matching results. The 
length similarity metric of line objects is mainly used to detect the size difference 
between two objects by calculating the length ratio of the two objects. The shape 
characteristics of line objects mainly include curvature, tightness, orthogonality, 
etc. Shape similarity metric of two objects is used to determine the deformation 
difference between two objects. Zhang et al. (2002) proposed a method for deter-
mining object shape difference by the comprehensive change in the directional 
variation of each line object for each road segment. Topological similarity met-
ric is a mathematical method used to determine the spatial structure relationship 
between neighboring line objects (Wu 2008). The semantic similarity character-
istics of line objects refer to the attribute information of each spatial object, such 
as naming, encoding, usage, and type. It is the most accurate and efficient match-
ing similarity metric in matching, mainly by analyzing the difference of attribute 
information of line objects to measure the semantic difference.

In terms of automatic matching algorithm models of road networks, many 
scholars have tried to introduce models from other domains into the matching 
algorithm. The most widely used buffer growth method was proposed by Wal-
ter et  al. (Walter and Fritsch 1999). By setting a reasonable buffer radius for 
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the dataset, the line objects that meet the distance, length, and direction simi-
larity indexes are marked as candidate matching roads as the buffer continues 
to grow, and then the optimal matching pair is obtained by a probabilistic cal-
culation method. Volz (2006) extended the Walter’s algorithm by proposing an 
iterative node and edge matching algorithm applying relaxed constraints based 
on detection of similarity measures. Tong et  al. (2007) proposed a probabilis-
tic theory-based spatial data matching algorithm. The algorithm combined mul-
tiple similarity characteristics and determined whether two objects match by 
the matching probability. Li and Goodchild (2011) developed a new optimiza-
tion model to improve linear feature matching. The model takes into account all 
potentially matched pairs simultaneously by maximizing the total similarity of 
all matched features, nevertheless, the matching efficiency is low. Zhang et  al. 
(2012) proposed an automatic matching method for urban road networks based on 
a probabilistic relaxation method, which first estimates the initial probability of 
candidate road sections by the geometric difference among road segments; then, 
it continuously updates the original probability matrix until it converges to a cer-
tain minimal value based on the compatibility of neighboring candidate match-
ing road segments; finally, it calculates the structural similarity of each candidate 
road segment based on the converged probability matrix, and selects and refines 
matching pairs by setting the corresponding rules. Chehreghan and Abbaspour 
(2017) used real coding genetic algorithm (RCGA) and sensitivity analysis for 
target identification based on consideration of geometric criteria. Their method 
eliminates the initial dependency on empirical parameters such as buffer distance, 
spatial similarity threshold, and weights of criteria; instead, the optimal values 
of these parameters are calculated based on input dataset. However, the method 
is time-consuming and there is biased in the training data. Zou et al. (2020) pro-
posed a hierarchical matching method based on Delaunay triangulation for solv-
ing road network matching under different or unknown coordinate systems. Lei 
(2021) proposed a feature matching framework based on optimization and divide-
and-conquer. His research was mainly conducive to improving the computational 
efficiency; however, he paid little attention to the matching accuracy, and the 
matching datasets used were also less complex.

To sum up the above methods, we find that (1) many methods require an empiri-
cally setting buffer distance for searching candidate matching elements. However, 
a small buffer distance causes missing the identical objects, and a large buffer dis-
tance increases computation time while reducing the matching efficiency; (2) many 
heuristic methods, such as probabilistic relaxation methods and genetic algorithms, 
have complex and massive calculation process that results in much lower efficiency 
in complex road network matching. Therefore, the practicability of these algorithms 
needs to be improved; (3) many of the previous studies are efficient in datasets with 
small geometric differences or consistent positional discrepancies, while they cannot 
be applied to matching datasets with significant inconsistent positional discrepan-
cies. And they rarely simultaneously meet the requirements of urban road matching 
and mountain road matching.

Because Voronoi diagram has the unique properties in spatial proximity and spa-
tial segmentation, it is widely used to describe spatial proximity, closest operation, 
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and scope of spatial influence (Hao 2010), and build the spatial corresponding rela-
tionship for multi-scale objects (Wu et al. 2018). So we can utilize the Voronoi dia-
gram to query the candidate matching roads of different scales. In the study of the 
spatial analysis of Voronoi diagrams, Chen et al. (2003) noted that digital map syn-
thesis and update is a direction for further research on Voronoi diagrams. In recent 
years, Voronoi diagrams have been applied preliminarily in point matching (Wu 
and Wan 2015; Ma 2020), line matching (Hu and Mao 2011; Yu 2017), and poly-
gon matching (Wu et al. 2018). However, there is relatively little literature on road 
network matching using Voronoi diagrams. Compared with the buffer searching 
method used in many studies like Walter and Fritsch (1999) and Yang et al. (2013), 
Voronoi diagram has the advantages of establishing the relationship of correspond-
ing objects from multi-source and multi-scale spatial data based on spatial location 
and controlling the selection range of the candidate matching set within a reason-
able neighborhood area, thereby avoiding the matching error caused by the manually 
unreasonable selection of the buffer radius threshold. Therefore, we proposed a new 
multi-scale road network matching method based on Voronoi diagram (VAMRN).

3  Methodology

VAMRN consists of three processes: Voronoi creation, candidates acquisition, and 
matching pair selection. Figure 2 preliminarily illustrates the VAMRN process.

• Voronoi creation: Includes discretizing each road segment of the road network 
into a point set, creating Voronoi diagrams of the point set, and merging Voronoi 
diagrams by point set of each road segment.

Fig. 2  Schematic diagram of VAMRN process
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• Candidates acquisition: Includes obtaining potential candidate matching road 
segments and obtaining the candidate matching set after removing the anoma-
lous road segments.

• Matching pair selection: Includes geometric similarity metrics calculation, sim-
ple matching, and combinatorial matching.

As shown in Fig. 2, let the two datasets to be matched be Road1 = {Ri | i = 1, 2, …, m} 
and Road2 = {Tj | j = 1, 2, …, n}, in which Ri represents each road segment in the 
source dataset and Tj represents each road segment in the target dataset. Based on the 
idea of occurrence element discretization, the Voronoi diagrams of points are firstly 
constructed by the point family Pset = {Pi | i = 1, 2, …, m} into which VAMRN dis-
cretizes the road network, where Pi is a point of Ri discretization. Then, the Voronoi 
diagrams of Pset are merged into the Voronoi diagrams of Vset = {Vi | i = 1, 2, …, m}, 
where Vi is the Voronoi diagram of Ri (Sects. 3.1). The initial candidate matching 
road set (C) of Ri is then obtained by the intersection relationship between Vi and 
Road2, and the candidate matching road set (C1) of Ri is obtained after the opera-
tion of eliminating the anomalous roads (Sect. 3.2). Finally, depending on the num-
ber of elements in C1, simple matching and combinatorial matching are performed, 
and the geometric similarity metrics are calculated to determine whether a pair is a 
match or not (Sects. 3.3).

3.1  Voronoi creation

Because VAMRN requires the use of Voronoi diagrams of road segments to obtain 
the candidate matching set, the first step is to create Voronoi diagrams of the road 
network. We designed an algorithm for creating Voronoi diagrams of road network 
based on the idea of occurrence element discretization. This involved first break-
ing road network data at intersections; discretizing each road segment into a set of 
points that can replace the road segment; creating Voronoi diagrams of point sets for 
all road segments; and finally obtaining a Voronoi diagram for each road segment by 
merging the Voronoi diagrams generated by the corresponding point set of each road 
segment.

3.1.1  Discrete point set construction method for road network

Discretizing road network into point set means that using a finite number of discrete 
points with equally spaced distance to replace each road segment in road network. 
Its main steps are as follows.

First, interrupting road polylines at intersections. VAMRN automatically inter-
rupts all road polylines in two road network datasets at road intersections to obtain 
 Road1 = {Ri | i = 1, 2, …, m} and  Road2 = {Tj | j = 1, 2, …, n} (m and n denote the 
FID (unique identification number of the feature that is an object including geom-
etry and attribute information) of each feature in  Road1 and  Road2, respectively). 
Meanwhile, using the attribute field FID_O of Ri (or Tj) to record the FID value of 
its original road segment.
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Second, endpoint offset processing. To avoid an error in creating the Voronoi dia-
gram of road segment caused by the overlap of adjacent road endpoints, the end-
points need to undergo slightly offset processing. As shown in Fig. 3(a), R1, R2, R3, 
and R4 are intersect at the point O, and then, the intersection O of each road is offset 
at a distance d (such as 1 m (meter)) along the Oqn(n = 1,2,3,…) direction of each 
road. The schematic effect of the road segments after the endpoint offset is shown 
in Fig. 3(b). The red circle shows the effect of the intersection after the offset of the 
end points of each road segment.

Last, creating discrete points. First, creating a new discrete point layer for storing 
the discrete points of each road segment. Second, using any endpoint of each road 
segment in Road1 as the starting point, then adding new points along road segment 
Ri at intervals of distance g(λ) which is obtained by the calculation of Eq. (1) to the 
discrete point layer. In Eq. (1), MapScale (S) is the denominator value of the map 
scale of the dataset S, MapScale (S) divided by 1000 indicates the actual length of 
the surface corresponding to 1  mm on the map, 1/10 indicates the ratio at which 
1 mm distance on the drawing can be recognized by the human eye (Pan 2004), and 
λ (1 ≤ λ ≤ 10) indicates the distance tolerance factor.

Meanwhile, the two endpoints and turning points of road segment Ri are added to 
the discrete point layer. At the same time, using attribute field FID_O of each dis-
crete points to store the FID of the road segment where the point is located in prepa-
ration for Voronoi diagram merging. Referring to the triple standard deviation prin-
ciple, normally, λ takes the value of 1 ≤ λ ≤ 3. Theoretically, the smaller the value 
of λ, the smaller the spacing of the discrete points, and the more discrete points are 
generated. We take into account the data error limit and the efficiency of creating 
Voronoi diagram, λ is set as 4 in this paper. Now we can obtain the point sets Pi 
of each road segment and the number of inserted points Ni of each road segment, 
where i denotes the FID of each road segment. Finally, all Pi are combined into Pset, 
as shown in Fig. 3(c).

(1)g(�) = � ∗
MapScale(S)

1000
∗

1

10

Fig. 3  Discrete processing of road network (Ri is a road segment; O is the intersection; qi is the offset 
point; d is the offset distance): a Insert the offset point; b Intersection point processing; and c The dis-
crete point set P 
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3.1.2  Special intersection identification and addition of dense point processing

In a preliminary study of creating Voronoi diagrams of a road network, we found 
that when the angle size between two road segments was too small, the Voronoi 
diagrams of road segments generated at the intersection points were easy to cross 
and deform. As shown in Fig. 4(a), R1, R2, R3 and R4, ..., R7, R8 denote several 
road segments to be matched in the source road set, V1, V2, V3, ..., V7, V8 denote the 
Voronoi diagrams created by each road segment to be matched, the intersection O 
selected by the green box is a special intersection, and V5 is the Voronoi diagram 
with crossing and deformation. To solve the noted problems, we proposed a method 
for the identification of special intersections and the addition of dense points in the 
nearby road segments. When the angle between the two line segments, respectively, 
of two road segments that intersect at a point was less than 45° (this angle thresh-
old is independent of map scale), the Voronoi diagrams of road segments generated 
at the angle were likely to experience these problems. Therefore, such intersections 

Fig. 4  Identification and processing of special intersections (Ri represents a road segment in the dataset; 
Vi represents the Voronoi diagram of a road segment; O is the intersection): a Error Voronoi diagram of 
road segment before adding dense points; and b Voronoi diagram of road segment after adding dense 
points
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were marked as special intersections, and the road segments connected to such inter-
sections were further processed by adding dense points to the original discrete point 
set. The distance of increasing the dense points is g(λ) (λ = 1), and the effect of the 
Voronoi diagram of road segment generated after adding the dense points process-
ing is shown in Fig. 4(b).

3.1.3  Building Voronoi diagrams of road networks

First, we created Voronoi diagrams of points using discrete point set P, as shown 
in Fig. 5(a). Next, we transformed Voronoi diagrams of the point set into Voronoi 
diagrams of road segments, that is, merging Voronoi diagrams generated by points 
belonging to the same point set into a Voronoi diagram of road segment. The result 
of the merging is the Voronoi diagram of all road segments in the road network is 
shown in Fig. 5(b).

3.2  Candidates acquisition

Initially, we obtained the candidate matching road segments set C by traversing Vi 
in Vset and finding the road segments intersecting with Vi in Road2. Then, some of 
the anomalous candidate matching road segments were eliminated by judging the 
size of θProj, (0 < θProj < 90) (Zhang 2002), and disH, where θProj is the angular differ-
ence between the line connecting the first and last endpoints of each road segment 
in C and the line connecting the projection points of its two endpoints on Ri, and 
disH is the mixed-median Hausdorff distance between each road segment in C and 
Ri, which are marked as anomalous candidate matching road segments when θProj 
is greater than 35° or disH > g(λ)(λ = 10). However, 35° and 10 are empirical values 
in spatial cognition that do not depend on map scale. As shown in Fig. 6, V1 is the 
Voronoi diagram generated by R1, C = {T1, T2, T3, …, T9}; L1, L2, and L3 are the 
lines connecting the first and last endpoints of T1, T4, and T7 segments, respectively; 
and Pr1, Pr2, and Pr3 are the lines connecting the endpoints of T1, T4, and T7 on R1, 

Fig. 5  Process of creating a Voronoi diagram of a road network: a Voronoi diagram of the point set; and 
b Voronoi diagram of the road network
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respectively. The projection point is the point on source road closest to the target 
road endpoint. As shown in Fig. 6, although L1 and Pr1 satisfy θProj < 35, the  disH 
between them is greater than g(10), T1 is marked as an abnormal candidate matching 
road segment. θProj > 35 between L2 and Pr2, as well as L3 and Pr3, respectively, so 
T4 and T7 are also marked as abnormal matching road segments. After eliminating 
all the abnormal road segments, C = {T3, T5, T6} significantly reduced the amount 
of computation in the matching process, improved matching efficiency, and reduced 
the number of false matches. Finally, we put the remaining road segments in C into 
the set C1, and C1 = {T3, T5, T6} was the candidate matching set of R1.

3.3  Matching pair selection

After obtaining the candidate matching set C1 of Ri, we selected the corresponding 
objects of Ri from the candidate matching set, that is, the process of building road 
matching pairs. To select the final matching pairs, such as 1:0 (or 0:1), 1:1, 1: N, and 
M:N from the entire dataset, we divided the matching process into two cases (sim-
ple matching and combination matching) according to the number of road segments 
contained in C1, and determined whether they were identical objects by calculating 
the geometric similarity metrics between two road segments or combinators.

3.3.1  Geometric similarity calculation and identification method of corresponding 
objects

Whether or not two road segments or road combinations are corresponding objects 
can be determined after calculating the geometric similarity metrics between the two 
road segments or road combinations. The metrics for evaluating the difference of 
two linear features are typically distance, length, shape, direction, semantics, and 

Fig. 6  Process of obtaining 
candidate matching set (Ri 
represents a road segment in the 
source dataset; Ti represents a 
road segment in the target data-
set; V1 represents the Voronoi 
diagram of R1; Li represents the 
line connecting the start point 
and end point of Ti; Pri is the 
line connecting the projection 
points on R1 of the start point 
and end point of Li)
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topology. Distance metrics are usually not suitable for matching data from road net-
works that are too dense and have large geometric discrepancies. Since road network 
datasets from multiple sources, especially for the VGI (Volunteered Geographic 
Information) data, usually have incomplete attributes or have different descriptions 
for the same attribute of corresponding objects, the semantic information is also dif-
ficult to be adopted. For multi-scale road network data matching, the topological 
characteristics of road with the same name may change due to the different levels of 
detail of data at different scales, so the topological similarity metric is not chosen in 
this paper. Therefore, considering the adaptability of similarity metrics, we designed 
length (Yang 2016), shape, and direction (Tong, et  al. 2007) similarity metrics to 
measure the geometric difference characteristics among road segments. As shown 
in Fig. 7, Tj is a road segment in the Ri candidate matching set, Ri and Tj can be rep-
resented as a series of sequential nodes Ri = {ri(1), ri(2), ri(3), …, ri(m)}, Tj = {tj(1), 
tj(2), tj(3), …, tj(n)}, the two endpoints of Ri are ri(1), ri(m), and the two endpoints 
of Tj are tj(1), tj(n). The length, shape, and direction similarity metrics of the can-
didate matching roads Ri and Tj are calculated according to Eqs.  (2), (3), and (4), 
respectively.

where ||ri(h)ri(h + 1)|| , 
|
|
|
tj(h)tj(h + 1)

|
|
|
 , ||ri(1)ri(m)|| , and ||

|
tj(1)tj(n)

|
|
|
 all denote the Euclid-

ean distance between two nodes; dA 
(
ri(1)ri(m), tj(1)tj(n)

)
 denotes the angle (0° to 

90°) size of the line connecting Ri and Tj endpoints of the corresponding road seg-
ment; and simlen , simshp , and simdir are the geometric similarity metrics of length, 

(2)simlen

�
Ri, Tj

�
=

min

�
m∑

h=1

��ri(h)ri(h + 1)��,
n∑

h=1

���
tj(h)tj(h + 1)

���

�

max

�
m∑

h=1

��ri(h)ri(h + 1)��,
n∑

h=1

��
�
tj(h)tj(h + 1)

��
�

� ,

(3)simshp

(
Ri, Tj

)
=

min
(
||ri(1)ri(m)||,

|||
tj(1)tj(n)

|||

)

max
(
||ri(1)ri(m)||,

|
||
tj(1)tj(n)

|
||

) ,

(4)simdir

(
Ri, Tj

)
= dA

(
ri(1)ri(m), tj(1)tj(n)

)
,

Fig. 7  Geometric similarity between candidate matching road segments (Ri represents a road segment in 
the source dataset; Tj represents a road segment in the target dataset; ri(m) is the mth node on Ri; tj(n) is 
the nth node on Tj)
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shape, and direction between candidate matching roads, respectively. Suppose their 
thresholds are ρlen, ρshp, and ρdir. When simlen = �len , simshp = �shp , and simdir = �dir 
are satisfied at the same time, Ri and Tj are the identical roads.

3.3.2  Simple matching

When 0 ≤|C1|≤ 1 (| * | denotes the number of features in the set *), the simlen , simshp , 
and simdir of the candidate matching road segments in C1 and Ri are calculated, and 
if the threshold of each geometric similarity metric is satisfied at the same time, 
obtain a 1:1 matching pair; otherwise, obtain a 1:0 matching pair, and insert the 
matching result into the queue Final.

3.3.3  Combination matching

When the candidate matching set C1 of Ri contains multiple road segments, screen-
ing the road segments for combination is required. By determining the constraints 
of UT and Ri, where UT denotes the combination of road segments in C1, if the 
constraints are met and the threshold of each geometric similarity metric is satis-
fied, the corresponding object of Ri is obtained. When combining candidate match-
ing segments, the best combination is found under multiple constraints, based on 
the mixed-median Hausdorff distance between the candidate matching road seg-
ment and the source road segment, in order from near to far. Hausdorff distance is 
used for measuring the distance between two point sets, which is widely applied to 
describe the distance between various objects such as vector points, polylines, and 
polygons. However, it may have outliers when the shapes or lengths of two polylines 
that are used for calculating Hausdorff distance are different greatly. Nevertheless, 
the mixed-median Hausdorff distance can avoid the above problem. Since multi-
scale road network datasets possibly have large differences in shape and length, we 
choose the mixed-median Hausdorff distance to calculate the distance between two 
road segments.

According to the first law of geography, everything is related to everything else, 
but near things are more related to each other, the VAMRN algorithm prioritizes the 
combination of candidate elements with small distances in combination matching. 
Table  2 shows the basic procedure of combining candidate matching elements in 
pseudocode.

We calculated the disH(Tj, Ri) of each candidate matching road segment Tj in 
C1 with Ri using the mixed-median Hausdorff distance, and combined results 
in the order of disH from the smallest to the largest. As shown in Fig. 8, R1 is 
a road segment in the source dataset; V1 is the Voronoi diagram created by R1; 
T1, T2, T3, T4, T5, T6 are the candidate matching set of R1; H1 is the Hausdorff 
distance between T1 and R1; H2 is the Hausdorff distance between T2, T3, and 
R1; H3 is the Hausdorff distance between T4 and R1; H4 is the Hausdorff distance 
between T6 and R1; and H5 is the Hausdorff distance between T5 and R1. Where 
H1 < H2 < H3 < H4 < H5, T1 is the starting road segment of UT. According to Haus-
dorff distance in order of smallest to largest, query the candidate matching road 
segment intersecting with UT, and the intersecting road segment shown in Fig. 8 
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is T2. Therefore, UT and T2 will be merged to obtain the new UT. The next candi-
date matching road segment intersecting with UT is T3, which is merged with UT 
in the order of Hausdorff distance from smallest to largest. The next queries are 
T4, T6, and T5, which do not intersect with UT, that is, {T1,T2,T3} may match with 
R1.

Table 2  The basic steps of the combination of candidates

Fig. 8  Combined order based on the mixed-median Hausdorff distance from smallest to largest (Ri rep-
resents a road segment in the source dataset; Ti represents a road segment in the target dataset; V1 repre-
sents the Voronoi diagram of R1; Hi is the Hausdorff distance between Tj and R1)
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To ensure the correct growth of the combination of road segments, the following 
three constraints must be satisfied for the combination of road segments UT.

1. The length similarity metric value of UT and Ri is greater than the length similarity 
metric value of UTB and Ri, where UTB denotes the previous combination of UT.

2. The value of the shape similarity metric between UT and Ri is greater than the 
value of the shape similarity metric between UTB and Ri.

3. θProj < 10 of UT and Ri to ensure that the directions of UT and Ri are similar.

If these three constraints are satisfied simultaneously, it is proved that this is 
a set of further optimized combinations. The combined matching process is as 
follows: First, select the road segment with the smallest disH as the starting road 
segment of UT and find its neighboring road segments in order, and combine them 
to obtain UT. Then, determine whether it meets the constraints, and if it does, 
add the combined road segments of UT to the temporary queue Temp, and repeat 
the combination and determination process until UT and Ri meet the geometric 
similarity metrics at the same time, and the values of simlen and simshp reach the 
maximum at the same time. Finally, add the matched pairs in Temp to the queue 
Final. If the selected UT starting road segment fails to find a matching pair that 
satisfies the geometric similarity metric with Ri after an attempted combination, 
then remove the starting road segment from the candidate set. The road segment 
with the smallest disH in the candidate set is continued so as to be selected as 
the starting road segment for an attempted combination until the best combina-
tion is found. As shown in Fig.  9, V1 is the Voronoi diagram corresponding to 
R1, and T1, T2, T3, ..., T7, and T8 are the candidate matching road segments after 
R1 eliminates the anomalous road segments, where the smallest disH is T6. The 
result of the first attempted combination is {T6, T7, T8}. Because UT cannot meet 

Fig. 9  1:N road segments com-
bination matching (Ri represents 
a road segment in the source 
dataset; Ti represents a road 
segment in the target dataset; V1 
represents the Voronoi diagram 
of R1)
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the geometric similarity metric threshold with R1, T6 is excluded and the second 
attempted combination is continued, with the result as {T1, T2, T4, T7, T8}, UT 
meets the geometric similarity metric threshold with R1, and the result is inserted 
into the queue Final. If no matching pair is obtained after eliminating all road 
segments in the candidate matching set, the selection of the next set of match-
ing pairs is continued. By traversing all Vi, the obtained result is inserted into the 
queue Final.

So far, all the identical roads in 1:0, 1:1, and 1:N cases have been selected, 
and the identical roads in M:N cases still need to be selected. First, put the Ri 
segments that failed to find a matching pair into the set C2, assume that the com-
bination of the neighboring road segments in C2 is UR, select the first Ri in the 
set C2 as the starting road segment of UR, query the road segments adjacent to 
UR, and combine them by traversing the road segments in C2 until there are no 
road segments adjacent to UR. The UV is obtained by combining the Vi of all the 
Ri segments that make up the UR. Then, the candidate matching set C3 of UR is 
obtained by querying the road segments intersecting with UV in Road2, and M:N 
matching pairs are obtained through the process of disH calculation, elimination 
of outliers, and screening road segments of combination. Finally, the obtained 
result is inserted into the queue Final. As shown in Fig.  10, V1 and V2 are the 
Voronoi diagrams corresponding to R1 and R2, respectively, R1 and R2 are com-
bined to form UR, and T1, T2, T3, T4, T5, and T6 are the candidate matching road 
segments after UR eliminates the abnormal road segments. The identical roads of 
R1 and R2 are obtained as T4 and T6 by attempted combinatorial matching. Once 
the matching result is obtained, all the road segments Ri that form UR need to be 

Fig. 10  M:N road segment com-
bination matching (Ri represents 
a road segment in the source 
dataset; Ti represents a road 
segment in the target dataset; Vi 
represents the Voronoi diagram 
of Ri)
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eliminated from C2, and then the next set of identical roads is selected. If a road 
segment Ri fails to find a neighboring road segment, it needs to be added to the 
1:0 matching pair and eliminated from C2 to avoid affecting the selection of the 
remaining matching pairs. When |C2|= 0, the matching of all identical roads is 
completed, and the final queue is the final matching result.

4  Experiment and analysis

4.1  Experimental data

To verify the effectiveness and practicality of the VAMRN algorithm, we selected 
the experimental data in this study from the road networks in Nanchang, China; 
Zhejiang, China; and Buffalo, New York, in the USA. For Nanchang, we selected 
the road network data of 1:10,000 and 1:50,000, 1:50,000, and 1:250,000 map 
scales (hereafter referred to as 1WNCRoad, 5WNCRoad1, 5WNCRoad2, and 
25WNCRoad, respectively) for the urban area. For Zhejiang, we selected 1:250,000 
mixed urban and mountainous road network data and OpenStreetMap road net-
work data (hereafter referred to as 25WZJRoad and ZJOSMRoad, respectively). For 
the city of Buffalo, we selected road network data from the city’s official website 
((https:// data. buffa lony. gov/ Infra struc ture/ Roads/ 33ss- qmvk) on August 13, 2021) 
and OpenStreetMap road network data (referred to as BuffaloRoad and Buffa-
loOSMRoad, respectively). The map scales of two datasets of Buffalo are unknown 
but they are similar, and their map scales are estimated approximately in the range 
of 1:2,000 to 1:10,000 according to the content details of road data. Four groups of 
experimental data are shown in Fig. 11a, b, c, and d. The road segment count, node 
count, total length, and coverage area statistics of each group of experimental data 
are given in Table 3.

4.2  Experiments and analysis of results

We conducted four sets of experiments using these four sets of road network experi-
mental data. The hardware configuration of the experiment’s computer was an Intel 
Core i7-9750H CPU, 16 GB RAM, and an Nvidia GeForce GTX 1660 Ti graphics 
card. The software environment consisted of 64-bit Windows 10, Microsoft Visual 
Studio 2019 (C#), and the ArcGIS Engine 10.2. VAMRN, the classic buffer grow-
ing method (BG) (Walter and Fritsch 1999) and the classic probabilistic relaxation 
method (PR) (Yang et al. 2013) that were published in high quality journals were 
used for the relevant experiments and algorithm comparison analysis.

In the VAMRN experiments, ρlen = 0.85, ρshp = 0.85, and ρdir = 10. These 
parameters are obtained by analyzing the results of preliminary matching experi-
ments and experts’ cognitive experiences of graphic similarity and experiences 
in cartographic synthesis. If the length or shape threshold is greater than thresh-
old 0.85, missing matches may occur, while if the threshold is less than 0.85, 
matching errors may occur. The same applies to direction threshold. In the BG 

https://data.buffalony.gov/Infrastructure/Roads/33ss-qmvk
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Fig. 11  Experimental data of 
matching road network: a Group 1  
dataset; b Group 2 dataset; 
c Group 3 dataset; and  
d Group 4 dataset
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experiments, the buffer radius values were 38, 134, 90, and 14 m in four experi-
ments. The method of setting buffer radius refers to the literature (Walter and 
Fritsch 1999). Namely the maximum value of Euclidean distances between cor-
responding objects recognized manually from two road datasets is selected as the 
buffer radius. In the PR experiments, the probability matrix iteration termination 
threshold was set to 0.0005, which is same to the threshold in the literature (Yang 
et al. 2013).

To quantitatively evaluate the matching quality and efficiency of each algorithm, 
we calculated and compared the Precision, Recall, F-measure, and the running time 
of the algorithms. Equations  (5), (6), and (7) calculate the Precision, Recall, and 
F-measure of the matching results, respectively:

where TP denotes the number of correct matching pairs; FP denotes the number of 
wrong matching pairs; FN denotes the number of wrong matches or missed matches, 
and the sum of TP and FN is the actual number of matching pairs of manual match-
ing results; α is the relative weight of precision; and when α = 1, then Precision in 
F-measure is considered equally important as Recall, and when α > 1, then Recall 
in F-measure is considered more important, and, vice versa, Precision is considered 
more important. We used the most commonly used value of F-measure at α = 1.

The results are shown in Table  4. All four groups of experimental results of 
VAMRN showed the largest values of Precision, Recall, and F-measure, with maxi-
mum values of 99.1, 97.4, and 98.2%, respectively. Compared with the BG method, 

(5)Precision =
TP

TP + FP
× 100%,

(6)Recall =
TP

TP + FN
× 100%,

(7)F-measure =

(
�
2 + 1

)
× Precision × Recall

�2(Precision + Recall)
,

Table 3  Road network statistics

Group Road network name Source (S) 
and target 
(T)

Number of 
segments

Number of nodes Total road 
length (km)

Cover-
age area 
 (km2)

1 1WNCRoad T 402 3,924 90.00 16.86
5WNCRoad1 S 171 1,091 59.25

2 5WNCRoad2 T 405 2,583 136.64 30.11
25WNCRoad S 56 691 45.64

3 25WZJRoad T 122 1,402 84.80 40.97
ZJOSMRoad S 114 1,209 78.17

4 BuffaloRoad T 572 1,610 62.48 4.90
BuffaloOSMRoad S 206 1,371 64.47
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the F-measure of VAMRN improved by 18.4, 29.6, 3.8, and 7.6%, respectively; 
compared with the PR method, the F-measure of VAMRN improved by 4.5, 2.8, 
1.8, and 6.1%, respectively.

The VAMRN algorithm also demonstrated good matching results for road net-
works with large positional discrepancies. As shown in Fig.  12, this part of the 
road network data came from the Group 2 dataset, the geometric structure of 
25WNCRoad differed greatly from that of 5WNCRoad2, and the overall offset 

Table 4  Matching result statistics of the three algorithms (TP denotes the number of correct matching 
pairs; FP denotes the number of wrong matching pairs; and FN denotes the number of wrong matches or 
missed matches)

Group Algorithm name TP FP FN Precision (%) Recall (%) F-measure (%)

1 VAMRN 147 3 4 98 97.4 97.7
BG 117 27 34 81.3 77.5 79.3
PR 138 7 13 95.2 91.4 93.2

2 VAMRN 49 1 4 98 92.5 95.1
BG 27 5 26 84.4 50.9 65.5
PR 48 3 5 94.1 90.6 92.3

3 VAMRN 111 1 3 99.1 97.4 98.2
BG 103 1 11 99.0 90.4 94.4
PR 108 2 6 98.2 94.7 96.4

4 VAMRN 159 15 30 91.4 84.1 87.6
BG 138 18 51 88.5 73.0 80.0
PR 150 29 39 83.8 79.4 81.5

Fig. 12  Road network data with 
large positional discrepancies 
(Ri represents a road segment in 
the source dataset; Ti represents 
a road segment in the target 
dataset)
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distance of 25WNCRoad was too great. The distance between R19 and T80 and R19 
and T105 was too far to query the matching pairs by the buffer with an unreasonable 
radius in the buffer-based data matching. In the road network matching based on the 
PR method, the structural similarity of road segments at R26 was significantly differ-
ent from that of T56, which could easily cause the false matching. In the VAMRN-
based road network matching, the Voronoi diagram corresponding to each road seg-
ment in the source dataset successfully selected the correct matching road segments 
in the target dataset as the matching candidates, and the correct and complete match-
ing pairs were finally obtained through the selection of matching pairs.

VAMRN, however, also had limitations similar to the BG and PR methods, which 
may have resulted in false matches or missed matches in cases in which the source 
dataset was too offset from the target dataset and the roads were relatively dense. 
As shown in Fig. 13, R45 was a segment of the source dataset, T179,T150, T161, and 
T170 were the candidate matching sets of R45, and the correct matching pairs of cor-
responding objects were R45 with T150 and T179. However, the offset of the dataset 
resulted in a smaller Hausdorff distance between T161 and T170, and the combina-
tion satisfied the constraints and geometric similarity metrics, resulting in a match 
between T161 and T170.

To analyze the efficiency of VAMRN, we counted the times of matching four 
datasets of different quantitative sizes with VAMRN, BG, and PR.

Fig. 13  Mismatching (R45 
represents a road segment in 
the source dataset; Ti represents 
a road segment in the target 
dataset)

Table 5  Time comparison of the 
three algorithms

Dataset size Time consumption (sec-
onds)

Number of source 
road segments

Number of target 
road segments

VAMRN BG PR

171 402 9 6 783
56 405 5 1 412
122 114 3 1 187
206 572 217 3 1068
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As shown in Table 5, the computation time of the VAMRN algorithm was slightly 
longer than that of the BG method, but much smaller than that of the PR method. 
The reason for the steep increase in time of the fourth group of VAMRN experiment 
is that there are too many intersections in the fourth dataset. Due to much intersec-
tions in the fourth dataset, the excessive number of road segments is obtained after 
interrupting the roads at the intersections, which leads to an increase in the num-
ber of combinations in the combination matching phase, thus it takes more time. 
Compared with PR, VAMRN has significant performance advantages. There are two 
mains reason for the long computation time of the PR method. The first is that it 
used a large buffer to obtain the candidate matching set, which resulted in a large 
amount of computation during the iteration and selection of matching results. The 
second is the complexity of the algorithmic process, which involved the steps of 
initial probability matrix acquisition, probability matrix iteration (including the cal-
culation of compatibility coefficients and support coefficients of neighboring candi-
date matching pairs), and matching pair selection (including the calculation of struc-
tural similarity of matching pairs, matching growth process, and selection of robust 
matching pairs).

5  Conclusions

Object matching is the crucial technology of road data conflation. We proposed an 
innovative Voronoi diagram-based approach for matching multi-scale road networks 
(VAMRN). (1) VAMRN innovatively constructs Voronoi diagrams of road segments 
that can effectively avoid the intersection of Voronoi polygon and several road seg-
ments by the strategy of adding dense points at special intersections. Using Voronoi 
diagram to filter the candidate matching set of each road segment can effectively 
avoid manually setting the buffer radius used for searching candidate matching set, 
and prune the matching searching space, which avoids searching a large number of 
irrelevant candidates. It improved the universality and efficiency of object match-
ing method. (2) Meanwhile, we designed the geometric similarity metrics including 
length, shape and direction, and a heuristic combinatorial growth strategy that are 
helpful for accurately matching multi-scale road data by using Voronoi diagrams. 
Our method only uses the geometric similarity metrics, which reduces the depend-
ency on object attributes. However, the matching accuracy is still high. Moreover, 
the proposed approach has the ability to detect all matching pair types including 1:1, 
1:N, M:1, M:N, 1:0, and 0:1.

In general, VAMRN demonstrated higher quality and good performance in over-
all matching results compared with the BG and PR methods, and offered a more 
universal and practical approach for matching multi-scale and complex road network 
data. However, VAMRN also had two shortcomings: (1) the threshold values for 
determining corresponding objects were set by expert experience, while when the 
map scales of identical objects span a large scale, some corresponding objects with 
large differences in shape may fail to match because of the threshold selection prob-
lem. The next work will investigate adaptively thresholds setting of geometric simi-
larity metrics to reduce manual intervention; (2) when the positional discrepancies 
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between the two road networks are great or the local regional roads are relatively 
dense, the Voronoi diagram of the source road segment may not query all matching 
candidates, which leads to false matches or missed matches. These two shortcom-
ings need to be further investigated in depth. In addition, in future research, more 
multi-source and multi-scale road network data will be acquired for validation and 
optimization of our method.
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